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THE HESSIAN MAP IN THE INVARIANT THEORY
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§ 1. Introduction

Let V be a complex vector space of dimension I. Let S be the
C-algebra of polynomial functions on V. Let Ders be the S-module of
derivations of S and let Ωs — Hom5 (Der5, S) be the dual S-module of dif-
ferential 1-forms. Let {ej be a basis for V and let {xj be the dual basis
for V*. Then {Dt — d/dx^ and {dx^ are bases for Όeγs and Ωs as S-modules.
If fe S, define a map Hess (/): Ders —• Ωs by

(1.1) Hess (/): θ > Σ θ(DJ)dxt θ e Όers .

Then Hess (/) is an S-module homomorphism which does not depend on
the choice of basis for V. Let H(/) denote the the matrix of the map
Hess (/) with respect to the pair of bases {£)J and {dxt}. Then H(/) is
the usual Hessian matrix of second partial derivatives of /.

Let G C GL(V) be a finite unitary reflection group and let R = SG be
the subalgebra of G-invariant polynomials. Both Der5 and Ωs are G-
modules. If feR then Hess(/) induces a homomorphism again denoted
Hess(/): Derf->βg. If G has a real form, so that G is a Coxeter group,
then it has a non-degenerate invariant quadratic form /. Nondegeneracy
implies detH(/) ψ 0. Since H(/) is a matrix with entries in C it is invert-
ible in Mt(C) so Hess (/): Derf —> Ω$ is an isomorphism [15]. The situation
is more complicated for unitary reflection groups which do not have a
real form. We show that if Hess (/) is an isomorphism then / is an in-
variant form of minimal positive degree but this minimality condition is
not sufficient. In Theorem (5.10) of this paper we characterize those
irreducible unitary reflection groups for which an invariant form fλ of
minimal positive degree induces an isomorphism Hess(/1): Derf->βf.
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Shephard [17, 18] introduced the notion of a regular complex polytope

0* and showed that its symmetry group G — Aut (0) is a finite irreducible

unitary reflection group. A regular convex polytope in Rι defines a regular

complex polytope in V = Cι by scalar extension; if Θ* arises in this way

we say that £P has a real form. If & has a real form then G is a finite

Coxeter group.

(1.2) DEFINITION. A Shephard group is the symmetry group of a

regular complex polytope.

Shephard groups have been classified and studied in the work of

Shephard [17, 18], Shephard and Todd [19], Coxeter [2, 3, 4] and Koster [10].

There are irreducible unitary reflection groups which are not Shephard

groups. In Table 1 we list the Shephard groups which are not Coxeter

groups and some relevant information about each group. If I > 3 our

arguments depend in part on this classification. Our main result is:

(1.3) THEOREM. Let G c GL(V) be a Shephard group and let fxeRbe

a G-ίnυarίant form of minimal positive degree. Then the map Hess(/i):

Derf —> Ω% is an isomorphism.

B y C h e v a l l e y ' s t h e o r e m t h e r e e x i s t forms fu •• , / ί e i 2 c a l l e d basic

invariants such that R = C[f, , ft]. Let di — degft and number the fL

so that dx < < dt. Let mt = di — 1 be the exponents of G. The R~

module Ω% is free of rank I with basis dfίy , dft. The i?-module Derf is

free of rank I with a basis of homogeneous elements θu , θt called basic

derivations. Let K be the quotient field of R. Since K ® Derg and K ®

Ω% are vector spaces over K of the same finite dimension Z, it suffices in

(1.5) to prove that Hess(/i) is surjective. However, our argument uses

injectivity in the proof of surjectivity. To prove that Hess (/i) is injective

it suffices to show that det H(/i) Φ 0. The vanishing of the Hessian de-

terminant has an interesting history which we outline briefly in Section

4. To prove that Hess(/i) is surjective it suffices, since the dft generate

Ω% as B-module, to prove that dfi e itfiHess(/Ί). Let ΘE = 2U**A be the

Euler derivation. Since Θ^DJ^ = m^DJ^ it follows from (1.1) that

Hess (/!)#£ = m^f. We prove that for given basic invariants f, -- ,Λ

there exist basic derivations θu , θt such that

(1.4) H e s s (ftθt = mxdfi \ < i < l .

This forces θ1 = ΘE. The assertion (1.4) and hence (1.3) is equivalent to
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a statement about matrices over S. To give the matrix formulation we

make the following definitions. If /Ί, , ft e S define the Jacobian matrix

J = J(fu ...,/,) by 3iS = DJj. If θ» - , βx e Der5 define a matrix Q -

Q(0i, , β,) by Q t i - <?,(*<). Thus θs - Σ QϋA The matrices J(f,

ft) and Q(01? , θt) depend on the chosen basis {βj. It will be convenient

to use the notation J(fu •••,/!) = det J(fϊ9 , Λ), Q(θί9 , θt) = det

. . . , ^ ) and ίΓ(/) = detH(/).

(1.5) THEOREM. Lβί G c GL(V) be a Shephard group and let fu , ft

be a set of basic invariants, with fγ of minimal positive degree. Then there

exist basic derivations θl9 •••,#* such that

The equivalence of (1.3) and (1.5) is clear via (1.4). Note that the

formula (1.5) contains the assertion H(fx) φ 0 because J(fu ,/i) φ 0 by

the algebraic independence of fu , /z.

If / = 2 then our argument in Section 3 yields formulae relating Klein's

vertex, face and edge forms of the regular polyhedra which we believe

to be new. Let & be one of the three polyhedra: tetrahedron, octahedron,

icosahedron. Let φv = φv{&), φF — φF(^), a n d φE = φE{&) be the forms

which Klein [9, Chapter 2] has associated with the vertices, faces, and

edges of &\

& ψv ΨF ΨE

Klein

(1.6)

(1.7)

tetrahedron

octahedron

icosahedron

showed that

ΨE

φ

t

f

« H(ψy)

~ J(ψv, ψr)

ψ

w
H

t

1

T

Here and throughout this paper the symbol ~ means that the forms are

equal up to a nonzero constant multiple. It follows from our results in

Section 3 applied to certain Shephard groups in two dimensions that with

q — 3, 4, 5 for the tetrahedron, octahedron, icosahedron we have

(1.8) ψF ~ J{ψv, ψE)

(1.9) ψqγ~ι ~ J(φF, ψE)
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(1.10) DίψE « J(Dίψv, ψF) ί = 1, 2

for each of the three polyhedra 0*. The constant implied by ^ in (1.10)

is the same for i = 1, 2. Note that (1.7) follows from (1.10) and the Euler

formula but that (1.10) is not a formal consequence of (1.7). Klein [9,

pps. 62-63] also remarks that "apart from trivial exceptions" the vertex

forms ψv of the three polyhedra are characterized among all binary forms

by the vanishing of their fourth transvectant. At the end of Section 3

we discuss the connection between this vanishing property and our work

in this paper.

In Section 2 we prove some general lemmas about the matrices Q(#i,

• ,θι), J(Λ, - ,fd and H(/). In Section 3 we prove (1.3) for 1 = 2. In

Section 4 we prove (1.3) for I > 3. Our argument in case 1 — 2 does not

use the classification. In case I > 3 it does. In Section 5 we deduce some

consequences of (1.3). In particular there is an inclusion of ideals

(1.11) (/1, , / ί ) c ( ΰ 1 / , , , A / 1 ) .

This shows that if G is a Shephard group then an invariant form /Ί of

minimal positive degree is nondegenerate. In the sequel [14] we use (1.5)

to prove that if G is a Shephard group, then the complement of the union

of its reflecting hyperplanes is a K(π, 1) space. In [14] we also give, for

all Shephard groups, explicit basic derivations θu -,θι and basic invari-

ants fu - -,fι which satisfy the matrix equation of (1.5).

We would like to thank Hiroaki Terao for many interesting discus-

sions on arrangements of hyperplanes, which convinced us that our ideas

on S(x) V are more naturally stated in terms of Der5.

§2. General lemmas

In this section G is any finite irreducible unitary reflection group.

In fact it would suffice in (2.1)-(2.18) to assume that G is any subgroup

of GL(V). We use the notation of Section 1. Let <x, u> denote the natural

pairing V* X V -> C and let <ω, θ} denote the natural pairing Ωs X Der5

-> S. If v e V let Dυ e Der s be the derivation defined by Dυx = <x, v} for

x e V*. If fe S then dfe Ωs is defined by <d/, θ) - θ(f) for θ e Der^. In

terms of the bases {.Ẑ  = d/dxj and {dxj we have df = X | ( A / ) ^ i a n ( i

θ(f) = ΣΘMDJ.
The spaces S, Der5, and Ωs have G-module structures. We define the

G-actions and list some transformation formulas. Let g e G, υ e V, ae S,
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θ 6 Der,s, and ω e Qs. The G-module structure in S is defined by

(2.1) (ga)(v) = α(g-'u).

It follows that

(2.2) g(Dva) = DgΏ(ga)

(2.3) d(ga) = g(da).

The G-module structure in Ders is defined by

(2.4) (gθKa) = g(θ(g-χa)).

It follows that

(2.5) gDv = Dgv

(2.6) g(aθ) = (ga)(gθ).

The G-module structure in Ωs is defined by

(2.7) (gω)(θ) = g(ω(g-ιθ)) .

It follows that

(2.8) g(aω) = (ga)(gω)

(2.9) (gω, gθ) = g{ω, θ} .

We give Mt(S) the G-module structure

(2.10)

If g e G let [g] denote the matrix for g in the basis {et} so that [g]tj =

<x,, ̂ e4). The following transformation rules are easy consequences of

(2.1)-(2.10).

(2.11) If fe R then gH(f) = [g]TK(f)[g].

(2.12) If /,, , Λ e R and J = J(/i, .. .,/,) then g J = [g]τ J.

(2.13) If ^, , ί, 6 Der| and Q = Q(01; -, θt) then

(2.14) LEMMA. If feR then Hess(/): D e r s ^ β s is a G-module homo-

morphism and thus induces a map Hess (/): Der|| —>• Ω%.

Proof. Let geG. First suppose feSis any polynomial. Let /ι =

Hess(/). From (1.1) we get
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(2.15) hDv = Σ Dv(Dtf)dxt = Σ Dt(DJ)dxt = d(DJ).

It follows from (2.15) and (2.1)-(2.8) that g{hDv) = g(d(DJ)) = d(g(DJ))

= d(Dgvgf) and h(gDv) = h(Dgv) = d(Dgυf) for all ve V. Thus if feR

then g(hDv) = h(gDv). Let a e S. Since /ι is an S-module map we

have g(h(aDv)) = g(a(hDv)) = (ga)(g(hDv)) = (ga)(h(gDv)) = h((ga)(gDv)) =

h(g(aDυ)). The result follows because Der^ — Σ SDυ. •

The S-modules Der5 and Ωs are graded as follows. Give S = φp>0 SP

its usual grading so that Sj = V*. We call nonzero elements of Sp forms

of degree p. Grade Der5 by

(2.16) θ e (Ders)q if ΘSP c Sp+q for all p > 0

and grade β 5 by

(2.17) ω e (Ωs)a if ω((Ders)p) c Sp +, for all p > 0 .

Thus D; has degree — 1 and dxi has degree + 1 . It follows from (2.14)

and this grading that:

(2.18) LEMMA. If feR is a form of degree p then Hess(/): Derf->

ΩG

S is a graded R-module map of degree p. Π

The main result of this paper concerns an invariant form of minimal

positive degree. The significance of minimality is made clear by the fol-

lowing lemma.

(2.19) LEMMA. Let f be an invariant form. If Hess(/): Derg—>ΩG

S is

an epimorphίsm then f is an invariant form of minimal positive degree.

Proof. Suppose feRp and suppose that Rq Φ 0 for some positive inte-

ger q. Then (Ωs)q 2 dRq Φ 0. Since Hess (/) is a surjective map of degree

p we have (Derf)Q_p Φ 0. Since G is an irreducible group we have (Derf)_!

= 0. Thus q - p >; 0. •

Each reflection in G fixes a hyperplane in V. Let si = s/(G) be the

set of these hyperplanes and let n = \s/\. If He s/ let aH 6 V* be a linear

form with kernel H. The subgroup of G fixing H is cyclic. Let sH be a

generator of this cyclic group and let eH be its order. Let m be the

number of reflections in G. Then

(2.20) m = Σ (eH - 1), n = Σ 1.
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(2.21) LEMMA. Let fu , fι be basic invariants for G. The R-module

Ωcs is free of rank I with basis dfu , dft. The R-module Derg is free of

rank I with a basis of homogeneous elements.

Proof. If M is a vector space over C we give S® M the S-module

structure a(b ® m) — ab ® ra, the G-module structure g(a ®m) — ga® gm

and the grading (S ® M)p = Sp® M. Define S-module isomorphisms a:

S® V-> Der5 and β: S® V* -> β s by a(a ® v) = α ΰ , and /3(α ® x) = αdx.

It follows from (2.1)-(2.8) that both a and /3 are G-module homomorphisms

and thus, by restriction, define i?-module isomorphisms

(2.22) a: (S ® V)G • Derg and β: (S ® Vψ > ΩG

S .

These maps are homogeneous with degrees: degα: = — 1 and deg/3 = + 1 .

It is shown in [20, Lemma 2; 13, (2.3)] that if M is any G-module of

finite dimension, then (S ® M)G is a free i?-module of rank equal to dimc M.

Apply this with M = V and M = V *. The assertions of the lemma follow

from the i?-module isomorphisms (2.22). •

We call a homogeneous i?-basis for Derg a set of basic derivations.

Let {θu 9θι} be a set of basic derivations. Define integers ni by deg^^

= 72̂  — 1. Our definition of the integers nt here agrees with the definition

of the coexponents nt in [13] because the isomorphism a in (2.22) has

degree —1. It follows from [13, (2.3) ff.] that the integers nt do not depend

on the choice of basic derivations. We agree to number the nt so that

nx < n2 < - - - < nt.

(2.23) LEMMA, (i) 1 = n{ < n2. (ii) If ΘE = 2 ^ A is ίΛe ίJα/βr deri-

vation then θx — ΘE.

Proof. Since G is an irreducible group we have (Derg)_i — 0. Thus

it suffices to show that (Derf)0 = CΘE. Let a be the isomorphism in (2.22).

Then (Deri)0 = a((Sx ®V)G) = a((V* ®V)G). Since G is irreducible we have

{V*®V) =^ CΣ%ί®ei. The assertion follows since a(Σι χι ® βί) = fl£.

Define polynomials J and Q by

(2.24) J = Π «5f~ι Q = Π *//

It follows from (2.20) that deg J — m and deg Q ~ n. It is known [19,

(8.3); 13,(3.11)] that

(2.25) Σimi = ^ a n d Σni = n
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If g e G let δ(g) = detg. Recall the notation

'"9fι) and Q(θu ., θt) = detQft, , θt).

(2.26) L E M M A . Let fu ,ft be basic invariants. Then (i) gJ{fu ,

Λ) - ^(^)c7(/1? , Λ), (π) J(Λ, , /i) « J, (in) ί / α e S and £α - δ(g)α /or

αZZ ^ e G £fteτι a e RJ.

Proof. These facts are known: (i) follows from (2.12); (ii) is proved

in [19, (5.2)]; (iii) is given in [1, 5.5, Prop. 6]. •

(2.27) LEMMA. Let θl9 , θι be basic derivations. Then (i) gQ(θί9

θι) = Kg-*)Q(θu , θd, (ϋ) Q(θu ,θt) « Q, (iii) IfaeS and ga = d{g'x)a

for all geG then a e RQ.

Proof, (i) follows from. (2,13). We prove (ii) and (iii) simultaneously.

Suppose aeS and ga = δ(g-ι)a for all geG. Let Hestf and let v e H.

Then α(ι ) = a(sHv) = (sjfaXυ) = δ(sH)a(v). Since 3(s#) ΐ l w e have α(ϋ) = 0.

Thus α7/ divides a. This is true for all H e J / so Q divides a. In par-

ticular with a = Q(^, , 0Z) it follows from (i) that Q divides Q(^, . ,θt).

We know from [13, (2.5)] applied to M = V*, and the isomorphism α of

(2.22), that Q(^, . ., θt) Ψ 0. From (2.24) and (2.25) we have άegQ(θl9 -•-,

βt) = 2 fy = Λ = deg Q. This proves (ii) and hence (iii). •

Note that although the matrices J(fu - , ft) and Q(^, , θt) depend

on choice of fl9 , fι and θl9 - , θt their determinants J(fu - ,fι) ~ J

and Q(θu -,θt) — Q are nonzero polynomials uniquely determined up to

a constant multiple.

The next lemma is an analog of a result of Saito [16, Theorem 1.8. ii].

(2.28) LEMMA. A set ηu , ηι of homogeneous elements of Derg is a

set of basic derivations if and only if Q(ηl9 , ηt) ^ Q.

Proof. If τ]u - - , ηt is a set of basic derivations then (2.27. ii) shows

that Q(ηu - ., ηt) ~ Q. Conversely suppose Q(ηl9 - - -,ηι)~ Q. Let θl9 , θι

be a set of basic derivations. Write ^ = Σ b^θj and let β = [btj]. Then

Q(^, . . ., ^) = det (B)Q(^, , βe). The hypothesis and (2.27. ii) imply

d e t ( B ) e C * so the conclusion follows. •

(2.29) LEMMA. If feR then (i) gH(f) - δ(g)Ή(f) and (ii) H(f)Q e BJ.

Proof. Assertion (i) follows from (2.11). It follows from (i) and (2.27. i,

ii) that g(H(f)Q) - δ(g)H(f)Q. Now (2.26. iii) shows that H(f)Q e RJ. •



REFLECTION GROUPS 9

(2.30) LEMMA. Let feRp and suppose H(f) Φ 0. Then (i) l(p - 2) =

m — n + d > m — n where d is the degree of an invariant form; (ii) If

l(p - 2) = m - n then H(f) « J/Q.

Proof. Since H(f) Φ 0 it follows from (2.29. ii) that H(f) = aJ/Q for

some form a e R of degree say d. Then (i) follows by comparing degrees.

If l(p — 2) = m — n then c? = 0 so a is constant. This proves (ii).

§3. The two-dimensional case

In this section we assume that dim V=2.

(3.1) LEMMA. Let feSbea form. If H(f) = 0 then f is a power of

a linear form.

Proof. This is part of 19th century invariant theory [6, p. 235]. Since

there is an easy argument [21, Ex. 3.3.14] we give it here. By the Euler

formula we have D12f — 0. Let x be an indeterminate and define
A/ D2f

a homomorphism π: S -> C[x] by π{xx) == x and π(x2) = 1. Note that no

form lies in the kernel of π. Let D == djdx. Then π{Dγu) == Dfaw) for all

Let ^ = τr(A/) for i = 1, 2. Then 0. If ^ = 0 then
u2

fe Cxi where d = άegf and the assertion is clear. If uγ φ 0 then Diiioju^)

= 0 so uju, 6 C. Say u2 = cux. Then τr(A - c A ) / = 0 so (A - c A ) / = 0

and the assertion follows. •

(3.2) LEMMA. If G a GL(V) is an irreducible group and feS is a

G-invariant form of positive degree then H(f) Φ 0.

Proof. This follows from (3.1). D

(3.3) LEMMA. Let G C GL(V) be an irreducible unitary reflection group.

Then 2{dx — 2) = m — n + d where d e {0, du d2}.

Proof. Lemma (3.2) shows H(f) φ 0 so we may apply (2.30) to con-

clude that 2(d{ — 2) = m — n + d where d is the degree of an invariant

form. Since R — C[fl9 f2] we may write d = a^ + a2d2 where au a2 are

non-negative integers. Since m > n we have (ax —
 (2)dι + a2d2 < — 4. Thus

aλ = 0, 1. If ax — 0 then a2 = 0, 1 because dγ < c?2 If αt — 1 then α2 = 0

because ĉ  < c?2. D

(3.4) Remark. All three possibilities d = 0, d1? d2 do in fact occur.
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By (2.25) we have m = dx + d2 — 2 so the formula in the lemma is equiva-

lent to m + n = 2d2 + d where d e {0, du d2}. We observed in [13, Theorem

5.4] that m + n > ldι for all irreducible reflection groups. Thus Lemma

(3.3) gives a case free argument for this inequality if I = 2.

(3.5) THEOREM. If G c GL(V) is α Shephard group then 2(dί — 2) =

m — n and thus m + n = 2d2.

Proof. If we can show that

(3.6) n <d2 + 2

then, in the notation of (3.3), we have d = n + d1 — d2 — 2 < du so d = 0

by minimality of dj and the theorem is proved. Since G is a Shephard

group, it follows from work of Coxeter [4, pps. 94-5] that G may be gener-

ated by two reflections su s2 and there exist positive integers pl9 p2, q such

that

sfi = 1 sf = 1

where there are q terms on both sides of the last equation. Let Ht e sf

be the hyperplane fixed by st and let Ot c: stf be the G-orbit of Ht in the

natural action of G on jtf. Let ίP be any orbit of G o n i . If 0 g {01? (P2}

it follows from [21, Theorem 4.3.4. i] that there exists a homomorphism

λ: G->C* such that ^(sj = 1 for ί = 1, 2 and Λ(s) ̂  1 for any reflection

s which fixes a hyperplane HeΘ. This contradicts the fact that sί9 s2

generate G. Thus Θe{Θl9 Θ2) so J ^ = Θx U 02.

Let ^ be the cyclic subgroup fixing Ήi and let et = |^t|. Then et >pt.

(In fact equality holds but we do not need this.) Suppose Θx — Θ2. Then

m = (eί — l)|^i I = (βi — l)rc. If βj = 2 then pί = 2 = p2 so G is a dihedral

group. In this case dx = 2 and m — n so (3.5) is clear. If ex > 3 then

m>2n so di + d2 — 2>2n and (3.6) is clear. Thus we may assume Θx Φ Θ2.

If q is odd then s^s^ = s^.s^ shows that sx and s2 are conjugate in

G so 0! = Θ2, a contradiction. Thus q is even. Let F f = {g 6 G\gHi c; ί/".}

and let Z be the center of G. Since ZEt g F, and Zf]Ei = l we have

| F , | > | Z | e , . Thus

(3.7) | G : Z | ^ e t | G : ^ 1 = ^1^1 (i = 1, 2).

Coxeter [4, p. 154] has shown that
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(3.8) dx = 2h\q, d2 = h

where h is the order of s^. Since q is even it follows that dx divides d2.

It is known [22, (3.3)] that \Z\ = g.c.d. (du d2). In our case this says \Z\

= dflβ By [19, (5.1)] we have \G\ = dxd2 and thus \G: Z\ = d2. It follows

from (3.7) that

2d2 > e,\G,\ + e2 |02 | = 771 + 71 = ^ + d 2 - 2 + n

which proves (3.6). •

We prove a general lemma about binary forms which helps us to

prove (1.5). Let /, ψ be binary forms of degrees d, n. If r is a non-negative

integer, the r-th transvectant (/, φ)r of / and φ is defined [6, p. 46] by

(3.9.i) (/, φy = (d-τ)\{n~r)\ j , ( _ 1)&/ r \Dr-,mf){mDr-k) ^
dl nl k=o \k/

It is convenient to omit the numerical factor and write as in [21, p. 57]

(3.9. ii) rr(Λ φ) = ± (- i

Thus Tl(f, ψ) = J(f, φ) and τ2(f, f) = 2H(f).

(3.10) LEMMA. Suppose f, φ are semi-invariant forms for G with char-

acters λ, μ. Then τr(f, ψ) is 0 or is a semi-invariant form with character

δrλμ.

Proof. Define the Cayley operator Ω: S ® S -» S ® S by Ω = A ® A

— A ® A, and let π: S ® S -> S be multiplication. If g e G then Ω(gf® gφ)

= δ(g)Ω(f®φ), and π is a G-module homomorphism. The assertion follows

since τr(/, φ) = πΩr(f®φ).

(3.11) LEMMA. Lβί f, φe S be forms of positive degrees d, n. Suppose

H(f) Φ 0 αrcd r2(/, 0 = 0. Let

and let ψ — (n + d — 2)~1J(φ,, /). T/ieπ- /, ψ are algebraically independent

and H(/)Q = (d - 1)J(/, ψ).

Proof. Note that the hypotheses imply τi > 1 and d > 2 so π + d —

2 > 0. Direct computation using the Euler formula gives
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H(/)Q = (d -

where ψl9 ψ2 are defined by

(i) (d - i)ψ, = - (Dlf)(D2ψ) + (AA/)(A0,
(ii) (d - i)ψ2 - - (AA/XA0 + (Dlf)(DιΨ).

Since ii(/) 9̂  0 and detQ = n^ Φ 0, at least one of ψu ψ2 is not zero.

Further computation gives (d — IXAΨ2 — A Ψ Ί ) = ^(Λ 0 = 0. Thus ψl9 ψ2

are the partial derivatives of a form ψ of degree n + d — 2. Multiply (i)

by #! and (ii) by x2. The Euler formula gives

Since A/> A / have degree d — 1, application of the Euler formula to the

right hand side proves (n + d - 2)ψ = J(p, /). Thus H(/)Q = (d - 1)J(/, ψ).

Since detH(/)Q = nH(f)ψ Φ 0 it follows that </(/, ψ) ^ 0. This proves

that /, ψ are algebraically independent. Π

(3.12) COROLLARY. Let f, ψeS be forms of positive degree. Suppose

H(f) Φ 0 and τ2(f ψ) = 0. Then J(DJ, ψ) « DtJ(f, ψ) for i = 1, 2.

Proof. This follows by equating entries in the second column of the

matrix equation in (3.11). •

(3.13) COROLLARY. Let f ψe S be forms of positive degree. Suppose

H(f) Φ 0 and τ2(f, ψ) = 0. Then J(f J{Ψ, /)) « H(f)ψ.

Proof This follows from (3.11) by taking determinants. •

(3.14) Remark. The assertion in (3.13) is true without the hypothesis

H(f) Φ 0. It follows from a known identity [6, p. 78] for the Jacobian of

a Jacobian: if /, φ, ψ are forms of degrees d, n, p > 1 then

J(J(f φ), ψ) ~ —— — (/, 0 2 ψ + (/, ψfφ, — (φ,y ψff
(d + n — 2)

where (/, 9) = (/, ^J)1 and (/, φf denote the transvectants defined in (3.9).

Take ψ = /. The assertion follows since (/, φ) ~ J(f φ), (/, /)2 ^ H(f), and

(/, ^)2 = 0 by assumption.

(3.15) THEOREM. Let G c GL(V) 6e a Shephard group. Let ηx = ΘE

be the Euler derivation and let f be an invariant form of minimal positive

degree. Define η2 e Ders and f2e S by
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(3.16) η2 - ( - A Q ) A + (AQ)A

(3.17) d2f2 = J(Q, /,).

Then (i) ^, 572 are basic derivations, (ii) /j, /2 are basic invariants, and (iii)

Hess (f,)ηt = mid/, /or / = 1, 2.

Proof. Direct calculation shows that ^eDerf. Since Qfo, ̂ 2) = nQ

it follows from (2.28) that ηu η2 are basic derivations. By (2.27) Q is a

semi-invariant with character δ~\ Since fλ is invariant it follows from

(3.10) that T2(fu Q) is either 0 or a semi-invariant form of degree (d{ — 2)

+ (n - 2) with character δ. If τ2(fu Q) Φ 0 it follows from (2.26. iii) that

dx + 72 — 4 > m which contradicts Theorem (3.5). Thus

(3.18) r2(Λ, Q) = 0 .

Since H(fx) ΦOhy (3.2), and z2(fu Q) = 0 it follows from (3.11) that /x and

/2 are algebraically independent. In particular f2 Φ 0. It follows from

(3.5) that deg/2 = deg J(Q, ft) = (n — 1) + (dj — 1) = d2. Since Q is a semi-

invariant with character δ'1 and /x is an invariant, it follows from (3.10)

that J(Q, /i) is a semi-invariant with character δδ~ι = 1, so that f2 is an

invariant. Thus fu f2 are algebraically independent invariant forms of

degrees du d2 and hence are basic invariants. This proves (ii). Finally,

since n + dx — 2 = d2 the matrix equation in (3.11) implies H(/1)Q(^l5 η2)

= mx3{fu f2). This proves (iii). •

To complete the proof of (1.3) in case dim V = 2 let fu f2 be the basic

invariants constructed in (3.15). Since dfi e im Hess (/x) for i = 1, 2 and

Ω% = Rdfx + Rdf2 it follows that Hess (/i) is surjective and hence by (3.2)

it is an isomorphism.

We close this section with some observations on the connection be-

tween our work and Klein's polyhedral invariants. Let G be the group

3[g]3 in Coxeter's notation [4, p. 94], It is known from Coxeter's work

that 3[q]S is finite for q = 3, 4, 5. Since pi = 3 for i = 1, 2 we have φ , ) 3

= a(sj) = 1 so δz = 1 and thus δ* = δ. Let / = /x be a G-invariant form

of minimal positive degree. It follows from (3.10) that the fourth trans-

vectant (/, /)4 is 0 or it is a semi-invariant form with character δ. Since

deg(/, ff = 2rfx - 8 < d, + d2 - 2 = m, it follows from (2.26. iii) that (/, ff

— 0. The binary forms / of degree n > 4 which satisfy (/, /) 4 = 0 were

characterized by Wedekind [25, pps. 42-51]. He showed that either / =
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an~ιβ where a and β are linear forms, allowing the possibility, a = β, or

that n = 4, 6, 12 and / lies in the GL( V)-orbit of the vertex form of one

of the regular polyhedra with triangular faces: tetrahedron, octahedron,

icosahedron. Since an irreducible group cannot have an invariant an~xβ

if n > 3, we may assume that f ~ φv is a vertex form. There is some-

thing mysterious here because Wedekind's argument is a formal compu-

tation with the coefficients of a form / which satisfies (/, /)4 = 0. This

leads him to a Diophantine equation which produces the integers 4, 6, 12.

One does not learn from his argument why the condition (/, /)4 = 0 leads

to a polyhedral group. The references given by Klein [9, pps. 62-63] have

not helped us on this point.

Since δz = 1 we have eH = 3 for all He s/ and thus from (2.24) and

(2.30) we get H(f) ~ J/Q = Π oce

H

H~2 - Π <xH - Q. Thus from Klein's formula

(1.8) we have Q ~ H(φv) ~ φF. It follows from (3.17) that f2 « J(fl9 Q) «

J(ψv> ΨF) ~ φ E where the last equality is Klein's (1.7). Thus for the groups

3[g]3 with q — 3, 4, 5 we have

(3.19) fi ~ <Pr , Q ~ ΨF 9 Λ ~ ΨE

Formula (1.10) follows from. (3.12) with f = φv and φ = φF. From (3.19)

and (2.26) we have J(φv, ψE) ~ J(fl9 f2)^J= \[ a^'1 = Π a% = Q2 « φF.

This proves (1.8). It follows from (3.17) and (3.19) that J(φP9 φE) ~ J(Q, f2)

^ J(Q, J(Q, A)). Since Q is not a power of a linear form, it follows from

(3.1) that H(Q) Φ 0. Since τ2(/, Q) = 0 we may replace f by Q and ψ by

/; in (3.13) to conclude that J(Q, J(QJ,)) ~ H(Q)f, ~ H(Q)φv. Thus the

proof of (1.9) is reduced to showing that H(Q) ~ fl~2. Since Q is a semi-

invariant with character d"1 and H(Q) Φ 0 it follows from (3.10) that H(Q)

~ τ2(Q, Q) is a semi-invariant with character δ2δ~2 = 1. Now (3.5) shows

that H(Q) is an invariant form of degree 2n — 4 < d2, and hence H(Q)

~ /ϊ where v = (2n - 4)/^. It follows from (3.5) and (3.8) that 2(n - 2) =

2(d2 - e/i) = (q — 2)dx. This proves (1.9). The vanishing of (/, Q)2 proved

in (3.18) is equivalent, for the groups 3[#]3, to the vanishing of (/, f)\

This follows from the fact, remarked above, that H(f) « Q and a formal

identity [6, p. 52, Ex. 6]

r\2 n — 3 /

valid for all binary forms / of degree n.
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§ 4. The case dim V > 3.

The argument in Section 3 shows that in case 1 = 2 Theorem (1.3)

and hence Theorem (1.5) is a consequence of four facts: (i) H(f) Φ 0,

(ii) l(d1 — 2) = m — n, (iii) there is an explicit basis for Derg in terms of

Q and (iv) r2(/", Q) — 0. Both (i) and (ii) may be stated for arbitrary /

while (iii) and (iv) are special to I = 2. In this section we verify (i) and

(ii) for Shephard groups with / > 3 and prove that (i) and (ii) imply Theorem

(1.5). We could have used this method for I = 2 but it does not yield the

explicit bases in (3.15) or the formulas (1.8)-(1.10) for Klein's polyhedral

invariants.

Let feSbe any form. Hesse [7, 8] claimed that if H(f) = 0 then there

exist linear forms yu , yt_λ e V* such that fe C[yu , JΊ-i]. Sylvester

[23], when told about this theorem, wrote that "an hour's quiet reflection

in bed sufficed to disclose to me the true principle of the solution".

Hesse's assertion is easy to prove if 1 = 2; see (3.1). It is much harder

to prove if / = 3, 4. This was done by Gordan and Noether [5] who also

showed that it is false if I > 5. See Noether's Note 30 in the appendix to

Hesse's collected works [12], and the introduction to [5], for more history.

Suppose now that G c GL(V) is any irreducible group. If / is a G-

invariant form of positive degree, then the map i; —> Hess (f)Dυ — d(Dυf)

is a nonzero G-module homomorphism from V into S. Since G is an

irreducible group this map is a monomorphism. Thus the partial deriva-

tives Dxf, , DLf are linearly independent over C. It follows that there

do not exist linear forms yu , yt_x with fe C[yί9 , ̂ - J . Thus if Hesse's

claim were correct we could conclude that H(f) Φ 0. As it stands, we

know from Gordan and Noether that if G C GL(V) is any irreducible

group and dim V = 2, 3, 4 then H{f) Φ 0 for every G-invariant form of

positive degree. We do not know if an irreducible group in dimension

> 5 can have an invariant form / of minimal positive degree with H(f)
_ A

(4.1) LEMMA. Suppose dim V > 3. If G a GL(V) is a Shephard group

and /i is a G-ίnvarίant form of minimal positive degree d1 then (i) if (Λ) φ 0

and (ii) l(d1 — 2) = m — n.

Proof. Suppose first that G is a Coxeter group. SincB G is irreducible

it has a unique invariant quadratic form f which is nondegenerate. Thus

H(fx) Φ 0. This proves (i). Assertion (ii) holds since dx = 2 and m = n.
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Suppose G is not a Coxeter group. Then (ii) follows from the numbers

listed in Table 1. See Appendix. Assertion (i) is clear if G = G(p, 1, ϊ)

where Λ = Σ χf- For the remaining groups I = 3, 4 so the assertion follows

from the theorem of Gordan and Noether [5]. It is easy to check that

H(ft) φ 0 directly using the invariants listed in Table 1. In fact H(C6) ~ S12

and Maschke [11, p. 339] remarks that H(F12) « F40. Q

We use Lemma (4.1) and the results in Section 2 to prove Theorem

(1.7). If au , aL are the columns of a matrix A we write A = [aλ\ |αj.

(4.2) LEMMA. Let A = [aλ\ \aL] and B = [bt |

with coefficients in a field. If B is ίnvertible then

(B^A),, - (det B)- 1 det [bt | 1&,-i | α , | 6.

bt] be I X I matrices

Proo/. Let c i 7 = ( B ^ A ) ^ and let c3 = [c u, c2 j, , c o ] Γ . Then [cx | | c j

= B~\A = [ B " 1 ^ ! I B " 1 ^ ] . Thus Be, = a5. Fix j and view this as a

system of linear equations with given atj and unknowns ci5 for i = 1, •••,/.

The assertion of the lemma is Cramer's rule. •

Table 1

S&T

G(p, 1,1)
3

4
8

16

5
10

18

20

6

9

17
14

21

25
26

32

Coxeter

p[4]2[3].. 2

[p]

3 [3] 3
4 [3] 4
5 [3] 5
3 [4] 3
4 [4] 3
5 [4] 3
3 [5] 3
3 [6] 2
4 [6] 2
5 [6] 2
3 [8] 2

3 [10] 2
3 [3] 3 [3] 3
3 [3] 3 [4] 2

3 [3] 3 [3] 3 [3] 3

p - 1

3,5
7,11

19,29
5,11

11,23
29,59
11,29

3,11
7,23

19,59
5,23

11,59
5,8,11

5,11,17
11,17,23,29

m

pl(l+l) .
2

P - 1

8

18

48

16

34

88

40

14

30

78

28

70

24

33

80

m

l,p + l, ,
(Z—l)p + l

1

1,3

1,5

1,11
1,7

1,13
1,31
1,19
1,9

1,17
1,41
1,19
1,49

1,4,7
1,7,13

1,7,13,19

n

pZ(Z-l)
2 +l

1

4

6

12

8

14

32

20
10

18

42

20

50
12

21

40

Σ*T

φ

W
H
t
1

T
f
φ

w
H
t
f
cQ

Q

X

ψ
t
f
W
tw
Hf
H
Ψt
tχ

fT
Wχ

HT
&12

Π > 3.
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(4.3) LEMMA. Let G c GL(V) be a unitary reflection group. Let fu

- - , ft be basic invariants and let J = J(/Ί, , ft). Suppose A € Mt(S) and
gA = [g]τA for all g e G. Then there exists a matrix C € Mt(R) such that
A - J C .

Proof Write A = [at | | aι] and J = [ft, | . . . | bt]. Fix g e G and define

Sai by gA = [gax I \ga^\. For simplicity of notation write P — [g]τ.

Since gA = PA by assumption, and gJ = P J by (2.12), we have gat = Vat

and gbt = Pi?,. For each I < i, j < I define M(i, j ) e Mt(S) by

Then gM(ίJ) = PM(ί,j). Thus g(det M(ι,./)) = (det P)(det M(i,;)) -

(detg)(detM(i,jί)). By (2.26. iii) we have det M(ί, j) e RJ. By (2.26. ii)

det J ^ J Φ 0 so J is invertible in Mt(L) where L is the quotient field of

S. Let C = 3 A. It follows from (4.2) that Cu ~ J1 detM(ί, j). Since

det M(i, j) e RJ we have C^ e R. D

(4.4) Remark. Let G C GL(V) be a unitary reflection group. Let

0i, , θι be basic derivations and let Q = Q(0j, , θt). If A e M^(S) and

gA = [g'^A for all g e G then there exists a matrix C e ML(R) such that

A — QC. The argument is similar to that in (4.3).

(4.5) PROPOSITION. Let G c GL(V) be a unitary reflection group. Let

fu ' ' ' 9 fι oe basic invariants and let θu , θt be basic derivations. If fe R

then there exists C 6 Mt(R) such that

•• ,fι)C

If f is homogeneous then the nonzero entries of C are homogeneous.

Proof. Write J = 3(fl9 - - -, ft) and Q = Q(01? -, θι). It follows from

(2.11) and (2.13) that g(H(/)Q) = [g]τH(f)Q so we may apply (4.3) to find

a matrix C in MZ{R) which satisfies H(/)Q = JC. The nonzero entries of

a given column of J or Q are homogeneous polynomials all of which have

the same degree. If / is homogeneous then all nonzero entries of H(/)

have the same degree. Thus the nonzero entries of C are homogeneous.

D

(4.6) Remark. Note that (2.29. ii) follows from (4.5) by taking deter-

minants.

Now we may complete the proof of Theorem (1.3). By (4.1) we have
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H(f) Φ 0 so Hess(/Ί) is injective. Choose a set of basic derivations ψu

- ,ψι, To prove that Hess(/) is surjective we modify φ,u , φt to produce

a new set θu , θt of basic derivations such that Hess(/1)ι9ί = m^df^ To

denote the dependence of Q on the basic derivations we write Q(^) or

Q(0) in this argument. By (4.5) there exists C 6 ML(R) such that H(/)Q(p)

= JC. Let C = det C. Then H(f)Q(φ) = JC. Comparing degrees we get

l(d1 — 2) + n = m + deg C. It follows from (4.1) that C is not zero. Thus

C is invertible in Mt(R). Define θl9 , dι e Derg by m^3 = Σ C * Ά T h e n

^iQ(0 = Q(0)C and hence H(/)Q(0) = ^ J . This proves that Hess (/)0< =

m^dfi. Since / is homogeneous and the dfi are homogeneous, the θt may

be replaced by suitable homogeneous components and thus may be as-

sumed homogeneous. Since Q(0) ~ Q(φ) it follows that θu , θt are basic

derivations. Π

§ 5. Consequences of the Main Theorem

In this section we derive some consequences of Theorems (1.3) and

(1.5). Write J - J(fu •••,/,) and Q = Q(0l9 • • -,0,).

(5.1) COROLLARY. Let G c GL(V) be a Shephard group. Let fl9 , ft

be basic invariants and let θu ,θt be basic derivations such that H(/Ί)Q

= mj. Then θt(f3) - 0/Λ).

Proof. Since H(/x) is symmetric so is TT^JFQ = Q7Ή(/1)Q. The asser-

tion follows since θj, = Σ Θ^DJ, = (JΓQ),,, Π

(5.2) Remark. If follows from (2.9) that the natural S-bilinear pairing

Ωs X Der5 -> S restricts to an Λ-bilinear pairing Ψ: flg X Derf -> i? for

which Ψ(df, θ) - 0(/). The matrix for Ψ with respect to the bases fu > -Jt

and 0j, , 0ί is J Γ Q . Each / e S defines a symmetric S-bilinear form Der^

X Der5-> S given by (0,07)—><Hess(/)0, η). If feR this form restricts to

a symmetric i?-bilinear form Φf: Derg X Derf —> R given by Φf(θ, η) =

Ψ(Ή.ess(f)θ,η). The matrix for Φf with respect to the basis θu , ΘL is

QΓH(/)Q. The two pairings Ψ and Φf are defined for all unitary reflec-

tion groups. If G is a Shephard group and / = fx then H(/Ί)Q = mxJ shows

that their matrices m^Q = Q^^/^Q are the same.

(5.3) COROLLARY. Let G c GL(V) be a Shephard group. Then mt — nt

= dx — 2 is a non-negative integer independent of i.

Proof. Choose fi9 ••-,/, a n d θl9 , θt as i n (1.4). S ince άegdf, =



REFLECTION GROUPS 19

mt + 1, deg θi = nt — 1 and deg Hess (/Ί) = c?! we have nt — 1 + ĉ  = mί + 1.

D

(5.4) COROLLARY. Lβί G c GL(V) be a Shephard group. An invariant

form of minimal positive degree is unique up to a constant multiple.

Proof. We have m1 + n2 = m2 + 72! from (5.3) and 1 = nλ < nt from

(2.23). Thus dx < d2. Π

(5.5) C O R O L L A R Y . Let G c G L ( V ) be a S h e p h a r d g r o u p a n d let f e R

be any invariant. Then (A/, , A/) £ (A/Ί, •> A/i)

Proof. Since i? = C[/1? , ft] it suffices to show this if / = fk is a

basic invariant. Since H(/Ί)Q = m ^ we have

(5.6)

Multiply by xt, sum over ί and use the Euler formula. This gives

(5.7)
3

Apply A to (5.7):

Σ (A£>/i)M + Σ (DjfXDAxj) = dk{Djk).
j 3

By (5.6) the first sum is m^ΌJ^ so we have

Σ (DMDAXj) = (d* ~ mJAΛ Π

(5.8) COROLLARY. Let G c GL(V) be a Shephard group and let fu ,

fι be basic invariants. Then (i) (/1? , ft) c (A/Ί> •> AΛ) α ^ (ϋ) α /orm

/i o/ minimal positive degree is nondegenerate.

Proof. The first assertion follows from (5.5); in fact (5.7) expresses

fk as an S-linear combination of the DJ^. Since S is integral over R

the origin is the only common zero of fu , ft. It follows from (i) that

the origin is the only common zero of A/Ί> •> A/i

(5.9) Remark. There are irreducible unitary reflection groups for

which the assertions in (5.3), (5.4), (5.5), and (5.8) are false. For example,

in the groups numbered 7, 11, 19 by Shephard and Todd, all these asser-

tions are false. Note also that there are finite irreducible Coxeter groups

which are not the automorphism groups of regular polytopes and hence

not Shephard groups.
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(5.10) THEOREM. Let G c GL(V) be a finite irreducible unitary reflec-

tion group. The following statements are equivalent:

( i ) G is a Shephard group or a Coxeter group,

(ii) Hess (fx): Derf —• Ω% is an isomorphism,

(iii) mt — jit = d1 — 2 for 1 < i < I,

(iv) m — n = Z(dίj — 2),

( v )

Proo/. If G is a Shephard group then (i) => (ii) is Theorem (1.3), the

main result of this paper. If G is a Coxeter group then /Ί is a non-

degenerate quadratic form and (i) => (ii) follows as we remarked in the

Introduction. The argument used to prove Corollary (5.3) shows that (ii)

=> (iii). The assertion (iii) => (iv) follows from (2.25) and (iv) => (v) follows

from (2.30). Clearly (v) =£> (iv) by comparing degrees. The assertion (ίv)

:=> (i) follows from the information in [13, Table 2] and the list of Shephard

groups in Table 1 of this paper. We expect a proof of (iv) =£> (i), which

does not use the classification, to be difficult. Q

Appendix

In Table 1 we list those Shephard groups which are not Coxeter

groups. Column 1 labels the groups as in Table VII of [19]; Shephard

and Todd indicate which groups are symmetry groups of regular complex

polytopes. Column 2 gives Coxeter's symbol for the groups as in [A]. The

numbers in the columns headed mit m, nt, n are given in [13, Table 2].

The column headed /Ί gives an invariant polynomial of degree dί = mx + 1.

The column headed Q gives a polynomial \\Hej, αH. The last two columns

depend on choice of coordinates in V. If I = 2 we use the polynomials

Φ, Ψ, t9 W, X, /, H, T of Klein [9]. In case I = 3, 4 we use the polynomials

C6, C9, ©12, F12, F^ of Maschke [11]. The invariants fx are listed by Shephard

and Todd, who use different letters for these polynomials.
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