A. Nowicki
Nagoya Math. J.
Vol. 109 (1988), 151-157

ON THE JACOBIAN EQUATION J(f,g) = 0FOR POLYNOMIALS IN k[x, y]

ANDRZEJ NOWICKI

Let k[x, y] be the ring of polynomials in two variables over a field k of characteristic zero.

If $f, g \in k[x, y]$ then we write $f \sim g$ in the case where f = ag, for some $a \in k^* = k \setminus \{0\}$, and we denote by [f, g] the jacobian of (f, g), that is, $[f, g] = f_x g_y - f_y g_x$.

By a direction we mean a pair (p, q) of integers such that gcd(p, q) = 1 and p > 0 or q > 0. If (p, q) is a direction then we say that a non-zero polynomial $f \in k[x, y]$ is a (p, q)-form of degree n if f is of the form

$$f = \sum_{pi+qj=n} a_{ij} x^i y^j$$

where $a_{ij} \in k$.

The following two facts are well known

THEOREM 0.1 ([1], [3], [2]). Let (p, q) be a direction and let f and g be (p, q)-forms of positive degrees. If [f, g] = 0 then there exists a (p, q)-form h such that $f \sim h^m$ and $g \sim h^n$, for some natural m, n.

THEOREM 0.2 ([2], [7]). Let f and g be polynomials in k[x, y] and assume that [f, g] is a non-zero constant. Put $\deg(f) = dm > 1$, $\deg(g) = dn > 1$, where $\gcd(m, n) = 1$. Let W_f and W_g be the Newton's polygons of f and g, respectively. Then the polygons W_f and W_g are similar. More precisely, there exists a convex polygon W with vertices in $Z \times Z$ such that $W_f = mW$ and $W_g = nW$.

Theorem 0.1 plays an essential role in considerations about the Jacobian Conjecture (see for example [1], [3], [2], [5]). Theorem 0.2 is also a consequence of Theorem 0.1.

In this note we show that Theorem 0.1 is a special case of a more general fact. We prove (see Section 1) that if f and g are non-constant

Received October 22, 1986.

ANDRZEJ NOWICKI

polynomials in k[x, y] such that [f, g] = 0, then there exist a polynomial $h \in k[x, y]$ and polynomials u(t), $v(t) \in k[t]$ such that f = u(h) and g = v(h). Section 3 shows that the assertion of Theorem 0.2 is also true in the case where [f, g] = 0. Moreover, in Section 2, we examine closed polynomials in k[x, y], that is, such polynomials $f \in k[x, y]$ for which the set $\{g \in k[x, y]; [f, g] = 0\}$ is equal to k[f].

§1. Ring $C_k(f)$

If $f \in k[x, y]$ then we denote by d_f the k-derivation of k[x, y] defined by $d_f(g) = [f, g]$, for $g \in k[x, y]$. Denote also by $C_k(f)$ the ring of constants for d_f , that is,

$$C_k(f) = \{g \in k[x, y]; [f, g] = 0\}.$$

Note the following obvious proposition

PROPOSITION 1.1. Let $f \in k[x, y]$. Then

(1) $C_k(f)$ is a subring of k[x, y] containing k[f],

(2) $C_k(f) = k[x, y]$ if and only if $f \in k$.

We see, by the above proposition, that the case " $f \in k$ " is not interesting. In this case the derivation d_f is equal to zero. Now we shall consider only polynomials from $k[x, y] \setminus k$.

PROPOSITION 1.2. Let $f, g \in k[x, y] \setminus k$. If $g \in C_k(f)$ then $C_k(f) = C_k(g)$.

Proof. Assume that $g \in C_k(f)$. Then [f, g] = 0 and hence $g_x d_f = f_x d_g$ and $g_y d_f = f_y d_g$.

Since f and g do not belong to $k, f_x \neq 0$ or $f_y \neq 0$, and also $g_x \neq 0$ or $g_y \neq 0$. Assume that $f_x \neq 0$ and $g_y \neq 0$ (in the next cases we do the same procedure). Let $h \in C_k(f)$. Then $f_x d_g(h) = g_x d_f(h) = g_x 0 = 0$ and so, $h \in C_k(g)$. If $h \in C_k(g)$ then $q_y d_f(h) = f_y d_g(h) = 0$, that is, $h \in C_k(f)$.

Note also the following proposition which is a simple corollary to [6] Theorem 2.8.

PROPOSITION 1.3. If $f \in k[x, y] \setminus k$ then there exists a polynomial $h \in k[x, y]$ such that $C_k(f) = k[h]$.

As an immediate consequence of Propositions 1.2 and 1.3 we obtain

THEOREM 1.4. Let $f, g \in k[x, y] \setminus k$. If [f, g] = 0 then there exist a polynomial $h \in k[x, y]$ and polynomials $u(t), v(t) \in k[t]$ such that f = u(h)

and g = v(h).

§ 2. Closed polynomials in k[x, y]

We see, by Proposition 1.1, that if $f \in k[x, y]$ then $k[f] \subseteq C_k(f) \subseteq k[x, y]$. The case $C_k(f) = k[x, y]$ is trivial. Now we shall give a description of the case: $C_k(f) = k[f]$.

We shall say that a polynomial $f \in k[x, y] \setminus k$ is closed if the ring k[f] is integrally closed in k[x, y]. Denote by \mathcal{M} the family of subrings in k[x, y] defined by

$$\mathscr{M} = \{k[f]; f \in k[x, y] \setminus k\}.$$

If $k[f] \subsetneq k[g]$, for some $f, g \in k[x, y] \setminus k$, then $\deg(f) > \deg(g)$ and hence in the family \mathcal{M} there exist maximal elements.

THEOREM 2.1. Let $f \in k[x, y] \setminus k$. The following conditions are equivalent.

- (1) $C_k(f) = k[f],$
- (2) f is closed,
- (3) The ring k[f] is a maximal element in \mathcal{M} .

Proof. A proof of the equivalence $(2) \Leftrightarrow (3)$ is in [6] (Lemma 3.1). The implication $(1) \Rightarrow (2)$ is a consequence of [6] Proposition 2.2. Assume now that k[f] is maximal in \mathscr{M} and let h be such polynomial in k[x, y] that $C_k(f) = k[h]$ (see Proposition 1.3). Then $k[f] \subseteq k[h]$ and, by the maximality of k[f], we have $k[f] = k[h] = C_k(f)$.

Certain examples of closed polynomials may be obtained by the following two propositions.

PROPOSITION 2.2. Let $f, g \in k[x, y]$. If $[f, g] \in k^*$ then f and g are closed.

Proof. Without loss of any generality we may assume that f and g have no constant terms and that [f, g] = 1.

Consider the k-endomorphism F of the ring k[[x, u]] (the power series ring over k) defined by F(x) = F(y) = g. We know, by [4], that F is a k-automorphism of k[[x, y]].

Let d be the k-derivation of k[x, y] such that $d(x) = -f_y$ and $d(y) = f_x$, and let C be the ring of constants for d.

Observe that

ANDRZEJ NOWICKI

$$k[x, y] = F(k[x, y]) = k[f, g] = (k[f])[g],$$

and hence, it is easy to show that $C = k \llbracket f \rrbracket$. Now we have

$$C_k(f) = C \cap k[x, y] = k\llbracket f \rrbracket \cap k[x, y] = k[f],$$

and so, by Theorem 2.1, f is closed and, by symmetry, g is closed too.

Let (p, q) be a direction and let $f \in k[x, y] \setminus k$ be a (p, q)-form. We shall say that f is *primitive* if there is no (p, q)-form h such that $f \sim h^n$, with $n \geq 2$. For example, the (1.1)-forms $x, y, xy, x^2 + y^2, x^3 + xy^2 + 2y^3$ are primitive.

PROPOSITION 2.3. Let (p, q) be a direction such that p > 0 and q > 0, and let f be a primitive (p, q)-form. Then f is a closed polynomial.

Proof. Let d be the degree of f. We shall show that $C_k(f) = k[f]$. Assume that $g \in C_k(f)$ and let $g = g_0 + g_1 + \cdots + g_n$ be the (p, q)-decomposition of g, that is, each g_i , for $i = 1, \dots, n$, is a (p, q)-form of degree i or is equal to zero, and g_0 is a constant. Then $[f, g_i]$, for $i = 1, \dots, n$, is a (p, q)-form of degree d + i - p - q (or is equal to zero), and hence the equality $0 = [f, g] = \sum [f, g_i]$ is the (p, q)-decomposition of zero. Hence $[f, g_1] = \cdots = [f, g_n] = 0$ and so, by Theorem 0.1, $g_1, \dots, g_n \in k[f]$ and we see that $g \in k[f]$. Therefore $k[f] = C_k(f)$ and hence, by Theorem 2.1, f is closed.

§3. Newton's polygons

If f is a polynomial in k[x, y] then S_f denotes the support of f, that is, S_f is the set of integer points (i, j) such that the monomial $x^i y^j$ appears in f with a non-zero coefficient. We denote by W_f the convex hull (in the real space \mathbb{R}^2) of $S_f \cup \{(0, 0)\}$. The set W_f is called (see [1]) the Newton's polygon of f.

Denote also by $k[x, y]^{\circ}$ the set $k[x, y] \setminus \bigcup_{a,b \ge 0} k[x^a, y^b]$. The set W_f is always a polygon or a line segment or a point, but it is easy to prove that W_f is a polygon if and only if $f \in k[x, y]^{\circ}$.

Note the following

LEMMA 3.1. Let $f, g \in k[x, y] \setminus k$ and let [f, g] = 0. Then $f \in k[x, y]^{\circ}$ if and only if $g \in k[x, y]^{\circ}$

Proof. Assume that $f \in k[x, y]^{\circ}$ and suppose that $g \notin k[x, y]^{\circ}$. Then $g \in k[x^{\flat}, y^{\flat}]$, for some non-negative integer a, b such that a + b > 0. If

 $d = \gcd(a, b), a = a'd, b = b'd$, then $g \in k[x^{a'}, y^{b'}]$ and hence, we may assume that $h = x^a y^b$ is a primitive (1, 1)-form (see Section 2) in k[x, y]. Now, by Proposition 2.3, $C_k(h) = k[h]$ and we see, by Proposition 1.2, that

$$f \in C_k(f) = C_k(g) = C_k(h) = k[x^a y^b],$$

but it is a contradiction with our assumptions that $f \in k[x, y]^{\circ}$. This lemma implies

COROLLARY 3.2. If f and g are polynomials in $k[x, y] \setminus k$ such that [f, g] = 0 then W_f is a polygon if and only if W_g is a polygon.

Let (p, q) be a direction. If h is a (p, q)-form then we denote by $d_{pq}(h)$ the degree of h. Every polynomial $f \in k[x, y]$ has a (p, q)-decomposition $f = \sum_n f_n$ into (p, q)-components f_n of degree n. We denote by f_{pq}^* the (p, q)-components of f of the highest degree. By (p, q)-degree $d_{pq}(f)$ of a polynomial f we mean the number $d_{pq}(f) = d_{pq}(f_{pq}^*)$. In particular we have $d_{11}(f) = \deg(f)$. Note now some properties of (p, q)-forms.

LEMMA 3.3. Let $f, g \in k[x, y] \setminus \{0\}$ and let (p, q) be a direction. Then

- (1) $(fg)_{pq}^* = f_{pq}^*g_{pq}^*,$
- (2) $d_{pq}(fg) = d_{pq}(f) + d_{pq}(g),$
- (3) If $d_{pq}(f) < d_{pq}(g)$ then $(f + g)_{pq}^* = g_{pq}^*$.

LEMMA 3.4. Let $f \in k[x, y]^{\circ}$ and let (a, b) be a non-zero integral point. The following properties are equivalent.

(1) The point (a, b) is a non-zero vertex of W_{f} ,

(2) There exists a direction (p,q) such that $f_{pq}^* \sim x^a y^b$ and ap + bq > 0.

The proofs of the above lemmas are straightforward. Now we shall prove the following

LEMMA 3.5. Let $h \in k[x, y] \setminus k$ and let $f = a_0 + a_1h + \cdots + a_nh^n$, where $a_0, \dots, a_n \in k$, $n \ge 1$ and $a_n \ne 0$. If (p, q) is a direction such that $d_{pq}(h) > 0$, then $f_{pq}^* \sim (h_{pq}^*)^n$.

Proof. Write $f = b_1 h^{i_1} + \cdots + b_t h^{i_t}$, where b_1, \cdots, b_t are non-zero constants, $i_1 < \cdots < i_t$, $b_t = a_n$ and $i_t = n$. Then, for $j = 1, \cdots, t - 1$,

$$d_{pq}(b_{j}h^{i_{j}}) = d_{pq}(h)i_{j} < d_{pq}(h)i_{j+1} = d_{pq}(b_{j+1}h^{i_{j+1}})$$

and hence, by Lemma 3.3,

$$f_{pq}^* \sim (h^{i_l})_{pq}^* = (h^n)_{pq}^* = (h_{pq}^*)^n$$

LEMMA 3.6. Let $h \in k[x, y]^{\circ} \setminus k$ and let $f = a_0 + a_1h + \cdots + a_nh^n$, where $a_0, \dots, a_n \in k$, $a_n \neq 0$, n > 0.

(1) Let A be a non-zero vertex of W_h . Then there exists a unique non-zero vertex B of W_f such that the points A, B and (0, 0) are collinear. Moreover |0B| = n|0A|, where 0 = (0, 0) and |0A|, |0B| are the lengths of segments 0A and 0B, respectively.

(2) For every non-zero vertex D of W_f there exists a unique non-zero vertex C of W_h such that the points C, D and (0, 0) are collinear.

Proof. We know, by Corollary 3.2, that W_h and W_f are polygons.

(1) Let A = (a, b) be a non-zero vertex in W_h . Then, by Lemma 3.4, there exists a direction (p, q) such that $h_{pq}^* \sim x^a y^b$ and $d_{pq}(h) = pa + qb > 0$. Hence, by Lemma 3.5,

$$f_{pq}^* \sim (h_{pq}^*)^n \sim x^{na} y^{nb}$$

and (na)p + (nb)q = n(ap + bq) > 0; so again by Lemma 3.4, B = (na, nb) is a non-zero vertex of W_f . The points A, B, 0 lie on the line bx - ay = 0, |0B| = n|0A|, and it is clear that B is unique.

(2) Let D = (u, v) be a non-zero vertex of W_f . Then (Lemma 3.4) $f_{pq}^* \sim x^u y^v$ and pu + qv > 0, for some direction (p, q). Consider the (p, q)-form h_{pq}^* . If $d_{pq}(h) \leq 0$ then $d_{pq}(a_i h^i) \leq 0$, for all $i = 0, 1, \dots, n$ and we have a contradiction:

$$0 \ge d_{pq}(f) = d_{pq}(f^*_{pq}) = pu + qv \ge 0$$
 .

Therefore, $d_{yq}(h) > 0$ and hence, by Lemma 3.5,

$$x^u y^v \sim f_{pq}^* \sim (h_{pq}^*)^n$$
 and so,

 h_{pq}^* is a monomial. Put $h_{pq}^* \sim x^s y^t$. Then $0 < d_{pq}(h) = ps + pt$ and hence, by Lemma 3.4, C = (s, t) is a non-zero vertex of W_h . Moreover, the relation $x^u y^v \sim x^{ns} y^{nt}$ implies that u = ns and v = nt. This means that the points 0, C, D lie on the line tx - sy = 0. It is clear that C is unique.

As an immediate consequence of Lemma 3.6 we obtain

COROLLARY 3.7. Let $h \in k[x, y]^{\circ}$ and let $f = a_0 + a_1h + \cdots + a_nh^n$, where $a_0, \dots, a_n \in k$, $a_n \neq 0$ and $n \geq 1$. Then the polygons W_h and W_f are similar and the ratio of similarity is equal to 1/n.

From Corollaries 3.7, 3.2 and Theorem 1.4 we have

156

JACOBIAN EQUATION

THEOREM 3.8. Let $f, g \in k[x, y] \setminus k$ be such polynomials that [f, g] = 0.

- (1) If W_f is a line segment then W_f too.
- (2) Let W_f be a polygon. Then W_g is also a polygon, the polygons W_f
- and W_g are similar and the ratio of similarity is equal to $\deg(f)/\deg(g)$.

References

- S. S. Abhyankar, Expansion Techniques in Algebraic Geometry, Tata Institute of Fundamental Research, Bombay, 1977.
- [2] H. Appelgate and H. Onishi, The Jacobian conjecture in two variables, J. Pure Appl. Algebra, 37 (1985), 215-227.
- [3] Y. Nakai and K. Baba, A generalization of Magnus' theorem, Osaka J. Math., 14 (1977), 403-409.
- [4] P. Nousiainen and M. E. Sweedler, Automorphisms of polynomial and power series rings, J. Pure Appl. Algebra, 29 (1983), 93-97.
- [5] A. Nowicki, On the Jacobian conjecture in two variables, to appear.
- [6] A. Nowicki and M. Nagata, Rings of constants for k-derivations in $k[x_1, \dots, x_n]$, to appear.
- [7] A. Nowicki and Y. Nakai, On Appelgate-Onishi's lemmas, to appear.

Institute of Mathematics N. Copernicus University ul. Chopina 12/18 87-100 Torun, Poland

and

Department of Mathematics Shinshu University 390 Matsumoto, Japan