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ON THE JACOBIAN EQUATION J(/,g) = O

FOR POLYNOMIALS IN k[x,y]

ANDRZEJ NOWICKI

Let k[x, y] be the ring of polynomials in two variables over a field k
of characteristic zero.

If /, g e k[x, y] then we write / ~ g in the case where / = ag, for some
ae k* = k\{0], and we denote by [/, g] the jacobian of (/, g), that is,

[/, g] = fxgy - fygx-

By a direction we mean a pair (p, q) of integers such that gcd(p, q)
= 1 and p > 0 or q > 0. If (p, g) is a direction then we say that a non-
zero polynomial fe k[x,y] is a (p, q)-form of degree n if / is of the form

pi + qj=n

where aυ e k.
The following two facts are well known

THEOREM 0.1 ([1], [3], [2]). Let (p, q) be a direction and let f and g
be (p, q)-forms of positive degrees. If [/, g] — 0 £/&ew ίΛerβ exists α (p, g)-
form h such that f ~hm and g — hn, for some natural m, n.

THEOREM 0.2 ([2], [7]). Let f and g be polynomials in k[x, y] and
assume that [f,g] is a non-zero constant Put άeg(f) = dm > 1, deg(g) =
dn > 1, where gcd(m, ή) •-= 1. Let Wf and Wg be the Newton's polygons
of f and g, respectively. Then the polygons Wf and Wg are similar. More
precisely, there exists a convex polygon W with vertices in Z X Z such
that Wf = mW and Wg = nW.

Theorem 0.1 plays an essential role in considerations about the
Jacobian Conjecture (see for example [1], [3], [2], [5]). Theorem 0.2 is also
a consequence of Theorem 0.1.

In this note we show that Theorem 0.1 is a special case of a more
general fact. We prove (see Section 1) that if / and g are non-constant
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polynomials in k[x, y] such that [/, g] — 0, then there exist a polynomial

h e k[x, y] and polynomials u(t), v(t) e k[t] such that / = u(h) and £ = v(h).

Section 3 shows that the assertion of Theorem 0.2 is also true in the

case where [/, g] = 0. Moreover, in Section 2, we examine closed poly-

nomials in k[x,y], that is, such polynomials fek[x, y] for which the set

{gek[x9y\; [f9g] = 0} is equal to k[f].

% 1. Ring Ck(f)

If f a k[x, y] then we denote by df the /^-derivation of k[x9 y] defined

by df(g) = [f,g], for gek[x,y]. Denote also by Ck(f) the ring of con-

stants for df, that is,

Note the following obvious proposition

PROPOSITION 1.1. Letfek[x,y], Then

(1) Cfc(/) is α subring of k[x,y] containing k[f],

(2) Cl£(f) = k[x, y] if and only if fek.

We see, by the above proposition, that the case "fek" is not inter-

esting. In this case the derivation df is equal to zero. Now we shall

consider only polynomials from k[x,y]\k.

PROPOSITION 1.2. Let f9ge k[x9y]\k. If ge Ck(f) then Ck(f) = Ck(g).

Proof, Assume that g e Ck(f). Then [/, g] = 0 and hence gxdf = fxdg

and gvdf = fvdg.

Since / and g do not belong to k, fx φ 0 or fy Φ 0, and also gx Φ 0

or gy Φ 0. Assume that fxφ0 and gy Φ 0 (in the next cases we do the

same procedure). Let h e Ck(f). Then fxdg(h) = gxdf(h) = gβ = 0 and so,

he Ck(g). ϊί he Ck(g) then qvdf(h) = /,d^(/ι) = 0, that is, Λe Cfc(/).

Note also the following proposition which is a simple corollary to

[6] Theorem 2.8.

PROPOSITION 1.3. If f ek[x,y]\k then there exists a polynomial he

k[x9 y] such that Ck(f) = k[h].

As an immediate consequence of Propositions 1.2 and 1.3 we obtain

THEOREM 1.4. Let f, ge k[x,y] \k. If [/, g] = 0 then there exist a

polynomial h e k[x, y] and polynomials u(t), v(t) e k[t] such that f = u(h)
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and g — v(h).

§ 2. Closed polynomials in k[x, y]

We see, by Proposition 1.1, that if fe k[x, y] then k[f] c Ck(f) g k[x, y].

The case Ck(f) = &[#, y] is trivial. Now we shall give a description of

the case: Ck(f) = &[/].

We shall say that a polynomial /e £[x, y] \ k is closed if the ring £[/]

is integrally closed in k[x, y]. Denote by Jί the family of subrings in

k[x, y] defined by

Λ = {k[f];fek[x,y]\k}.

If k[f] ^ k[g], for some f, g e k[x, y] \k, then deg(/) > deg(g) and hence

in the family Jί there exist maximal elements.

THEOREM 2.1. Let fek[x,y]\k. The following conditions are equi-

valent.

(1) Ck(f) = k[f],

(2) / is closed,

(3) The ring k[f] is a maximal element in Jί.

Proof. A proof of the equivalence (2) £=} (3) is in [6] (Lemma 3.1).

The implication (1) => (2) is a consequence of [6] Proposition 2.2. Assume

now that k[f] is maximal in Jί and let h be such polynomial in k[x, y]

that Ck(f) = k[h] (see Proposition 1.3). Then k[f] c k[h] and, by the

maximality of k[f], we have k[f] — k[h] = Ck(f).

Certain examples of closed polynomials may be obtained by the fol-

lowing two propositions.

PROPOSITION 2.2. Let f,g£k[x,y]. If [f,g]ek* then f and g are

closed.

Proof. Without loss of any generality we may assume that / and g

have no constant terms and that [fg] = 1.

Consider the £-endomorphism F of the ring k\x, ύ\ (the power series

ring over k) defined by F(x) = F(y) = g. We know, by [4], that F is a

/^-automorphism of k\_x,y\.

Let d be the /^-derivation of k{x, yj such that d(x) = — fy and d(y)

= fx, and let C be the ring of constants for d.

Observe that
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k[x,y] = F(k{x,yJ) =•- k{f,g} =

and hence, it is easy to show that C — £[/]. Now we have

ck(f) = cn k[x, y] = km n *[*, y] -= *[/],

and so, by Theorem 2.1, / is closed and, by symmetry, g is closed too.
Let (p, q) be a direction and let fek[x,y]\k be a (p, g)-form. We

shall say that / is primitive if there is no (p, g)-form h such that / ~ hn,
with n > 2. For example, the (l.l)-forms x9 y, xy, x2 + / , xz + ry2 + 2/
are primitive.

PROPOSITION 2.3. Lei (p, g) 6β a direction such that p > 0 ami g > 0,
and let f be a primitive (p, q)~form. Then f is a closed polynomial.

Proof. Let d be the degree of /. We shall show that Ck(f) = k[f].
Assume that g e Ck{f) and let g = gQ + gx + + gn be the (p, g)-decom-
position of g, that is, each gi9 for i = 1, , n, is a (p, g)-form of degree
i or is equal to zero, and g0 is a constant. Then [/, gj, for i = 1, , n,
is a (p, g)-form of degree d + ί — p — q (or is equal to zero), and hence
the equality 0 = [/, g] = £] [/, gt] is the (p, g)-decomposition of zero.
Hence [/, g,] = = [/, g J = 0 and so, by Theorem 0.1, gu , gn e k[f]
and we see that g e k[β. Therefore k[f] = Ck(f) and hence, by Theorem
2.1, / is closed.

§ 3. Newton's polygons

If / is a polynomial in k[x, y] then Sf denotes the support of /, that
is, Sf is the set of integer points (ί, j) such that the monomial xίyj appears
in / with a non-zero coefficient. We denote by Wf the convex hull (in
the real space R2) of S/U{(0,0)}. The set Wf is called (see [1]) the
Newton's polygon of /.

Denote also by k[x,y]° the set k[x, y]\\Ja^Qk[xa,yb]. The set Wf

is always a polygon or a line segment or a point, but it is easy to prove
that Wf is a polygon if and only if fe k[x, y]°.

Note the following

LEMMA 3.1. Let f,gek[x,y]\k and let [/, g] = 0. Then fek[x,y]°
if and only if ge k[x9 y]°

Proof. Assume that fek[x, y]° and suppose that g g k[x, y]°. Then
gek[x\yb], for some non-negative integer α, b such that a + b > 0. If
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d = gcd(α, b), a = afd, b = b'd, then g e k[xa', yb'] and hence, we may assume

that h — xayb is a primitive (1, l)-form (see Section 2) in k[x, y]. Now,

by Proposition 2.3, Ck(h) = £[/ι] and we see, by Proposition 1.2, that

/ε Cfc(/) - Ck(g) = Ch(h) = * [ * y ] ,

but it is a contradiction with our assumptions that fek[x,y]°.

This lemma implies

COROLLARY 3.2. If f and g are polynomials in k[x, y] \ k such that

[/> g] = 0 then Wj is a polygon if and only if Wg is a polygon.

Let (p, q) be a direction. If h is a (p, ςr)-form then we denote by

dpq(h) the degree of h. Every polynomial fek[x, y] has a (p, ^-decom-

position / = Σnfn into (p, ^-components fn of degree rc. We denote by

f$q the (p, g)-components of / of the highest degree. By (p, q)-degree

dpq(f) of a polynomial / we mean the number dm(f) = dpq(f*q). In par-

ticular we have dn(f) = deg(/). Note now some properties of (p, g)-forms.

LEMMA 3.3. Let f, ge k[x, y] \ {0} and let (p, q) be a direction. Then

\/&/pq — / pqS pq>

(2) dm(fg) = dp,(/) + dM(g),

(3) 7/ dpq(f) < dpq(g) then (f + g)*q - ^*β.

LEMMA 3.4. Let fek[x, y]° and let (a, b) be a non-zero integral point.

The following properties are equivalent.

(1) The point (α, b) is a non-zero vertex of Wf,

(2) There exists a direction (p, q) such that /*β — xayb and ap + bq

>0.

The proofs of the above lemmas are straightforward.
Now we shall prove the following

LEMMA 3.5. Let h e k[x, y]\k and let f = α0 + ajτ + + anh
n,

where α0, , an e k, n > 1 and an ^ 0. If (p, g) is a direction such that

dpq(h) > 0, then f*q ~ (h*q)\

Proof. Write / = bjιl1 + + bth
u, where bu , bt are non-zero

constants, ίλ K - - < ίt, bt = αw and i4 = n. Then, for j = 1, , ί — 1,

= dp5(/ι)j, < dm(h)ij+ί =

and hence, by Lemma 3.3,
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I pq \ n /pq — \ri/ /pq — \lLpq/ '

LEMMA 3.6. Let h e k[x, y]°\k and let f = α0 + aji + + anh
n,

where α0, , an e k, an Φ 0, n > 0.

(1) Let A be a non-zero vertex of Wh. Then there exists a unique

non-zero vertex B of Wf such that the points A, B and (0, 0) are collίnear.

Moreover \0B\ = n\0A\, where 0 = (0,0) and \OA\, \0B\ are the lengths of

segments OA and OB, respectively.

(2) For every non-zero vertex D of Wf there exists a unique non-zero

vertex C of Wh such that the points C, D and (0, 0) are collίnear.

Proof We know, by Corollary 3.2, that Wk and Wf are polygons.

(1) Let A = (α, b) be a non-zero vertex in Wh. Then, by Lemma

3.4, there exists a direction (p, q) such that Λ*Q — xayb and dpq(h) = pa +

qb > 0. Hence, by Lemma 3.5,

I pq Vlpq) X J

and (na)p + (nb)q = n(ap + bq) > 0; so again by Lemma 3.4, B = (na, nb)

is a non-zero vertex of Wf. The points A, B, 0 lie on the line bx — ay

= 0, 10BI = ra|0A|, and it is clear that B is unique.

(2) Let D = (u, v) be a non-zero vertex of Wf. Then (Lemma 3.4)

fpq ~ %uyv ar*d pu + qv > 0, for some direction (p, q). Consider the

(p, g)-form h*q. If dpq(h) < 0 then d^aft) < 0, for all i = 0, 1, , n

and we have a contradiction:

0 > dpq(f) = dpq(f*q) =pu+qv>0.

Therefore, dpq(h) > 0 and hence, by Lemma 3.5,

xuyv ~ f& ~ (h*q)
n and so,

h*q is a monomial. Put h*q — x*y\ Then 0 < dpq(h) = ps + pt and hence,

by Lemma 3.4, C = (s, t) is a non-zero vertex of Wh. Moreover, the rela-

tion xuyv — xnsynt implies that u = ns and v = nt. This means that the

points 0, C, D lie on the line tx — sy = 0. It is clear that C is unique.

As an immediate consequence of Lemma 3.6 we obtain

COROLLARY 3.7. Let he k[x, y]° and let f = α0 + aλh + + ακ/ιn,

where α0, - - -, ane k, anΦ0 and n > 1. TTierc ί/iβ polygons Wh and Wf

are similar and the ratio of similarity is equal to \\n.

From Corollaries 3.7, 3.2 and Theorem 1.4 we have
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THEOREM 3.8. Let f, ge k[x, y]\k be such polynomials that [/, g] — 0.
(1) If Wf is a line segment then Wf too.
(2) Let Ws be a polygon. Then Wg is also a polygon, the polygons Wf

and Wg are similar and the ratio of similarity is equal to deg(f)/deg(g).
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