A. Nowicki

Nagoya Math. J.
Vol. 109 (1988), 151-157

ON THE JACOBIAN EQUATION $J(f, g)=0$
 FOR POLYNOMIALS IN $k[x, y]$

ANDRZEJ NOWICKI

Let $k[x, y]$ be the ring of polynomials in two variables over a field k of characteristic zero.

If $f, g \in k[x, y]$ then we write $f \sim g$ in the case where $f=a g$, for some $a \in k^{*}=k \backslash\{0\}$, and we denote by $[f, g]$ the jacobian of (f, g), that is, $[f, g]=f_{x} g_{y}-f_{y} g_{x}$.

By a direction we mean a pair (p, q) of integers such that $\operatorname{gcd}(p, q)$ $=1$ and $p>0$ or $q>0$. If (p, q) is a direction then we say that a nonzero polynomial $f \in k[x, y]$ is a (p, q)-form of degree n if f is of the form

$$
f=\sum_{p i+q_{j}=n} a_{i j} x^{i} y^{j},
$$

where $a_{i j} \in k$.
The following two facts are well known
Theorem 0.1 ([1], [3], [2]). Let (p, q) be a direction and let f and g be (p, q)-forms of positive degrees. If $[f, g]=0$ then there exists $a(p, q)$ form h such that $f \sim h^{m}$ and $g \sim h^{n}$, for some natural m, n.

Theorem 0.2 ([2], [7]). Let f and g be polynomials in $k[x, y]$ and assume that $[f, g]$ is a non-zero constant. Put $\operatorname{deg}(f)=d m>1, \operatorname{deg}(g)=$ $d n>1$, where $\operatorname{gcd}(m, n)=1$. Let W_{f} and W_{g} be the Newton's polygons of f and g, respectively. Then the polygons W_{f} and W_{g} are similar. More precisely, there exists a convex polygon W with vertices in $Z \times Z$ such that $W_{f}=m W$ and $W_{g}=n W$.

Theorem 0.1 plays an essential role in considerations about the Jacobian Conjecture (see for example [1], [3], [2], [5]). Theorem 0.2 is also a consequence of Theorem 0.1.

In this note we show that Theorem 0.1 is a special case of a more general fact. We prove (see Section 1) that if f and g are non-constant

[^0]polynomials in $k[x, y]$ such that $[f, g]=0$, then there exist a polynomial $h \in k[x, y]$ and polynomials $u(t), v(t) \in k[t]$ such that $f=u(h)$ and $g=v(h)$. Section 3 shows that the assertion of Theorem 0.2 is also true in the case where $[f, g]=0$. Moreover, in Section 2, we examine closed polynomials in $k[x, y]$, that is, such polynomials $f \in k[x, y]$ for which the set $\{g \in k[x, y] ;[f, g]=0\}$ is equal to $k[f]$.

§ 1. Ring $C_{k}(f)$

If $f=k[x, y]$ then we denote by d_{f} the k-derivation of $k[x, y]$ defined by $d_{f}(g)=[f, g]$, for $g \in k[x, y]$. Denote also by $C_{k}(f)$ the ring of constants for d_{f}, that is,

$$
C_{k}(f)=\{g \in k[x, y] ;[f, g]=0\}
$$

Note the following obvious proposition
Proposition 1.1. Let $f \in k[x, y]$. Then
(1) $C_{k}(f)$ is a subring of $k[x, y]$ containing $k[f]$,
(2) $C_{k}(f)=k[x, y]$ if and only if $f=k$.

We see, by the above proposition, that the case " $f \in k$ " is not interesting. In this case the derivation d_{f} is equal to zero. Now we shall consider only polynomials from $k[x, y] \backslash k$.

Proposition 1.2. Let $f, g \in k[x, y] \backslash k$. If $g \in C_{k}(f)$ then $C_{k}(f)=C_{k}(g)$.
Proof. Assume that $g \in C_{k}(f)$. Then $[f, g]=0$ and hence $g_{x} d_{f}=f_{x} d_{g}$ and $g_{y} d_{f}=f_{y} d_{g}$.

Since f and g do not belong to $k, f_{x} \neq 0$ or $f_{y} \neq 0$, and also $g_{x} \neq 0$ or $g_{y} \neq 0$. Assume that $f_{x} \neq 0$ and $g_{y} \neq 0$ (in the next cases we do the same procedure). Let $h \in C_{k}(f)$. Then $f_{x} d_{g}(h)=g_{x} d_{f}(h)=g_{x} 0=0$ and so, $h \in C_{k}(g)$. If $h \in C_{k}(g)$ then $q_{y} d_{f}(h)=f_{y} d_{g}(h)=0$, that is, $h \in C_{k}(f)$.

Note also the following proposition which is a simple corollary to [6] Theorem 2.8.

Proposition 1.3. If $f \equiv k[x, y] \backslash k$ then there exists a polynomial $h \in$ $k[x, y]$ such that $C_{k}(f)=k[h]$.

As an immediate consequence of Propositions 1.2 and 1.3 we obtain
Theorem 1.4. Let $f, g \in k[x, y] \backslash k$. If $[f, g]=0$ then there exist a polynomial $h \in k[x, y]$ and polynomials $u(t), v(t) \in k[t]$ such that $f=u(h)$
and $g=v(h)$.

§ 2. Closed polynomials in $k[x, y]$

We see, by Proposition 1.1, that if $f \in k[x, y]$ then $k[f] \subseteq C_{k}(f) \subseteq k[x, y]$. The case $C_{k}(f)=k[x, y]$ is trivial. Now we shall give a description of the case: $\quad C_{k}(f)=k[f]$.

We shall say that a polynomial $f \in k[x, y] \backslash k$ is closed if the ring $k[f]$ is integrally closed in $k[x, y]$. Denote by \mathscr{M} the family of subrings in $k[x, y]$ defined by

$$
\mathscr{M}=\{k[f] ; f \in k[x, y] \backslash k\} .
$$

If $k[f] \subsetneq k[g]$, for some $f, g \in k[x, y] \backslash k$, then $\operatorname{deg}(f)>\operatorname{deg}(g)$ and hence in the family \mathscr{M} there exist maximal elements.

Theorem 2.1. Let $f \in k[x, y] \backslash k$. The following conditions are equivalent.
(1) $C_{k}(f)=k[f]$,
(2) f is closed,
(3) The ring $k[f]$ is a maximal element in \mathscr{M}.

Proof. A proof of the equivalence (2) \Leftrightarrow (3) is in [6] (Lemma 3.1). The implication (1) $\Rightarrow(2)$ is a consequence of [6] Proposition 2.2. Assume now that $k[f]$ is maximal in \mathscr{M} and let h be such polynomial in $k[x, y]$ that $C_{k}(f)=k[h]$ (see Proposition 1.3). Then $k[f] \subseteq k[h]$ and, by the maximality of $k[f]$, we have $k[f]=k[h]=C_{k}(f)$.

Certain examples of closed polynomials may be obtained by the following two propositions.

Proposition 2.2. Let $f, g \in k[x, y]$. If $[f, g] \in k^{*}$ then f and g are closed.

Proof. Without loss of any generality we may assume that f and g have no constant terms and that $[f, g]=1$.

Consider the k-endomorphism F of the ring $k \llbracket x, u \rrbracket$ (the power series ring over k) defined by $F(x)=F(y)=g$. We know, by [4], that F is a k-automorphism of $k \llbracket x, y \rrbracket$.

Let d be the k-derivation of $k\left[x, y \rrbracket\right.$ such that $d(x)=-f_{y}$ and $d(y)$ $=f_{x}$, and let C be the ring of constants for d.

Observe that

$$
k \llbracket x, y \rrbracket=F(k \llbracket x, y \rrbracket)=k \llbracket f, g \rrbracket=(k \llbracket f \rrbracket) \llbracket g \rrbracket,
$$

and hence, it is easy to show that $C=k \llbracket f \rrbracket$. Now we have

$$
C_{k}(f)=C \cap k[x, y]=k \llbracket f \rrbracket \cap k[x, y]=k[f],
$$

and so, by Theorem 2.1, f is closed and, by symmetry, g is closed too.
Let (p, q) be a direction and let $f \in k[x, y] \backslash k$ be a (p, q)-form. We shall say that f is primitive if there is no (p, q)-form h such that $f \sim h^{n}$, with $n \geq 2$. For example, the (1.1)-forms $x, y, x y, x^{2}+y^{2}, x^{3}+x y^{2}+2 y^{3}$ are primitive.

Proposition 2.3. Let (p, q) be a direction such that $p>0$ and $q>0$, and let f be a primitive (p, q)-form. Then f is a closed polynomial.

Proof. Let d be the degree of f. We shall show that $C_{k}(f)=k[f]$. Assume that $g \in C_{k}(f)$ and let $g=g_{0}+g_{1}+\cdots+g_{n}$ be the (p, q)-decomposition of g, that is, each g_{i}, for $i=1, \cdots, n$, is a (p, q)-form of degree i or is equal to zero, and g_{0} is a constant. Then $\left[f, g_{i}\right]$, for $i=1, \cdots, n$, is a (p, q)-form of degree $d+i-p-q$ (or is equal to zero), and hence the equality $0=[f, g]=\sum\left[f, g_{i}\right]$ is the (p, q)-decomposition of zero. Hence $\left[f, g_{1}\right]=\cdots=\left[f, g_{n}\right]=0$ and so, by Theorem $0.1, g_{1}, \cdots, g_{n} \in k[f]$ and we see that $g \in k[f]$. Therefore $k[f]=C_{k}(f)$ and hence, by Theorem 2.1, f is closed.

§ 3. Newton's polygons

If f is a polynomial in $k[x, y]$ then S_{f} denotes the support of f, that is, S_{f} is the set of integer points (i, j) such that the monomial $x^{i} y^{j}$ appears in f with a non-zero coefficient. We denote by W_{f} the convex hull (in the real space R^{2}) of $S_{f} \cup\{(0,0)\}$. The set W_{f} is called (see [1]) the Newton's polygon of f.

Denote also by $k[x, y]^{\circ}$ the set $k[x, y] \backslash \bigcup_{a, b \geq 0} k\left[x^{a}, y^{b}\right]$. The set W_{f} is always a polygon or a line segment or a point, but it is easy to prove that W_{f} is a polygon if and only if $f \in k[x, y]^{\circ}$.

Note the following
Lemma 3.1. Let $f, g \in k[x, y] \backslash k$ and let $[f, g]=0$. Then $f \in k[x, y]^{\circ}$ if and only if $g \in k[x, y]^{\circ}$

Proof. Assume that $f \in k[x, y]^{\circ}$ and suppose that $g \notin k[x, y]^{\circ}$. Then $g \in k\left[x^{b}, y^{b}\right]$, for some non-negative integer a, b such that $a+b>0$. If
$d=\operatorname{gcd}(a, b), a=a^{\prime} d, b=b^{\prime} d$, then $g \in k\left[x^{a^{\prime}}, y^{b^{\prime}}\right]$ and hence, we may assume that $h=x^{a} y^{b}$ is a primitive (1, 1)-form (see Section 2) in $k[x, y]$. Now, by Proposition 2.3, $C_{k}(h)=k[h]$ and we see, by Proposition 1.2, that

$$
f \in C_{k}(f)=C_{k}(g)=C_{k}(h)=k\left[x^{a} y^{b}\right],
$$

but it is a contradiction with our assumptions that $f \in k[x, y]^{\circ}$.
This lemma implies
Corollary 3.2. If f and g are polynomials in $k[x, y] \backslash k$ such that $[f, g]=0$ then W_{f} is a polygon if and only if W_{g} is a polygon.

Let (p, q) be a direction. If h is a (p, q)-form then we denote by $d_{p q}(h)$ the degree of h. Every polynomial $f \in k[x, y]$ has a (p, q)-decomposition $f=\sum_{n} f_{n}$ into (p, q)-components f_{n} of degree n. We denote by $f_{p q}^{*}$ the (p, q)-components of f of the highest degree. By (p, q)-degree $d_{p q}(f)$ of a polynomial f we mean the number $d_{p q}(f)=d_{p q}\left(f_{p q}^{*}\right)$. In particular we have $d_{11}(f)=\operatorname{deg}(f)$. Note now some properties of (p, q)-forms.

Lemma 3.3. Let $f, g \in k[x, y] \backslash\{0\}$ and let (p, q) be a direction. Then
(1) $(f g)_{p q}^{*}=f_{p q}^{*} g_{p q}^{*}$,
(2) $d_{p q}(f g)=d_{p q}(f)+d_{p q}(g)$,
(3) If $d_{p q}(f)<d_{p q}(g)$ then $(f+g)_{p q}^{*}=g_{p q}^{*}$.

Lemma 3.4. Let $f \in k[x, y]^{\circ}$ and let (a, b) be a non-zero integral point. The following properties are equivalent.
(1) The point (a, b) is a non-zero vertex of W_{f},
(2) There exists a direction (p, q) such that $f_{p q}^{*} \sim x^{a} y^{b}$ and $a p+b q$ >0.

The proofs of the above lemmas are straightforward.
Now we shall prove the following
Lemma 3.5. Let $h \in k[x, y] \backslash k$ and let $f=a_{0}+a_{1} h+\cdots+a_{n} h^{n}$, where $a_{0}, \cdots, a_{n} \in k, n \geq 1$ and $a_{n} \neq 0$. If (p, q) is a direction such that $d_{p q}(h)>0$, then $f_{p q}^{*} \sim\left(h_{p q}^{*}\right)^{n}$.

Proof. Write $f=b_{1} h^{i_{1}}+\cdots+b_{t} h^{i_{t}}$, where b_{1}, \cdots, b_{t} are non-zero constants, $i_{1}<\cdots<i_{t}, b_{t}=a_{n}$ and $i_{t}=n$. Then, for $j=1, \cdots, t-1$,

$$
d_{p q}\left(b_{j} h^{i_{j}}\right)=d_{p q}(h) i_{j}<d_{p q}(h) i_{j+1}=d_{p q}\left(b_{j+1} h^{i_{j+1}}\right)
$$

and hence, by Lemma 3.3,

$$
f_{p q}^{*} \sim\left(h^{i}\right)_{p q}^{*}=\left(h^{n}\right)_{p q}^{*}=\left(h_{p q}^{*}\right)^{n} .
$$

Lemma 3.6. Let $h \in k[x, y]^{\circ} \backslash k$ and let $f=a_{0}+a_{1} h+\cdots+a_{n} h^{n}$, where $a_{0}, \cdots, a_{n} \in k, a_{n} \neq 0, n>0$.
(1) Let A be a non-zero vertex of W_{h}. Then there exists a unique non-zero vertex B of W_{f} such that the points A, B and $(0,0)$ are collinear. Moreover $|0 B|=n|0 A|$, where $0=(0,0)$ and $|0 A|,|0 B|$ are the lengths of segments $0 A$ and $0 B$, respectively.
(2) For every non-zero vertex D of W_{f} there exists a unique non-zero vertex C of W_{h} such that the points C, D and $(0,0)$ are collinear.

Proof. We know, by Corollary 3.2, that W_{h} and W_{f} are polygons.
(1) Let $A=(a, b)$ be a non-zero vertex in W_{h}. Then, by Lemma 3.4, there exists a direction (p, q) such that $h_{p q}^{*} \sim x^{a} y^{b}$ and $d_{p q}(h)=p a+$ $q b>0$. Hence, by Lemma 3.5,

$$
f_{p q}^{*} \sim\left(h_{p q}^{*}\right)^{n} \sim x^{n a} y^{n b}
$$

and $(n a) p+(n b) q=n(a p+b q)>0$; so again by Lemma 3.4, $B=(n a, n b)$ is a non-zero vertex of W_{f}. The points $A, B, 0$ lie on the line $b x-a y$ $=0,|0 B|=n|0 A|$, and it is clear that B is unique.
(2) Let $D=(u, v)$ be a non-zero vertex of W_{f}. Then (Lemma 3.4) $f_{p q}^{*} \sim x^{u} y^{v}$ and $p u+q v>0$, for some direction (p, q). Consider the (p, q)-form $h_{p q}^{*}$. If $d_{p q}(h) \leq 0$ then $d_{p q}\left(a_{i} h^{i}\right) \leq 0$, for all $i=0,1, \cdots, n$ and we have a contradiction:

$$
0 \geq d_{p q}(f)=d_{p q}\left(f_{p q}^{*}\right)=p u+q v>0
$$

Therefore, $d_{p q}(h)>0$ and hence, by Lemma 3.5,

$$
x^{u} y^{v} \sim f_{p q}^{*} \sim\left(h_{p q}^{*}\right)^{n} \text { and so },
$$

$h_{p q}^{*}$ is a monomial. Put $h_{p q}^{*} \sim x^{s} y^{t}$. Then $0<d_{p q}(h)=p s+p t$ and hence, by Lemma 3.4, $C=(s, t)$ is a non-zero vertex of W_{h}. Moreover, the relation $x^{u} y^{v} \sim x^{n s} y^{n t}$ implies that $u=n s$ and $v=n t$. This means that the points $0, C, D$ lie on the line $t x-s y=0$. It is clear that C is unique.

As an immediate consequence of Lemma 3.6 we obtain
Corollary 3.7. Let $h \in k[x, y]^{\circ}$ and let $f=a_{0}+a_{1} h+\cdots+a_{n} h^{n}$, where $a_{0}, \cdots, a_{n} \in k, a_{n} \neq 0$ and $n \geq 1$. Then the polygons W_{h} and W_{f} are similar and the ratio of similarity is equal to $1 / n$.

From Corollaries 3.7, 3.2 and Theorem 1.4 we have

Theorem 3.8. Let $f, g \in k[x, y] \backslash k$ be such polynomials that $[f, g]=0$.
(1) If W_{f} is a line segment then W_{f} too.
(2) Let W_{f} be a polygon. Then W_{g} is also a polygon, the polygons W_{f} and W_{g} are similar and the ratio of similarity is equal to $\operatorname{deg}(f) / \operatorname{deg}(g)$.

References

[1] S. S. Abhyankar, Expansion Techniques in Algebraic Geometry, Tata Institute of Fundamental Research, Bombay, 1977.
[2] H. Appelgate and H. Onishi, The Jacobian conjecture in two variables, J. Pure Appl. Algebra, 37 (1985), 215-227.
[3] Y. Nakai and K. Baba, A generalization of Magnus' theorem, Osaka J. Math., 14 (1977), 403-409.
[4] P. Nousiainen and M. E. Sweedler, Automorphisms of polynomial and power series rings, J. Pure Appl. Algebra, 29 (1983), 93-97.
[5] A. Nowicki, On the Jacobian conjecture in two variables, to appear.
[6] A. Nowicki and M. Nagata, Rings of constants for k-derivations in $k\left[x_{1}, \cdots, x_{n}\right.$], to appear.
[7] A. Nowicki and Y. Nakai, On Appelgate-Onishi's lemmas, to appear.

Institute of Mathematics
N. Copernicus University
ul. Chopina 12/18
87-100 Torun, Poland
and
Department of Mathematics
Shinshu University
390 Matsumoto, Japan

[^0]: Received October 22, 1986.

