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MULTIPLICITY AND f-ISOMULTIPLE IDEALS

M.E. ROSSI AND G. VALLA

Introduction

Let V be an irreducible non degenerate variety in Pn; a classical
geometric result says that degree (V) > codim V + 1 and, if equality holds,
V is said to be of minimal degree. Varieties of minimal degree has been
classified by Del Pezzo and Bertini and they all are intersections of
quadrics. The local version of this result is due to J. Sally who proved
that if (A, 91) is a regular local ring and (R = A/I, SK = 9Ϊ/I) is a Cohen-
Macaulay local ring of minimal multiplicity, according to the bound
e(R) > height (I) + 1 given by Abhyankar, then the tangent cone gτm(R)
of R is intersection of quadrics and it is Cohen-Macaulay.

On the other hand if I c 9ΐ2 and SR(ffll) is the symmetric algebra of
the i?-module S3?, then by a result of A. Micali we know that SR(Wl) is
not a domain; however J. Risler proved that, if R is reduced, then SR(WΪ)
is reduced if and only if grm(R) is intersection of quadrics.

Recently J. Elias considered the case J is a perfect codimension 2

ideal of the regular local ring (A, 91); if υ = v(I) is the minimal number

of generators of I, he proved that e(A[I) > (%) and, if equality holds,

gvm{R) is intersection of hypersurfaces of degree υ — 1.
Further if one tries to extend the theory of normal flatness along

permissible ideals to the non regular case, then it is natural to consider
ideals whose corresponding tangent cone is intersection of hypersurfaces
of the same degree t (see [Br]).

We say that an ideal I is ί-isomultiple if gr^(i?) is defined by equa-
tions of the same degree t; this means that / has a standard base of
elements of order t As it turns out by the preceding examples, very
often ideals with "minimal" multiplicity are ί-isomultiple. In this paper
we pursue this line in order to identify some interesting classes of t-
isomultiple ideals.
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In section 1 we consider a complete intersection codimension h ideal
Ic 9?' and prove that I is £-isomultiple if and only if e(A/I) = th (see
Theorem 1.8). The main tool to prove this result is to investigate the
condition e(A/xA) = te(A), where t is the order of x and (A, 9Ϊ) is a local
ring not necessarily regular. If we assume gr^(A) to be Cohen-Macaulay,
then we can prove that e(A/xA) = te(A) if and only if the initial form
of x in gr^(A) is a non zero divisor (see Corollary 1.6).

The main result of section 2 is Theorem 2.1, which gives us the
possibility to reduce our problems to the O-dimensional case and also
throws light on the relationship between ί-isomultiple ideals and the
Cohen-Macaulay property of grm(R). We are dealing with a perfect codi-
mension h ideal IdW of the regular local ring (A, 9ΐ). Hence the ring
(R = A/I, Wl = 5R/I) is Cohen-Macaulay of dimension say d and we can
consider a minimal reduction J = (xu , xd) modulo /. Then we have
that (I + J)/J is Z-isomultiple if and only if I is ί-isomultiple and grm(R)
is Cohen-Macaulay. It would be interesting to know whether the con-
dition I ί-isomultiple implies gr^(i?) to be Cohen-Macaulay.

Now if J is a perfect codimension h ideal such that I c f f with
t > 3, it is clear that the bound e(AjI) >h+l is not sharp. One can

prove e(A/I) > I , j and thus it is natural to consider ideals for

which equality holds.
In section 3 we call these ideals ί-extremal and prove that J is t-

extremal if and only if I is ί-isomultiple, gΐ^(R) is Cohen-Macaulay and

v(I) — ί " ~~ ) (see Theorem 3.2). This result extends to a considerable

extent theorems of Sally and Elias and also explains the connection
between the notion of ί-extremal ideals and that of ί-extremal Cohen-
Macaualy graded algebras introduced by P. Schenzel in [Sch].

Perfect ideals I with e(A/I) = h + 2 have been extensively studied
by Sally in [Sa2] here we say that the perfect codimension h ideal I is

almost ί-extremal if I c 3ίtί and e(A/I) = (h + ^ ~ X\ + 1. In the second

part of section 3 we prove that I is almost ^-extremal and gr^i?) is
Cohen-Macaulay if and only if the Poincare series of R is P(R, z) =

(1 - «)"1Γχ;t

t;J (h + l~ 1 ) ^ i + A (see Proposition 3.8). Further I is t-

i s o m u l t i p l e , gτm

rR) i s C o h e n - M a c a u l a y a n d v(I) = ί /"""••) — 1 if a n d
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only if I is almost ^-extremal and τ(R) < ( J~_ T \ where τ(R) is the

Cohen-Macaulay type of the local ring R (see Theorem 3.10). Again this

theorem not only extends the main result of Sally in [Sa2] from the

case t — 2 to the general case, but also gives a complete picture of the

problem.

Section 4 is devoted to study perfect ideals which can be obtained

as the specialization of Z-isomultiple generic ideals (see Definition 4.1).

Here we prove that for such an ideal 7, the multiplicity of the local ring

A/7 is bigger or equal to the multiplicity of the generic case and, if

equality holds, then 7 is ί-isomultiple (see Theorem 4.2). As a corollary

we get again Elias result on perfect codimension two ideals, but also a

very easy proof that if 7 is a Gorenstein codimension three ideal then e(A/I)

> [v(iγ - ι>(7)]/24 and, if equality holds, 7 is [(v(I) - l)/2]-isomultiple

and grm(R) is Gorenstein. The first assertion is the main result in [E-I],

while the second gives a positive answer to a conjecture stated in the

same paper. Other interesting applications are given.

In the last section of the paper we prove two main results. The first

gives an upper bound for the multiplicity of the local ring A/7, when 7

is a 2-isomultiple codimension h ideal such that h < 6 (see Theorem 5.9).

Suitable examples show that the bound is sharp and suggest that for a

Z-isomultiple codimension h ideal 7 the following inequality could hold:

e(AII) < th~\e - t + 1).
The second, see Theorem 5.15, gives a lower bound for the multiplicity

of the local ring A/7, when 7 is a ί-isomultiple codimension h ideal such

that υ(I) — h + 1 and gτw(R) is Cohen-Macaulay. It is perhaps worthy

to remark that, without any assumption on υ(I), the trivial bound e(AjI)

> ( -L~ ) is sharp. Here we prove that e{AjI) > ds where, given the

integers h and ί, we define s to be the integer part of [(h + ΐ)(t — l)]/2

and we let ( B ^ ) * + 1 = Σ* <*<**.

§ 1 .

Let (A, 5Ϊ) be a noetherian local ring with an infinite residue field

k = A131; let ί c 9ί be an ideal in A of height h such that R = Ajl is

a local ring of dimension d and maximal ideal Wl = 31/1.

A system of elements fl9 , /r in I is called a standard base of I if

the initial forms /* in gr*(A) - @p>0(3lpl3lp+1) generate the ideal /* of
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initial forms of /. This is equivalent to saying that IΓ)91P = ΣΓ

holds for all p > 0, where 9ΐs = A if s < 0 and vt = v(ft) is the largest

integer t such that ft e SSV, the order of ft. It is clear that if fί9 ,/ r is

a standard base of I, then grm(A/I) = grn(A)/(/f, , /*) . Further one

can prove that /f, •••,/* is a regular sequence in gr^A) if and only if

/i, , fr is a regular sequence in A and a standard base of (/i, , fr)

(see [V-V]). The ideal / is said to be t-ίsomultiple if I has a standard

base /i, , fr of elements of the same order t.

It is clear that I is ί-isomultiple if and only if 3lp+t Π J = 9ίp/ for all

p > 0.

Also if I is ί-isomultiple, then I and 7* have the same minimal

number of generators. For example if k is a field and JdP = k[Xu , XJ

an ideal generated by homogeneous elements of the same degree t>

then the ideal I = JA is Z-isomultiple in the ring A = -fe[X1? , Xn] or

A = k[Xl9 - - , Xn](xu...,Xn)' The following result aroused our interest in

the study of ί-isomultiple ideals; a proof has been given in [RJ, but it

is rather involved. We insert here an easy proof, also for the sake of

completeness.

Let us assume A regular and J c S ί 2 ; we let SR(W) be the Symmetric

algebra of SDΐ over i?. By a result of Micali (see [M]) we know that

S^Sft) is not a domain since R is not regular. As for reduceness one

can prove the following.

PROPOSITION 1.1. // R is reduced, then SR(ίUl) is reduced if and only

if I is 2'ίsomultiple.

Proof. By the universal property of the Symmetric algebra, we have

SaW) = ®PzoWpIIWΛ Since the ring grn(A) = Θ^oW9ΐ p + 1 ) is a

domain and the Rees algebra RR(Wl) = ©p^ 0 (^PII Γl 9ΪP), which is a subring

of R[T], is reduced, we get that the ideals ®p>o%lp+1 and ®p>o(/Π9ίp)

are radical ideals in the ring ©p>03ΐp. We claim that R a d ΐ © ^ / ^ - 1 ) =

(®P>o(IΓ\yίp))f)(@p^Wp+λ) and from this the conclusion follows. Now

I9lp-1(Z(IΓ)<>Jlp) ΓΊ 3??+1; on the other hand, by the Artin Rees lemma, there

exists a positive integer r such that I Γl %lr+k dI3lk for all k > 0. Thus

if xeln$lp+\ then xr~x elf) Ψp+1Hr~l) c JfK*^- 1 ; this proves the other

inclusion and the proposition.

In the following for a local ring i?, e(R) denotes the multiplicity of

R.



MULTIPLICITY 85

EXAMPLE 1.2. If R is a reduced hypersurface ring then SΛ(2Jΐ) is

reduced if and only if e(R) — 2.

Moreover, if / is a complete intersection ideal of height h and

SR(Wl) is reduced or, which is the same by the above proposition, if I is

2-isomultiple, then e(R) = 2h (see [R2]).

It is suggested in [B] that the converse is a corollary of the following

exercise: If (A, 31) is a local ring such that gr^(A) is a complete in-

tersection and if fl9 , fr are elements of 31 of order υu , vr, then

e(A/fu ,/r)) = e(A) fjϊ=i v% if and only if /?, •,/* is a regular sequence

in gr^(A) (see [B], ex. 4 pg. 104).

Unfortunately this is not true even if A is a regular local ring.

EXAMPLE 1.3. Let A = k{X, Y, Z\ / = (X\ XY, XZ - Y7). Then
e(A/I) = 8 but /* = X\ ft = XY, ff = ZZ is not a regular sequence in

However, if we assume that r = 1 or that /1? , fr is a regular

sequence in A, then the above result holds even with the v/eaker assump-

tion that gγm(A) is Cohen-Macaulay.

In the following if M is a finitely generated A-module l(M) will

denote its length.

PROPOSITION 1.4. Let (A, 31) be a local ring of dimension d and x a

parameter in A with t — v(x). Then

i) e(AlxA) > te(A)

ii) // X* is a non zero divisor in grsκ(A), then e{AjxA) = te(A)

in) If e(A/xA) = te(A), then x* is a parameter in g

Proof. We have exact sequences:

0 >A/3ln: x >A/3ln >A/3ln + x >0

0 >3ln: χl3ln-1 —>AI3ln-1 >AI3ln: x >0

from which we get:

l(AI3ln) = l(A/3ln + x) + /(A/^^0 - l(3ln: xl3ln-1).

Since dim A/xA = d - 1, we get from this that l(3ln: x^'1) is for all

large n a polynomial f(ή) of degree d — 1 with leading coefficient

[e(AjxA) — te(A)]l(d — 1)!. This proves i) and also ii) since if x* is a non

zero divisor in grw(A), then x is a non zero divisor in A and 3ln Π (xA)

= 'Sttn"i(xA). Further e(AlxA) = te(A) if and only if deg(/(n)) < d - 2.
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Now it is clear that dimfe(0: x*)n.t^ = l((3ln: x)) Π SR"-'-1/^"-') hence, if

e{AjxA) = te(A) then, for all large n, dimfc(0: x*)n-t-.i is a polynomial in

n of degree less or equal to d — 2. This proves that the grn(A)-module

0: x* has Krull dimension less or equal to d — 1, or, which is the same,

that the ring grm(A)/(0: (0: x*)) has Krull dimension less or equal to

d — 1. Now it is easy to see that this implies x* is a parameter in

Remark. The assertions i) and ii) are well known (see [B]), while iii)

has been proved in [S] in the case t = 1. Here we used many of the

central ideas of the original proof.

Since we need to cover also the case where x is not a parameter,

we add the following result which is more or less known.

PROPOSITION 1.5. Let (A, 9ΐ) be a local ring of dimension d and x an

element in A with t = v(x), such that dim AjxA — d. Then we have:

i) e(A/xA) = e(A) if dim (A/0: x)< d

ii) e(AlxA) = e(A) - e(A/0: x) if dim (A/0: x) = d

Proof. We have an exact sequence

0 > xA > A > A/xA > 0 .

Since xA ^ A/0: x the result follows by the additivity of the multiplicity.

COROLLARY 1.6. Let (A, 31) be a local ring such that gr^A) is Cohen-

Macaulay. If x is an element in A of order t, then the following conditions

are equivalent:

i) e(AlxA) - te(A)

ii) x* is not a zero divisor in gr^(A)

Proof. If x* is not a zero divisor in gr^(A), then Xis not a zero divisor

in A, hence e(A/xA) = te(A) by Proposition 1.4. Conversely if x is a non

zero divisor in A, by Proposition 1.4 we get that x* is a parameter in

gr^A), hence a non zero divisor. If x is a zero divisor, since A is Cohen-

Macaulay, 0: x is contained in a minimal prime p of A, hence dim A/0: x

> dim Ajp = dim A which implies, by Proposition 1.5., e(A/xA) < e(A).

The following example shows that in the above Corollary we cannot

delete the condition gr^A) is Cohen-Macaulay.

EXAMPLE 1.7. Let A = k{t\ t\ f'J = k{X, Y, Z}/(X* - Z\ Y3 - XZ\
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then A is a complete intersection domain of multiplicity 6 and x a non

zero divisor in A. Since gτ^(A) is not Cohen-Macaulay and has dimension

1, x* is a zero divisor in grm(A) and e(A/xA) — 6 — e(A).

THEOREM 1.8. Let (A, 3ϊ) be a local ring such that gr^A) is Cohen-

Macaulay; if fί9 ,fr is a regular sequence in A and vu , vr are positive

integers such that v(fτ) > υu then with R = A(fu ,/ r ), the following

conditions are equivalent:

i) e(R) = e(A) llUVt

ϋ) /*, - - -,fΐ is a regular sequence in gr^(A) and v{fτ) = υt for all

i = 1, , r.

Proof After Corollary 1.6 we need only to prove that i) implies ii).

If r = 1, we have v(f^)e(A) < e(R) = e(A)vί < e(A)v{fλ), hence υt = υ(f^) and

we can apply Corollary 1.6. We argue by induction on r; let J —

(f» ' ,/r-λ B = A/J, Tl = 31/J and / = fr. Then we have:

e(R) = e(A) \\Ui vt - e(Blf) > v(f)e(B) > v(f)e(A) Πϊ

hence vt = v(fi) for all ΐ and e(S) = e(A) \\ \z\ υt which implies by

inductive assumption that /*, ••*,/?_! is a regular sequence in gr^A).

Further gτm(B) = gϊffi(A)l(f?9 ,/?_i), hence gr^β) is Cohen-Macaulay;

since e{Bjf) = v(f)e(B) we get that /* is a non zero divisor in gr^(S).

But since v(f) — v(fr) this implies /* is a non zero divisor modulo

(fΐ, ' -iff-i) a n ( i ^he conclusion follows.

§ 2. Reduction to the Artinian case

One of the main tool in the following sections is the reduction to

the O-dimensional case. Thus we are led to consider the problem of

lifting a standard base from a quotient ring to the ring itself and con-

versely. Some results on this topics have been obtained in [R-V]; we

recall here what we need in the following.

Let (A, 9Ϊ) be a local ring, I and J ideals of A, and denote by " — "

reduction modulo J and by " — " reduction modulo I. Let I = (/i, * ,/r)

and vt = υift).

1. If /i, , fr is a standard base of / and vt — vQ^) for all ft g J,

then the following conditions are equivalent:

i) A, •••,/, is a standard base of 1
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ii) 3lp Π (7 + J) = Σi ^P~Vifi + W Π J for all p > 0.

iii) There exist elements x1? , xd in J such that £1? , xd is a

standard base of J and î (jĉ ) = ι>(Xi) for i — 1, , cf.

2. Assume that /l5 •••,/,. is a standard base of 7 and u(/έ) = vt for

j = 1, , r. If there exists a minimal base xl9 , xd of J such that

i) x?, , x | is a regular sequence in gr^(A)

ii) xί9 , xd is a regular sequence in A

then /j, - - ,fr is a standard base of 7.

For the proof of these two facts see [R-V], Theorems 2.2 and 2.6.

For the rest of the paper (A, 31) is a regular local ring with an infinite

residue field k, I d3l2 a codίmension h ideal of A such that (R = A/7,

SJJ = 31/7) is a Cohen-Macaulay local ring of dimension d.

Let x19 , xd be a minimal reduction modulo 7 and J — (xl9 , xd)9

then jcj, , xd is a regular sequence in R and e(i?) = e(R/J) = l(R/J).

Further since c7 (Ί 7 = 7J, we have a canonical isomorphism of ^-vector

spaces I/I31 ~ 7/M. We denote by R the ring A/7 = A/7 + J = JR/J and

call it an artinian reduction of JR.

3. gr^(i?) is Cohen-Macaulay if and only if xl9 , χd is a standard

base of J . A proof of this result can be found in [Ro], Proposition 2.4.

However it is also a trivial consequence of the fact that for every

minimal reduction au , ad of the maximal ideal of the Cohen-Macaulay

ring (i?, 9K) one has 3Jln+ί = (au , ad)Wln for some n > 0, hence αf,

αj is a system of parameters in gr^i?).

Collecting all these facts one can prove the following theorem which

will be used extensively for the rest of the paper. As before we denote

by " — " reduction modulo J and by " ~ " reduction modulo 7.

THEOREM 2.1. If for some integer t>2 we have Id3lt, then the

following conditions are equivalent:

i) 7 is t-isomultiple and grm(R) is Cohen-Macaulay

ii) I is t-isomultiple.

Proof. Since gr^(i?) is Cohen-Macaulay, by 3 xl9 , xd is a standard

base of J and of course v(xt) — v(xt) = 1. Hence condition iii) of 1

holds and it suffices now to check that if f el and v(f) = t then v(f) = t.

But if fe3lt+1 + J, then f=Σiatχi + b w i t h be3lt+ί; it follows that

Σi &iXi s JΓϊ yit+1 = c/5R% hence ^ ^ α̂ Xi = 2]i έ>A with 6̂  e ίl*. Since
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xί9 , xd is a regular sequence in A = R, this implies for all i — 1, , d,

at — bt = Σjφi cijχΊ + di with ctj = — c j4 and d̂  e /. Thus J ] t α ^ — X^ 6 ^

e/9ϊ, hence J i W € 9ίϋ+1 which implies /e9ϊ ί + 1, a contradiction.

Conversely let fu - —,fr be a standard base of I with ί = i;^), ί =

1, , r. This implies t — v(fi), ί — 1, , r; since x1? , xd is a minimal

base of J such that x*, - - -, x* is a regular sequence in gr^(A) and

xl9 , xd is a regular sequence in A = i?, we can apply 2 and get that

fu - - ,fr is a standard base of /. Now, again by 1, we get 9lpΠ(/ + J)

= Σsi^P~Vίfi + 9ίp (Ί J = ΣιiMp-Όifi + 9ip-V for all p > 0; hence

(/ + J ) n ( 9 ^ + /) = / + 92P"!J which means that χl9 , xd is a standard

base of J and gr^i?) is Cohen-Macaulay.

Remark 2.2. It is clear that if gr^i?) is Cohen-Macaulay, the ideal

/ does not need to be ί-isomultiple for some t. For example if A =

k{X, Y, Z ] and / = (X3 - YZ, Y3 - Z2Z, Z2 - ZY2), then R = k[t\ t\ t7}

and thus grm(R) = k[X, Y, Z]j(YZ, Y3 - Z2Z, Z2) is Cohen-Macaulay, but

/* is not generated by elements of the same degree.

Remark 2.3. We don't know if the condition "/ is ί-isomultiple"

implies that gr^i?) is Cohen-Macaulay. In [H-R-V] we gave an example

of a 3-isomultiple ideal such that R and gτm(R) have different Betti

numbers (here and in the following the Betti numbers of the A-module

M are the ranks of the free modules in a minimal free resolution of M).

However, in this example, grm(R) is Cohen-Macaulay (see Remark 4.11).

§ 3. /-extremal and almost r-extremal ideals

As before (A, 91) is a regular local ring and / a perfect ideal of A

of codimension h such that (R = A/I, 9ft = 91//) has dimension d. It is

well known that e(R) > h + 1 and, if the equality holds, then / is 2-iso-

multiple and gr^J?) is Cohen-Macaulay (see [SaJ).

If / c 9if with t > 3, then this bound is not sharp. If xl9 , xd is

a minimal reduction modulo /, then we know that e(R) = e(R) — /(A/Sΐ*)

= (h +h ~~ l) + Z ^ / ί ) ; thus e(R) > (h + ^ ~ λ\ and the equal-

ity holds if and only if I — W. Of course this bound is sharp since for

all ί, the ring R - k[Xl9 9Xh}l(Xl9 , XhY has multiplicity (h + l ~

DEFINITION 3.1. We say that the perfect codimension h ideal / is
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t-extremal if Id W and e(R) = (h + ^ " XY

Thus Sally's theorem says that 2-extremal ideals are 2-isomultiple.

On the other hand if h = 2 and u = u(I) is the minimal number of

generators of I, then by the Hilbert-Burch theorem we have Icz3lv~\

Recently Elias proved that if J is (v — l)-extremal, then J is (v — 1)-

isomultiple (see [E]).

Both these results are particular cases of the following general result

which clarifies also the connection between the notion of Z-extremal ideal

and that of ί-extremal Cohen-Macaulay graded ring introduced by Schenzel

in [Sch].

Recall that if G = k[Xly , Xn]/J is a Cohen-Macaulay standard k-

algebra of dimension d and codimension h, we denote by H{G, ή) — dimfc Gn

and h(G, n) respectively the Hubert function and the Hubert polynomial

of G. We define the index of regularity of G as:

i(G) - max{n eZ\H{G, n) Φ h(G, n)} + l.

Further let t be the initial degree of J, which is the minimum degree of

the generators of J. Schenzel proved that ί(G) + d > t.

DEFINITION 3.2. (see [Sch]) We say that G is ^-extremal if i(G) + d

= t.

It follows from the paper of Schenzel that G is ί-extremal if and only

if G is Cohen-Macaulay and P{G, z) = (1 - z)~d Σl~=l(k + \ ~ X)«* where

P(G, z) is the Poincare series of G, which is by definition the series

Remark. We note that G is a Z-extremal graded Cohen-Macaulay

ring if and only if the function H^d is maximal according to the defini-

tion given by Orecchia in [0]. Also G is a ^-extremal graded Cohen-

Macaulay ring if and only if G is compressed of type ί ^~_ 7" W"1,

according to the definition given by Frδberg and Laksov in [F-L] (see

also [I]).

THEOREM 3.3. For a perfect codimension h ideal I of A, the following

conditions are equivalent:

i) I is t-extremal

ii) I is t-isomultiple, gτm(R) is Cohen-Macaulay and υ(I) = ( ~~ \
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+ i -iii) P(R, z) = (l - z)-' Σ{

iv) gr^(i?) is t-extremal

Proof. Let I be Z-extremal; then I = 9̂% hence I is Z-isomultiple and

υ(I) =-- (h + * ~ λ\ = v(I). Using Theorem 2.1, we get that I is ί-isomul-

tiple and gr^(J?) is Cohen-Macaulay.

If condition ii) holds we have gr^i?) = k[Xu , Xd + Λ]/J* is Cohen-

Macaulay, hence we may assume Xh+lf '- ,Xd + h is a regular sequence

modulo I*. Now the condition v(I) — ( f~ ) implies

grw(Λ)/(XΛ+1, , Xd + Λ) ^ AK, • , XJ/(Z1? , Xhy

hence

, z) = (l - z)- Σί : ϊ ( Λ + ~

On the other hand if

then

but y]i=oί )zί ^ (1 — z) h mod (zH), hence P(R, z) = P(A, z) mod (zι)
\ i j

which implies I c 9ΐ' and J is ί-extremal, so that iii) implies i). Using

SchenzeΓs results, we conclude the proof of the theorem.

Remarks. 1. It is clear from the proof of the theorem that if I is

ί-extremal, then R and gτm(R) have the same Betti numbers, namely the

Betti numbers of k[Xu , XJ/(X1? -,XhY.

2. In condition ii) we dannot delete the hypothesis on the number

of generators of I: if A - [X, Y] and I - (X3, X2Y, Y3), then h = 2, J is

3-isomultiple but e(R) = 7.

3. The equivalence between i) and ii) has been proved by Orecchia

in [0] in the case d = 1.

4. If h = 2, t = u(J) — 1 and I is ί-isomultiple then, by the main

result of [R-V], gr^i?) is Cohen-Macaulay (see Remark 2.3 and [E]).

5. As remarked in [0], the above theorem applies to various classes

of afiine space curves, locally requiring an arbitrary large number of
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generators (see [Me], [Mo], [Ma]). It turns out that the tangent cone at
the origin of these curves is projectively Cohen-Macaulay.

6. It is worthy to remark that if a graded ^-algebra G has Poincare

series P(G, z) = (1 - z)~d Σtl(k + \~ λ\\ then G is not necessarily

Cohen-Macaulay. In fact let G - k[X, Y, Z]/(X\ XY, XZ, Y3), then P(G, z)
= (1 + 2z)(l — z)-1 but G is not Cohen-Macaulay.

7. It is clear that if 7 is a principal ideal such that I aW, then
e(R) = t. We remark that for a perfect ideal / also the converse holds;

in fact if I c W with t > 2, e(R) - t and h > 2, then t>{h+t

h~
1\>

t(t + l)/2, so that t < 1, a contradiction. Thus /ι = 1 and I is principal.

The case of local rings R with multiplicity h + 2 has been extensively
studied by Sally in [Sa2]. She proved that if the Cohen-Macaulay type
of R is strictly less than h9 then I is 2-isomultiple and gr^(i?) is Cohen-
Macaulay. This suggested us to consider the following class of perfect
ideals.

DEFINITION 3.4. We say that the perfect codimension h ideal / is

almost t-extremal if I c W and e(R) =

EXAMPLE 3.5. (Sally) Let R = k{t\ t\ tnj then

graCR) - k[X, Y, Z)/(Z2, XZ, YZ, Y4)

so that I is almost 2-extremal but gr^R) is not Cohen-Macaulay.

EXAMPLE 3.6. (Sally) Let R = ^[ί5, ί6, t\ fj then

k[X9 Y, Z, W]I(XW - YZ, ZW, Z\ W\ YW, X2Z - Y%

In this case I is almost 2-extremal, gτm(R) is Cohen-Macaulay but I is
not 2-isomultiple.

In the next lemma we collect some properties of almost ί-extremal
ideals. We denote by τ(R) the Cohen-Macaulay type of R.

LEMMA 3.7. Let I be an almost t-extremal ideal such that
dim 12 = dim Ajl - 0. Then

i) ιwηi) = ι
i i) 3lt+1al
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iii) τ(R) < ( £_ T J and equality holds if and only if

-ιII: VI) = I

iv) τ(R) = τ(gτm(R))

Proof, i) We have e(i?) - /(A//)- Z(A/9?0 + Z(5R77) = (h +

 n~ *) +

hence Z(9*77) - 1.

ii) We have 9ΐί 3 9ίί+1 + ! = > ! , hence 1 - Z(5R77) - l(WI$lt+1 + 7) +

Z(9ϊί+1 + 7/7). Since, by Nakayama, 91' φ W + ί + I, we must have f + 1 c / .

iii) We have Wι D I: 91 3 / and J c W c 91*-1, hence ( Λ + J ~ 2 ) + 1

= Z(^-7/: 31) + τ(B). Since 91'£ 7, we have S^"1 =£ 7; 31, hence the

conclusion follows.

iv) It is clear that we always have τ(R) < τ(grm(R)). On the other

hand if £* e 9KP/SKP+1 is an element of 0: gr^jR)*, then x%fl C 9KP+2,

hence x3ΐ c I + 3ΐp+2. Now if p < t - 1 then p + 2 < t, hence I c 3ΐp+2

which implies xe9ΐp+1, a contradiction. Thus p>t — 1 and we get

jjp+2 ^ gfjί+i c ^ s o t h a t ^ c j a n d x e 0: 3K. This gives the conclusion.

PROPOSITION 3.8. Let I be a perfect, codίmensίon h ideal in A

~

// and only if I is almost t-extremal and grm(R) is Cohen-Macaulay.

Proof Let gr^(i?) be Cohen-Macaulay, J — (xl9 , xd) a minimal

reduction modulo /. Then we have

P(R, z) = P(grm(R), z) - (1 - z)^P(gτm(R)l(xΐ, , *ί), z)

hence we may assume dim R — 0. But then, if I is almost Z-extremal,

we have, by the above lemma, 3lt+1 a I and the conclusion follows. Con-

versely, if

P(R, z) = (l~ z)

then e(R) = £ £ £ (h + ι. ~ X) + 1 = (h + { ~ X ) + 1. Also P(R, z) =
\ Ϊ / \ n )

P(A, z) mod (zι), which implies Id 3lι, so that I is almost Z-extremal. In
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order to prove grw(R) is Cohen-Macaulay, we need to show SRP Π J =

W-'J for all p > 1. Now if p < t, then Id Ψ c W and we have mpΓ\ J

= 91* Π (ί + J)II = (/ + 31" Π J)// = (I + Si""1 J)/J = 3K"-1 J. On the other

hand we have WIIDJ-DJW and J3fts c 9K<+1 c 2R, hence l(Wlt+1IJW) =

JJ 1). Now

KJ/Jw) = i(j + iiJΨ +1) = i(Ji(Jw + in J)) =

= (by [H-R-V], Lemma 3)

Σί:Jdim(J*) < + I = Σ U d i m ( J * X = [(1/(1 - 2 ) ί + ft) - (1/(1 - z)*)]<

where if F(z) = J^i^atZ1 is a power series, we let [F(z)Y0 = Σ?=o α i

Thus if /(β) = Σ U ( ^ + ~ ^ + ^' we get

= [/(z)]i + [(1/(1 - «)«•*) - (1/(1 - e)ft)]J - [/

= [(1 - (1 - 2)0(1 - /(zXl - z

Now /(«) = 1/(1 - z)h mod (z% hence (1 - (1 - z)d)(l - f{z){\ - z)h) = 0

mod(2 ί+1), from which we deduce 1(W^IJW) = 0. This implies 3Kr+1 =

JWr for all r > t + 1 and the conclusion follows.

Remark 3.9. It is worthy to remark that if a graded ^-algebra G of

dimension d and codimension h has Poincare series

P(G, z) = (l - *)-[Σί:S (A + ~

then G is not necessarily Cohen-Macaulay. In fact let

G - k[X, Y, Z]I(X\ XY, XZ\ Y%

then G has codimension 2, dimension 1 and P(G, z) = (1 + 2z + 22)/(l — 2)

but G is not Cohen-Macaulay.

THEOREM 3.10. For a perfect codimension h ideal I of A, the follow-

ing conditions are equivalent:

i) I is almost t-extremal and τ(i?) < ί 7" ^ )

ii) I is t-isomultiple, gicm(R) is Cohen-Macaulay and
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iii) P(R, z) = (1 - z)~d I Σi~l(h + \ ~~ Λz* + A and

h+ t-2\
t — 1 /

Further if one of the above equivalent conditions holds, then τ(R) =

Proof. We prove i) implies ii). If / is almost ^-extremal, then 7 is

almost Z-extremal hence, using again Theorem 2.1 and the equalities

v(I) = v(ΐ) and τ(R) = r(i?), we may assume dim 7ϋ = 0. Let 31 =

(xl9 '-',xh); since 1(91*/I) = 1 there exists a monomial m of degree £ in

xί9 , xh such that m g 7, hence 9ΐc = (7, m).

We claim that if τ(R) < (h + J ~ 2V then mSRcίK; this would imply

5ϊί+1 = JSΠ, from which it follows that 9i ί + f cn7 - 9ifc7 for every fe > 0 and

also v(I) = Z(7/79?) = l(W/W+1) - l(W/I) = ίh + t

t~
1\^l which is exact-

ly what we need for our implication.

We prove the claim by contradiction along the following line:

mxx e m = > xί+1 6 M = > τ(R) = ίh +J ~ 2 )

As for the first implication, it is enough to prove that if m = xόp and

mil £ 73ί, then px\ & 131. But we have m, xλp e 3lL\I, hence for some c g 5ΐ,

m — cx^ e 7; thus cx^p = xjn — x/m — cxjp) g 79ΐ as required.

Now let xί+1g79ΐ; after reordering the x/s, we may assume

xί, x[~1x2, - - , xi-1xs g 7 and x ^ ^ + i , , xί^x^ e 7 for some s > 1. We are

going to prove that Jϊ^1 = 7 : 5Jί + (xί"1) which implies by Lemma 3.7 iii),

that r(R) = ( A + - Γ

1. If p € S?*\Z, then pXj & 131 for every j < s.
In fact for some a, b e 31 we have x{ — ax\~xx^ x[ — bp e 7, hence x[+ί

= xx{x[ — axί^Xj) + αx;(xί — bp) + α6px r Since xί+1 6 73ϊ, this implies

79?.

Step 2. If 2?=i ^t = ^ then we have p = x?< xn

h

h e I if and only if

3 r > s with nr > 0.

If 7ir > 0 with r > 5 and p g 7, then by repeated use of step 1, we

get xί~!xr g 7, a contradiction. Conversely, if rar = 0 for every r > s and

72fc > 0 with 1 < k < s, since xί-1xfc g 7, we get, by repeated use of step 1,

p g 7 .
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Step 3. Ψ-1 = I: 31 + (xΓ1)

If m — xψ- -xlh with 2ϋ« w* = * — 1 a n d ^ > 0 for some r > s, then

m e I: 3ΐ by step 2. Let rcr = 0 for every r > s; then, again by step 2,

we have ^ m g I, hence Λ J — α^m 6 I for some α g 9ΐ. We claim that xj"1

— cm e 7: 3Ϊ as required. But, if for some j we have xfal'1 — am) g I,

then for some b £ 31 we have x[ — bx^xί"1 — am) e I, hence

x[+1 = X)[χ[ — bxjixi'1 — am)] + bx^xi — axjri) e 131,

a contradiction.

We prove now ii) implies iii).

If condition ii) holds, then grm(R) = k[Xu •• ,X d +J/7* is Cohen-

Macaulay, hence we may assume Xh+1, , Xh+d is a regular sequence mod-

ulo /*; thus we have P(R, z) - P(grm(JR), z) = (1 - z)-*P(k[Xu , ZJ/SI, z)

where §1 is an homogeneous ideal of codimension h, generated by

ί , ~~ ) — 1 elements of degree t in S = k[Xu , XJ. If we prove

that St + 1d% then we get P(S/2I, 2) = ^ z j ( A + ί ~ ^2* + ^ as re-

quired.

Now we can find a term ordering on the set of monomials in S and

a suitable linear changing of coordinates, such that if Xt < Xj for all

j > ί, then all the monomials of degree t in S, save X{, are in Λf(Sί), the

ideal generated by the maximum monomials of elements of 21. Now since

S/8t and S/M(2l) have the same Hubert function, 2ί and M(2ί) have the

same codimension, hence ikf(2ί) must contain some other monomials. By

a theorem of Giusti (see [G], Theorem 2.6), we can prove that X[+λ e M{%),

hence St+1 = M(Sί)ί+1 =
 <ϋt-i a s required.

In order to complete the proof of ii) implies iii), we must show that

if 21 is a O-dimensional homogeneous ideal of S = k[Xu , Xh] generated

by forms of degree t such that ι;(2ί) = (h + \ ~ λ\ - 1 and P(S/2ί, z) =

Σί=J ( Λ + ~ ^ ^ + «S then r(S/2I) <(kfl^ 2 ) Since dim SJ% = 1

and the socle of S/21 is concentred in degree t — 1 and £, it is enough

to show that dim (21: S^)t_ι < ί T\_ 7" ] — 1. Let us assume, by contra-

diction, that dim (21: S1)t_1 — dimS^i — 1.

Step 1. If P, Q are monomials of degree t — 1 such that for some ί

and; , X,P, X,Qg2ί, then
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We have P, Q £ SI: Sv Now if P = Q, then X,Q = X ; P g 81, otherwise

P + aQ e SI: Sj for some α e £ ; hence X ; . (P+αQ)e SI and this implies

SI.

Step 2. For some i > 1, Xξ g SI.

If Xi, , XI e SI, then by step 1 we get St = SI,, a contradiction to

dim SMt = I-

After reordering the X/s, we may assume X[y • • ,XJgSί, Xs+1, •••,

Xi e SI for some s > 1.

Step 3. If M is a monomial of degree t, then M e SI if and only if

M e (Xr) for some r > s.

If r > s and M = X r P 6 SI, then by step 1, Xι

r & SI, a contradiction.

Conversely if M is monomial in Xί9 , Xs, then by repeated use of step

1, it is clear that M g SI.

Now for every J = 2, , s we have X[~2X5 & (SI: Sί)t_1 by step 3, hence

we can find c, = 1, c2, . ., cs e A - {0} such that Xί"1 - CjXί"^ e (SI: Sι)t_1.

Step 4. Let Q be a monomial of degree t — 2 such that for some

cefe, Xi"1 — cXjQ e SI: Slβ Then, for every j = 1, , s, we have

We have X/Xί"1 - c^Q) e SI and X^XJ"1 - CJX^XJ) e SI, hence

Xί - cc^XjQ e SI. If P = Xί"1 - CCJXJQ <£ SI: S2, X2P e SI and for some

d e k, XI-1 - dP e 31: S,. Hence X^XJ"1 - dP) = X[- dX,P e SI, which

implies X[ e SI, a contradiction.

E M = I ; i . I J s with Σ< ̂ < = * a n d ^i < ^ ^ ^ we let c,, = Π^2C?'

Step 5. X ί - c ^ M e SI.
If nx = ί - 1 and M = Xί" 1 ^, then

Xi - cMM = Xί- CjXi-'Xj = X^Xί"1 - c,XJ-2X,) e St.

If nx<t-l and M = XPX,ΛΓ, then XJ"1 - c,Xί"2Xρ e SI: S19 hence by

repeated use of step 4, we get Xί"1 - {cMlc^XqNe%\ Sx. Thus XpXί'1 -

(cMjc^Me% which implies X£ - c . I e SI, since cpX[-ιXp = XίmodSI.

6. height (SI) < /ι — 1, a contradiction.

By step 5 we have X{ — cMMe% for every M of degree t in Xu , Xs,

M Φ X[, while, by step 3, all the other monomials of degre t are in SI.

Since ι (SI) = (h + \ ~ Λ - 1, this implies
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2ί c (Xί - CjίM, Xs+u - , Xh) c (Xt - c2X2, . . , X, - csXs, Xs+U . , Xh)

hence

height (21) < height (X, - c2X2, .. , X, - csXs, X.+1, , XJ

<Λ — s + s — 1 = Λ — 1.

Finally iii) implies i) by Proposition 3.8, ii).
As for the last assertion of the theorem, if one of the equivalent

conditions holds then gr^i?) is Cohen-Macaulay, hence we may assume
dim R = 0 and apply Lemma 3.7., iv).

Remarks 1. The implication i) =φ> ii) has been proved by J. Sally in
the case t = 2 (see [Sa2]). The first example where our result applies is
the following. Let R = k{f, t\ ί10], then we have ίcϊ ί ί 3 , e(R) = 7 =

( 2 + 2 ~~ 1 ) + λ a n d τ(R) - 2> h e n c e S^CR) i s Cohen-Macaulay and J is
3-isomultiple.

2. If J is almost 2-extremal and R is Gorenstein, then it is easy to
see that gr^(iϊ) is compressed of type z2, hence R and grm(R) have the
same Betti numbers (see [F-L]). We do not know if the same result

holds for an almost ί-extremal ideal I such that 1 < τ(R) < ί ~j_ T ).

We can only remark that if τ(R) > (h f^ ~ 2) - h + 1 then gr^i?) is

not compressed.

§ 4. Deformation of isomultiple ideals and Gorenstein ideals

We have seen that if / is a perfect codimension two ideal of the

regular local ring (A, 5R) then e(R) > ( n ) and, if equality holds, / is

(v(I) — l)-isomultiple and grw(R) is Cohen-Macaulay. Recently, Elias and
Iarrobino proved that if / is a Gorenstein codimension three ideal of A,
then e(R) > [v(iγ - u(/)]/24 (see [E-I]).

In both cases the lower bound for the multiplicity of R is given by
the multiplicity of the "generic" case. Thus we are led to consider
ideals which can be obtained, in a sense easily made precise, as the
specializaton of ί-isomultiple "generic" ideals.

DEFINITION 4.1. Let B be a regular local ring and J an ideal of B.
We say that the local ring T = B/J is a deformation of R = Ajl if R ~
T/x where x = xu , xs is a regular sequence in T. If this is the case,
then we say that R is a specialization of T and we get e(R) > β(T).
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THEOREM 4.2. Let T — BjJ be a deformation of R such that gr(T) is

Cohen Macaulay. If J is a t-isomultiple ideal and e(T) — e(R), then I is

a t'ίsomultίple ideal and gr(T) is a deformation of gr(i?).

Proof. Let Xu , Xs be elements of B such that xt = Xt mod J with

R ~ T/x. By Theorem 1.8 we have v(xt) = 1 for every i and xf9 , xf is

a regular sequence in gr(T). This implies that Xl9 , Xs can be extended

to a minimal base of the maximal ideal of B. Further it is clear that we

may assume emb. dim B — emb. dim T. Thus emb. dim R = emb. dim A =

emb. dim T - s = emb. dim B-s. If n = dim A, then gr(i?) = k[Yu , YJ/J*

- gτ(Tlx) ~ gr(T)l(x*9 -- ,xΐ)~ gr(B)l(J*9 X*9 , Xf) ~ k[Yu , FJ/Sί

where §1 is an ideal generated by homogeneous elements of degree t.

This implies that I is a ί-isomultiple ideal and gr(Γ) is a deformation of

gr(R).

This result can be applied in the following case.

Let I be the ideal of A generated by the r X r minors of a matrix

M = (α^), 1 < ί < n, 1 < j < m, r < n < m, aυe3l; if J C B = A K J ^ , ^

is the corresponding ideal associated to the generic matrix X = (X^), it

is clear that R = A// - β/(J, X o - α€i), 1 < i < n, 1 < j < m.
Now it is easy to see that {Xί3 — a^ is a regular sequence in B mod J,

hence if Γ = B/J, then Γ is Cohen-Macaulay, gr(T) - Γ and Γ is a

deformation of iϊ.

This gives the following interesting examples of isomultiple ideals.

EXAMPLE 4.3. Let I be a perfect codimension 2 ideal. Then we have:

.) ^

ii) The following conditions are equivalent:

a) <*>

b) I is (v(I) — l)-isomultiple

c) I is (v(I) — l)-isomultiple and gr^^) is Cohen-Macaulay.

EXAMPLE 4.4. Let J be a Gorenstein codimension 3 ideal. Then we

have:

i) e(R) > [v(IY - v(I)V24

ii) The following conditions are equivalent:

a) e(R) = [v(iy - v(I)]/2A

b) I is [v(I) - l)/2]-isomultiple
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c) I is [(v(I) — l)/2]-isomultiple and gτm(R) is Gorenstein.

EXAMPLE 4.5. Let / be a Gorenstein codimension 4 ideal generated

by the nXn minors of an (n + 1) X (n + 1) matrix of elements in 9ϊ. Then

we have:

i) e(R) > [n(n + ΐ)2(n + 2)]/12

ii) If equality holds in i) then gτm(R) is Gorenstein and I is n-

isomultiple.

EXAMPLE 4.6. Let I be a perfect ideal generated by the r x r minors

of an r X s matrix of elements in 9ΐ. If / has codimension s — r + 1,

the maximum possible, then we have:

ii) If equality holds in i), then gr^i?) is Cohen-Macaulay and / is

r-isomultiple.

EXAMPLE 4.7. Let I be a perfect ideal generated by the (n — 1) X

(n — 1) minors of a symmetric n X n matrix of elements of 3Ϊ. If I has

codimension 3, then we have:

i) e(R) > n(n2 - 1)

ii) If equality holds in i), then grm(R) is Cohen-Macaulay and I is

(n — l)-isomultiple.

Remarks 1. The computation of the " generic" multiplicity for all

these examples can be done using the nice formula given by Huneke and

Miller in [H-M].

2. The inequality i) of Example 4.4 is the main result of [E-I]. As

for ii), it gives a positive answer to the following conjecture stated by

Elias and Iarrobino in the same paper: if e(R) = [v(iy — u(J)]/24 is

gτm(R) Cohen-Macaulay?

3. In Examples 4.3 and 4.4 one can use Corollaries 4.4 and 5.5 in

[R-V] to prove that b) implies a) and c). For the other examples we don't

know if the same conclusion holds.

4. If I is Gorenstein of codimension 3, one can prove that e(R) —

= [v(iy — u(I)]/24 if and only if R is an extremal Gorenstein ring (see

[E-I]).

Here, a Gorenstein ring R is said to be extremal if j(R) = 2t — 2,

where t is the initial degree of R and j(R) is the socle degree of R which

is defined as the degree of P(R, z) for an artinian reduction R of R. In
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general one has j(R) > 2t — 2, an inequality proved by Schenzel in the

graded case and by Elias and Iarrobino in the local case. We can reprove

this result as a Corollary of the following theorem whose proof is the

same as t h a t of Corollary 4.13 in [H-R-V].

THEOREM 4.8. Let (A, 5Jί) be a regular local ring and IaW a Goren-

stein ideal such that R = A/I is artinίan. Then IW'1: 31 ςt I.

Now if R = A/I is a Gorenstein local ring with la 3l\ and if R =

A/1 is an artinian reduction of i?, we can find an element α e ί ϊ l * " 1 : 9ΐ,

α £ ΐ Hence a$ϊ c M 1 " 1 c 9P~\ which implies a e Si2'-2. Thus jR2ί-2 £ I

and j(R) > 2t - 2.

5. Since extremal graded Gorenstein algebras of codimension h and

)initial degree t have multiplicity I u ) + ( / ? ) ( s e e

one can state the following conjecture: if I is a Gorenstein ideal of

(h + ^~ +
h

and, ifcodimension h and la W, then e(R) > (

equality holds, I is ί-isomultiple.

For example, let h = 4 and ί = 2; then we have to prove e(R) > 6.

But, as usual, we may assume R is artinian, hence e(R) = Z(A/uft2) + 1(312/I)

= 5 + Iφiηi) > 6 since I φ VI2. If e(JR) = 6, then /(9ΐ2/J) - 1; by Theorem

4.8 we can find an element a<£ I, a e3l2 such that α3ΐ c /9ΐ. Hence

3ΐ2 — (J, α) and 3ΐ3 — J9ΐ, which implies I is 2-isomultiple.

6. Let I be a Gorenstein codimension 3 ideal not a complete inter-

section; we have, as a corollary of Example 4.4 that / is 2-isomultiple if

and only if e(R) — 5.

If we let I a 9ΐί with t > 3, then things are not so easy. For example,

for a 4-isomultiple ideal we can have e(R) — 30, 40, 49 but we don't know

if other values are allowed.

EXAMPLE 4.9. Let Il9 I2 be the ideals generated by the 4 X 4 pfaffians

of the matrices:

0
wΆ

zs

0

wό

0

-y
0
X3

X4

y
0

— w

z

0
w;
0

— v

0
- x 3

z

y
0

M, =

0 w
-w2 0
0 -y2

z2 0
0 0

0

0

-ur

-z2 0

0 0

w2 y2

0 z2

-y2 0
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Then e(Rx) = 49 and R, has socle degree j(Rt) = 8; but e(R2) == 40 and

j(R2) = 7. Further Ix and 72 are 4-isomultiple ideals. Of course e(R) = 30

is given by the generic 9 χ 9 matrix for which the socle degree is 6.

For a 3-isomultiple codimension 3 Gorenstein ideal with gr^(i2) Cohen-

Macaulay, we have v(I) = 3, 5, 7. If υ(I) = 3, then β(β) = 27; if u(7) = 7,

then e(7?) = 14 (see Example 4.4). If υ(I) = 5 we have e(R) = 19 as the

following Proposition shows.

PROPOSITION 4.10. Let I be a Gorenstein codimension 3 ideal such that

V(I) = 5 and J c W. Then we have:

i) e(R)>19

ii) 7/ 7 is 3-isomultiple and gτm(R) is Cohen-Macaulay, then e(R) = 19.

Proof. As usual we may assume R is artinian. If 9ΐ5 c 7, then

jf'(i?) = 4, hence by Theorem 2 in [E-I], we get

T>CR »\ V2 ^ + 2 V -L v* /4 - i + 2\ .
/^(it:, z) = 2_ii=o I 2 J + ^-Jί=3 \ 2 /

This implies dimfc If = 7 which is a contradiction to ι>(/) = 5 and 7 C 3ΐ3.

Hence j(R)>5 and 77(7?, 5) > 0. Thus e(R) > ΣU H(R, i) - 1 + 3 +

6 + (10 - dimfc73*) + (15 - dim*/?). Let s = dimfc/3*; since 73* = 7/7 Π 9ί4

we get dim (7 Π 9ϊ4)//3ΐ = 5 - s. Also 7 = (Λ, , /5) where /1? , /, have

order 3, and jf, + i, ,/5 have order > 4. Let J=(fu'",fs) and 21 =

</.+i, •••,/». We have

79Ϊ c 2I9Ϊ + J Π 3ΐ4 c 7 Π 9Ϊ4.

Since 7 Π 5R4/2I9i + J Π 5i4 = 2ί/2ί3ΐ we get 73Ϊ - 2I3ΐ + J Γ\ 3ΐ4, from which

it follows J Π 9Ϊ4 = J3Ϊ. Thus 7* = (/ Π 9ΐ4) + 9Ϊ5/3Ϊ5 = (« + J3t) + 3ί5/^5.

If s < 4, then we easily get e(7?) > 19. If s = 5, then 7 Π 3ϊ4 = /Stt,

hence /? = 73^ + Sί5/^5 a ^d we have a surjection of ^-vector spaces

φ: (31 /3Vy->If which is given by φ(au , α5) = 2« *̂Λ a n ^ whose kernel we

denote by V. Now it is clear that dim V > 3, otherwise at least three rows

(and hence three columns) of the skew-symmetric matrix whose pfaίϊians

generate 7, must have entries of order > 2 which implies that at least

two generators of 7 have order > 4, a contradiction to dim,,. If = v(I) — 5.

Hence in any case e(R) > 19.

Now let us assume 7 3-isomultiple and gr3K(7ί) Cohen-Macaulay. As

usual we may assume dim 72 = 0. If J is the ideal generated by a max-
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imal regular sequence of elements of /, then it is well known (see for

example [H-R-V] Proposition 4.2) that 3Γ c J, hence, since IjJ is a non

zero ideal in the Gorenstein ring A/7, we get 3ΐ6 a J: 31 c 7 which implies

j(R) = 5. Thus again by Theorem 2 in [E-I], we have P(R, z) < 1 + 3z

+ 6z2 + 6z3 + 324 + z\ But £Γ(jR, 3) = 10 - dimfc 73* = 5, hence e(R) < 19

and since the other inequality holds, the conclusion follows.

Remark 4.11. Using the structure of the Gorenstein codimension

three ideal J, we can prove that if e(R) = 19 then 7 is 3-isomultiple and

gr^(E) is Cohen-Macaulay. For example if A/7 = k{tι\ f\ f\ £40]> then

7 is 3-isomultiple and gτm(R) is Cohen-Macaulay, not Gorenstein (see

[H-R-V], Remark after Lemma 3.3).

§ 5. Upper and lower bounds for the multiplicity of isomultiple

ideals

Let I be a perfect codimension h ideal of the regular local ring

(A, 31) such that (i?, 2W) = (A//, 3111) has dimension d. If J c 3iι we have

seen that e(R) > ( u~~" ) a n ( i , if equality holds, I is ί-isomultiple and

grm(R) is Cohen-Macaulay.

We start this section with a slight modification of this result.

LEMMA 5.1. Let I be a perfect codimension h ideal of A such that

IaW. Then e(R) > (h £ *\ - v(I) and, if equality hold, I is t-ίsomultiple

and grw(R) is Cohen-Macaulay.

Proof. Let xu , xd be a minimal reduction modulo J; then we have

e(R) = e(i?) and v(I) = u(I). Hence, using Theorem 2.1, we may assume

dimi? = 0. Now we have

e(R) = Z(J?) = l(RIW) + l(3iηi) = /(B/SRO + l(3ltl3tt+1)

Hence e(B) > (h J ^ - u(J) and, if equality holds, then 3tt+1 = J3ί; this

implies 9ΐp = J3ΐp"ί for all p > t + 1, hence / is ί-isomultiple and the

conclusion follows.

It is clear that if 7 is a complete intersection 3-isomultiple ideal of

codimension two, we have e(R) = 9 Φ ί ί" ) — υ(I). However, in some
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particular case, we have a partial converse to the above result. The

following lemma is possibly well known, but we insert here a proof for

the sake of completeness.

LEMMA 5.2. Let J = (fu , fh) be a t-ίsomultίple complete intersection

ideal of dimension zero in A and let (R, 9ft) = (A/J, 3tjJ). Then with

p — h(t — 1), we have:

i) There exists an element xeA, such that $lp = (J3ip~\ x)

ii) 0: 9ft* = (0: 9ft)*

iii) 9ftn: 9ft = (0: SK) + 9ft71"1 for every n>l

iv) Wlp: 9ft5 = (0: 9ft) + mp~s for every s, 1 < s < p

v) J: $lp-s = (J, 9ϊ ί + 1) /or euβry s, 1 < s < p.

Proof, i) Since /*,•••,/* is a regular sequence of elements of

degree t we have dim 2KP/2KP+1 = 1 and aKp+1 = 0. But 2KP/9KP+1 =

SJJP/9ΪP+I + j η 5ίp = sftP/$ftp+1

 + js^p-^ thus for some element x e 3lp we have

SJJP = ĝ P+i _|_ jyip-t + x^4# The conclusion follows by Nakayama lemma,

ii) This is Lemma 4.15 in [H-R-V].

iii) If for some n we have aWl c 9K71 and α has order r < n — 1,

then α* e 0: 9ft* = (0: 9ft)*, hence a e (0: 9ft) Π 9ftr + 9ftr+1. Repeating this

argument we get the conclusion.

iv) If s = 1 the conclusion follows by iii). Using induction on s, if

α9ft* C Wlp we get α9ft c 2ftp: 9ft*"1 = (0: 9ft) + 9ftp~s+1. Since p - s + 1 < p,

this implies ae W~s+1: 9ft = (0: 9ft) + 9ftp"s as wanted.

v) We have J: $lp-s = (J: 31): W'8-1 = (J, x): 9ΐp"s-1 = (J, 3lp): 3lp's'1

= ( J : 9ΐ) + 9ΐs+1 = (J, SRp) + 9ί s + 1 = (J, 9ΐs+1)

PROPOSITION 5.3. Lei I be a perfect codimensίon h ideal of A. Let

us assume that I is t-isomultίple and gτm(R) is Cohen-Macaulay. If one

of the following conditions holds

i) h = t = 2

ii) Λ = 2, ί = 3 cm<2 f(7) > 2

iii) h = 3, ί = 2 and u(I) > 3

Proo/. If A = 2 = ί and v(I) = 2, then e(Λ) - 4 = 6 - u(I); if ι<J)

= 3, then e(R) = (®\ = 6 - ι (J) by the result of Elias (see Example 4.3).

As for the other cases, we have gr^(i?) = k[Xl9 •• ,Xd + A]/I* is Cohen-
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Macaulay, hence we may assume Xh+1, ---,Xh+d is a regular sequence

modulo J*: thus we have to compute the multiplicity of the graded ring

k[Xίy , XJ/3I where SI is generated by forms Fu , Fr of degree t and

r = v(I). For this we may assume that F 1 } , Fh is a regular sequence

and let J be the ideal they generate. If B = £[Xi, , -X"A], we have by

the above lemma J5A(ί_υ = FA + JtBm_1)_t. Since every non zero ideal

in a Gorenstein ring contains the socle, and we have 21 =2 J, we get

Bh{t_ι) = SIΛ(ί_i). Now it is clear that if h(t — 1) = t + 1, then

(h
= ( Λ ί 0 " u(7)

Thus the conclusion follows.
The following examples show that we cannot improve the above

proposition

EXAMPLE 5.4. Let A = Jfe[X, Y] and I = (X4, XΎ, Y4). Then I is 4-

(2 + 4 )̂ - 3 = 12.isomultiple, but e(i?) = 13 ψ (2

EXAMPLE 5.5. Let A - jfe[X, Y, Z, ψ ] and J = (X\ Y\ Z\ W\ XY).

Then I is 2-isomultiple but e(R) = 12 ^ (2 + 4^ - 5 = 10.

EXAMPLE 5.6. Let A = Jfe[X, Y, Z] and I = (X3, Y3, Z3, X2Y). Then

I is 3-isomultiple but e(R) = 21 ^ ^ 3 + 3^ - 4 = 16.

Remark 5.7. It is clear that if I is a codimension three 2-isomultiple
ideal then υ(I) < 6. For each values of υ(I) = 4, 5, 6 we want to exhibit
a typical example. Let R = k{t\ t\ t\ ?} then v(I) = 4 and e(R) = 6.
Let I be the ideal generated by the pfaffians of a 5 X 5 skew-symmetric
generic matrix, then υ(I) — e(R) — 5. Let I be the defining ideal of the
Veronese surface in P5 or of the Segre embedding P1 X PS->P7; then
v(I) = 6 and e(R) = 4.

As we have seen in Remark 6 of the last section and Examples 5.5
and 5.6 show, it is difficult to control the multiplicity of the ring R when
7 is a ί-isomultiple ideal. As soon as h or t increase, we cannot say
what values for the multiplicity are allowed. Thus we restrict ourselves
to an ideal I which is 2-isomultiple and try to give an upper bound for
the multiplicity of the ring R = A/I, when I is not a complete intersec-
tion.
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The following result is the key point for our further investigations.

PROPOSITION 5.8. Let I be an homogeneous ideal of A = k[Xu , Xh]

such that R = A/I is Gorenstein, Artinian and with socle degree j(R) =

h — 2. If P(R, z) = 2]?~o 0*2* β ^ ί contains a maximal regular sequence

of forms of degree two, then we have:

i) ax > h — 2

ii) If ax — h — 2, then I is a complete intersection

iii) If h<6 then e(R)>2h~2

Proof i) Let ax = h — p with 0 < p < h; then dim/i = p and we

may assume Xu , Xp e I. By the assumption made on I, we can find

elements Fp+U , Fh in /of degree two such that Xί9 , Xp, F p + 1 , , Fh

is a regular sequence in I. Of course we may assume Fp+1, - , FheB =

k[XP+ι> * •> ^ ] a n ( i denote by J the ideal they generate in B. Then we

have ak_p+1 = dim(A//)Λ.p+1 < dim(jB/J)Λ_p+1 = 0; hence A — p + l > Λ — 2

which implies a1 = h—p>h — 2.

ii) If αj = h — 2 then, as before, we can find elements F3, * , Fhe I

of degree two such that Xu X2, F3, , Fh is a regular sequence in L

Also we may assume F3, , Fhe B = ^[X3, , XJ and we denote by J

the ideal they generate in B and by ΐ the ideal Ij{Xx, X2) in B. Then we

have h — 2 = αx = αft_3 = dim(B/I)Λ_3 = dim(J5/J)^_3, hence IΛ_3 = JΛ_3.

Now if Feϊd with d < A - 3, then FBh^deJ9 hence F e J : B Λ _ 3 _ d -

{J, Bd+2) where the last equality follows by Lemma 5.2 iv). This implies

FeJ, hence J = ϊd and J is a complete intersection.

iii) If h < 5 we get the conclusion using i). If A = 6, using the

numerical characterization of Hubert functions due to Macaulay (see for

example [St] Theorem 2.2) we can prove that if aι = α3 = 5 then α2 > 4,

and if ax — az = 6 then α2 > 5. Since, if ax = α3 = 4 then α2 = 6 by part

ii), this gives the conclusion.

THEOREM 5.9. Let I be a 2-ίsomultiple codimensίon h ideal of the n-

dimensional regular local ring (A, 31). // v(I) > A and A < 6, then e(R) <

3 2*~2.

Proo/. We have gr̂ OR) = k[Xu , XJ/JΓ* where /* is generated by

forms of degree two, v(I*) = v(I) and A = height (I*). Thus we may

assume A = k[Xl9 , Xn] and / is an homogeneous ideal generated by

forms of degree two. Let Fl9 , Fh9 F be elements in a minimal base of
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I such that Fu , Fh is a regular sequence in I and let Sί = (F l 5 , FΛ, F).

Then e(AII) = e[(A/SI)/(J/SI)] since dim A/SI = dim A// we have, by Pro-

position 1.5, e(AII) < e(A/2ί). Hence we may assume υ(I) = h + 1, and

let I == (Fj, —,Fh,F) where F1 ? , Fh is a regular sequence in A. If

n — h and we put J = (F1? , Fh), then A/J: F is an artinian graded

Gorenstein ring (see [K] Proposition 3.1). Also, by Lemma 5.2 v), F e J: Ah_u

hence Ah_ίci J: F, while if Ah_2czJ: F then FeA3, a contradiction.

Thus AjJ: F has socle degree h — 2 and since J C. J: F we may apply

Proposition 5.8. to get e(A/J: F) > 2h~\

But we have an exact sequence 0-»A/J: F-> A/J-* A/I—> 0; hence

e(A/I) = β(A/J) - e(A[J: F) < 2h - 2Λ~2 = 3 2ft"2.

Now we can use induction on n — h. Let n > h; then we can find

an element x e A1 which is a non zero divisor modulo J. Since x is a

parameter modulo I we get height (I + xjx) = Λ. If u(I + Λ/Λ:) = Λ + 1,

then we have by Proposition 1.5 and the inductive assumption: e(A/I) =

e(A/J + x) = e[(Alx)l(I + x)/(x)] < 3 2Λ-2. If v(I + x/x) = h, then Fe(J, x)

and I = (J, xy) for some j> e A^ Now y is zero divisor modulo J, hence we

have dim (A/(J, y)) = dim A/J = n — h; also I: yz> (J, x) hence dim A//: y

< dim (A/(J, x)) = 7i — /ι — 1. We can apply Proposition 1.5 i) to infert

e(AII) = e(AI(I, y)) - e(A/(Jy y)). But height ((J, y)ly) - height (J, y) - 1

= h - 1, hence we get β(A/I) = e(A/(J,y)) < 2h~ι < 3 2Λ"2, as required.

Remark 5.10. In the above theorem, unlike the rest of this paper,

we assume neither I nor J* to be perfect.

Remark 5.11. Let A = k{Xu , XhJ and J = (XJ, , XL XJ" 1^).

Then (X{, , XD: Xί" 1 ^ = (Xί9 X{'\ XL , XI), hence e(A//) -
^ _ ^-2^ _ 1) = -̂2(̂ 2 - t + ΐ ) .

The above theorem and this example suggest the following question:

if I is a ί-isomultiple codimension h ideal, is it true that e(R) <

th-\f - t + 1)? For example, let h = 2; as in the proof of Theorem 5.9

we need to prove that if A = A[X, Y] and J = (F1? F2, F), where F1 ? F2, F

are forms of degree t such that ί\, F 2 is a regular sequence, then e(A//) <

Z2 - ί + 1. Now if A,_2 dJ\F then, by Lemma 5.2, FeJ; hence e(A/J: F)

> t - 1 which implies e(A!I) = t2 - e(A/(J: F)) < f - t + 1.

Remark 5.12. Let & be an algebraically closed field, A = k[XQ, , XJ

and J = (Fj, , Fh+1) a codimension h ideal with degF^ = 2. Let C be

the curve in Ph which is defined by Fί9 •• , F Λ _ 1 and which we assume
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to be non singular. Let DQ = Cf]Fh and D1 = Cf]Fh+ί; Do and Dx are

divisors on C and we have deg (DQ) = 2h.

Further if 2 t P , is a divisor defined by /, then Dϋ — J]iPt = Dι — ΣiPi>

but Do — ΣiPi φ A — ΣiPi as Cartier divisors. Let d be the minimum

degree for a divisor D on C such that dim|Z)| > 1; then it is clear that

e(AjI) < 2h — d. Now we can compute d by using Riemann-Roch theorem

which says

h\Θ{D)) - h\Θ{D)) = d + 1 -

Since g(C) = 2Λ-2(A - 3) + 1, we get d = 2h'\h - 3) + 2 - h\O(D)\ hence

β(A/7) < 2Λ-2(7 - A) - 2 + h\Θ(D)). Thus we are led to compute h\Θ(D))

which probably is not easy; but the above formula could justify the

assumption h < 6 in our Theorem 5.9.

On the other hand if we assume C is a generic curve (in the sense

of the moduli space), then by the theorem of Brill-Noether we have that

there exists on C a linear system of degree d and dimension r if and

only if d > [rg/(r + 1)] + r; since we may assume r = 1 we get e(A/I) <

2Λ - d < 2h - g/2 - 1 = 2h - 2h~\h - 3) - 1/2 - 1 = 2Λ"3(11 - h) - 3/2.

If we compare this bound with the one given in Theorem 5.9 we see that

they coincide until h = 4, but for A = 5 we get 3 2Λ-2 = 24 while 2Λ"3(11 - h)

— 3/2 = 22 + 1/2. We remark that for h = 5 the corresponding curve

has genus 17 and ask weather our result could have some application

to the study of the moduli space of curves with such a genus.

Remark 5.13. The converse of the above theorem does not holds.

Let A = k{X, Y, Z] and I = (X\ Y\ Z\ XY, XZ); then e(R) = 6 < 3 2ft-2,
but I is not 2-isomultiple.

Strangely enough, if we assume / to be homogeneous and v(I) =

h + 1, then we can prove that I is an intersection of quadrics.

PROPOSITION 5.14. Let I be an homogeneous codίmensίon h ideal of

A = k[Xu --,Xh] such that v(I) = A + 1. If h < 6 and e(R) < Z-2h~\

then I can be generated by forms of degree two.

Proof. Let r, j and s be the number of generators in a minimal base

of I of degree 2, 3 and 4 respectively. Then we have dim/2 = r, dim/3

< hr + j and
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hence we get:

/D\ ^ 1 ι u . (h + 1\ . /Λ + 2\ , . . (h + 3

e(22) > 1 + h + \^ J J ~ r + V 3 ) "~ Λ r ~ •? + ( 4

S i n c e r + ; + s < Λ + l we get

If r < h < 6 it is easy to see that the term on the right is strictly bigger

than 3-271"2, a contradiction. Hence r > h, which implies r = h + 1; the

conclusion follows.

The last result of this paper deals with the problem of finding a

lower bound for the multiplicity of A/I, where I is a ί-isomultiple co-

dimension h ideal. If we don't make any assumption on υ(I), the bound is

( h~~ ) a s P r o v e d in section 3. But if we assume I to be an almost

complete intersection, then we can prove the following result, where given

the integers h and t, we define s to be the integer part of (h + ϊ)(t — l)/2

and we let (Σ$:S2*)Λ+1 = Σndizi>

THEOREM 5.15. Let I be a perfect codίmensίon h ideal of the regular

local ring (A, 9ϊ). If v(I) = h + 1, I is t4somultiple and gvm(R) is Cohen-

Macaulay, then e(R) > ds, and the equality holds if and only if the socle

degree of R is s.

Proof. We have grm(R) = k[X19 , Xd+h]/I*; since this is Cohen-

Macaulay, we may assume Xh+1, •—,Xd+h is a regular sequence modulo

I*, hence e(R) = e(grm(R)) = e(k[Xl9 , Xh]l%) where 2ΐ is a codimension

h ideal generated by h + 1 forms of degree t. Let 2t = (Fl9 , Fh, F)

where Fl9 , Fh is a regular sequence in B — k[Xl9 , Xh] further let

J be the ideal generated by Fl9 , Fh. We have that B/J and B/J: F

are graded artinian Gorenstein rings with socle degree h(t — 1) and

h(t — 1) — t respectively (use Lemma 5.2). Then we have P(BIJ, z) =

zh{t~λ)P(BIJ, 1/z) and P(B/J: F, z) - z^-^-'PiBIJ: F, 1/z). Hence we get

P(B/% z) = P{BIJ, z) - sfPiβjJ: F9 z) = P(B/J, z) - zh«-ιΨ(B/J: F, 1/z).

But it is clear that we have P(B/«, 1/z) = P(£/J, 1/z) - zιP{BIJ\ F9 1/2),

hence P(B/2ί, z) = P(B/J9 z) - zh(t-1)+t[P(BIJ, l/z) - P(JB/31,1/2)] = P(B/J, «)

- ztP{B\J, z) + zhit-l)+tP(B/%, 1/z) = (1- z')P(BIJ9 z) + zΛ ( ί- 1 ) + ίP(B/2ί, l/z)



110 M. E. ROSSI AND G. VALLA

- (1 - z'XΣϊΛzΎ + zh(t-1)+tP(B/^ Ijz) = (1 - z)(U~ΛzΎ+1 + zh{t~1)+t

Now we remark that J3/SI has socle degree less or equal to h(t — 1)

- 1 and we let (Σ^o**)**1 = Σ * ^ * a n d P(BI®>> z) = Σ< <****• T h e n i t : i s

easy to prove that

e(R) = ds + 2 Σ ί i ^ ί " 1 a* if (Λ + l)(ί - 1) = 2s

e(R) = ds + as+1 + 2 Σ ? ^ " 1 α, if (Λ + IX* - 1) = 2s + 1.

Of course, this gives the conclusions.

Remark. If h = 2, then by the above theorem, we get e(R) > Sn2 if

t = 2n and e(22) > 3rc2 + 3ra + 1 if t = 2rc + 1.

In this case the bound is sharp as the following examples show.

Let A = A[X, Y], I = (X2n, Y2n, XnYn) or 1 = (X2n+\ Y2n+\ XnYn+ί).

If t = 2 then we get e(B) > [ Λ + X ) if Λ = 2n and e(B) > 2 ^ if h = 2n + 1.

Also in this case the bound is sharp: let k be a field of characteristic

zero and A = k{Xly , XΛ], I = (XI ., X\, XγX2 + X3X, + - . . + Xh^Xh)

if Λ = 2n, I = (XL , XI X,X2 + XZX, + + Xh-2Xh-d if Λ = 2n + 1.

We can give examples which prove the bound is sharp for many other

values of h and t and we think that this should be always possible. But,

for the moment, we do not have a general proof of this fact.

We would like to thank P. Francia, J. Herzog, F. Mora and L.

Robbiano for many helpful conversations and suggestions while preparing

this paper. In particular Remark 5.12 is due to P. Francia and the main

idea for section 4 is due to J. Herzog. The authors are also indebted

with the referee for the correction of a wrong version of Theorem 2.1.
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