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CONGRUENCES OF ANKENY-ARTIN-CHOWLA TYPE

FOR PURE QUARTIC AND SECTIC FIELDS

MASATO KAMEI

§ 0. Introduction

Ankeny, Artin and Chowla [1] showed that there are congruences

between class numbers of real quadratic fields and generalized Bernoulli

numbers. Recently, Ito [3] has extended their results to the case of pure

cubic fields using generalized Hurwitz numbers of Lichtenbaum [4]. In

his paper, he suggested that similar results would be obtained for pure

quartic and sectic fields. In this paper, we carry out this by following

his idea. To give a congruence in an exact form, we need an idea due

to Matthewτs [5]. As the argument in the sectic case is quite parallel

to that in the quartic case, we shall discuss the former case briefly in

the last two sections.

We will explain our result in the quartic case more exactly. Let

K = Q(V —1), L = Q( fym)9 and F — Q(<\/nϊ), where m is a positive integer

prime to 6. For an arbitrary algebraic number field T, we denote its

class number, ring of integers, group of units, regulator by hτ, Oτ, ET9

Rτ respectively. Let ηγ be an element of EL for which Ker [NL/F: EL -+EF]

= <±1, ft) holds. We may assume ft > 1, by replacing τn by — ηi or

±l/ft if necessary. Let η2 = η\ or % according as \E: ( ± 1 , ε0? ft)I — 1

or 2. Here ε0 is the fundamental unit of F. Write η» as η2 = s + t fym

u^m + v fym3 with rational numbers 5, t, u and υ. Let M = L-K and p

the character of Gal(M/i£) of order 4 defined by the quartic residue symbol

— j . We denote the conductor of p by (/). Take a prime number π in

K which is prime to 2 and devides m exactly once, and let kQ = (q — l)/4,

where q ~ Nπ = Nκ/Qπ. We may assume π ~ 1 mod (1 -f ί)\ by replacing

π by — π or ±ίπ if necessary. We decompose p into a product of char-

acters pu ρ2 so that the conductor of ρx is (π), and that of p2 is (fjπ). Let
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Gko,P2, GskOiP-i be the generalized Hurwitz numbers defined in Lichtenbaum

[4]. In these notations, we can state our results as

THEOREM 1. Let £ι' be a prime of Q lying above (π). Then one has;

i) (hJhF)st = Gk0Jξ modG',

ii) (hJhF)(3sv - tu) ΞΞ G3k0>p-rie mod£y.

Here ξ is a quartic root of —mjπ.

In the above theorem, there is left the ambiguity in the determina-

tion of ξ, which arises from the gap between the local theory and the

global theory (cf. Remark 3). Generally, it seems difficult to determine ξ

explicitly. However, when m is a rational prime which remains prime

in K, we can determine it in Section 2 studying values of the Weierstrass

^-function. We shall give this result as Theorem 10. A few numerical

examples will be given.

§ 1. The quartic case

We use the notations introduced in Section 0. In this section, we

shall prove Theorem 1. Since the proof proceeds in the same way as in

Ito [3], sometimes the details will be omitted. Usually we follow the

notations in Ito [3].

Decompose m as m = ab2c\ where a, b, c are square-free integers and

prime to each other. Then the conductor (/) of p is given as follows:

(abc if m = 1 mod 8,

/ = 12ahc if m = 5 mod 8,

[4abc if m ΞΞ 3, 7 mod 8.

Let X be the character of Gal(L/F) of order 2. Then we have

L(s, p, M/K) = L(s, χ, L/F)

and consequently

(1.1) L'(0,p,MIK) = L'(0,X,LIF).

A direct computation shows

1/(0, X, L/F) = (ΛL/Λ,) log %.

On the other hand, 1/(0, p, M/K) can be expressed by elliptic units in

the following way.
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For a non zero integer a of K, let Ka be the maximal ray class

field modulo a of K, and Cl(a) the ray class group of K modulo a. For

CeCl(f), let φf(C) denote the Ramachandra invariant (cf. Ramachandra

[6]). For ae£)κ, let Ca be the class of (a) in Cl(/). We choose ϊ e €)κ

which satisfies p(Cr) — — 1. Then we have

L'(0, p, M/K) = ±-log\Nκ,,Mφ,(Cr)lφ/(Cι)\
Of

(1.2) '

κ,

{ Π
/ ceci(f)

Now we take the f-th power root of 17(0, p, MjK) by Robert's unit

(cf. Robert [7]). Let E be the elliptic curve given by y2 = 4x3 — 4x and

let J£? be the period lattice associated with the differential form dx/y on

E. Then Jδf = £)KΩ with some fl e R+ (R+ = {α e 2? | α > 0}). For a e £>

we introduce the elliptic function for j£f defined by

^ , a) - a12Δ(&)ι-Na W (&(z) ~
βe<χ-ij?/2>

where @>(z) is the Weierstrass ^-function for j£?, J(yl) is the delta-function

for the lattice A in C, iVo: = Nκ/Qa, and the product f] ' ̂ s extended to

all over α" 1 ^/^ 7 except the class of J£f. Choose a finite index set J and

βj e £>κ, rrij e Z (j e J) which satisfy the following conditions:

NT - 1 + Σ miNβj - 1) = 0,
j e J

= l, and (^,6/)-l .

We can take such set and numbers (cf. Robert [7]). For r = £?//, define

η by the equation

η = φ(τ,t) Π Φ(r,βj)mj

It is known that η is a unit in Kf and satisfies

Hence we have

So we get the next relation as an exponential form of (1.1):
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Here, η is the complex conjugate of η, which satisfies

V = Φb, f) Π Φb, ~Bj)mj

jeJ

Let us recall the definition of generalized Hurwitz numbers. Decom-

pose τ in such a way as τ = τx + τ2 mod =£?, where τt is a π-division point

of Jδf and τ2 is a //π-division point of «£?. For an integer & and a char-

acter 1 = p2 or pi"1, let Gfc,χ,r2 be the generalized Hurwitz number as in

Lichtenbaum [4]. We denote it by GkjX, and the conductor of X(=//TΓ)

by /2. Then we can prove the next assertions.

PROPOSITION 2. i) GktPt9 GkiP-ι eKf2.

ii) Gk,pJ fym~2, GktP-il fyin2

3 e K(V~2), where m2 = m/π.

iii) J/ m is a rational prime p such that p = 3 mod 4, then Gk,pJ\/~2",

e Q.

Proof. Only iii) is the essentially new situation compared with Ito

[3]. In this case, we have / = 4p, π = —p (Recall that π = 1 mod (1 + Z)3)>

/2 = — 4, τ2 Ξ — (l/4)£? mod JSP, and ̂  = /oί"1. As /?2 is a non trivial even

character, we know

S
(cf. Lichtenbaum [4]). Calculation of the values of ρ2(τ)} ^(aτ2) (x-coor-

dinate of a 4-division point of y2 = 4x3 — 4x) gives the next formula:

~ 2 - ι ^k^ptZ ~ =
- I)2 - 2 ' (^(2) + I)2 - 2

(resp. 2 / 2 ^

if p ΞΞ 3 mod 8 (resp. p = 7 mod 8). Thus iii) holds.

Let us recall the definition of Rummer's logarithmic derivatives.

Let SIR be a totally ramified extension of p-adic fields. Choose a prime

element A of S. Let €)s, £)R be the ring of p-adic integers and mS9 mR

the valuation ideals respectively. For uel + mSi we can take fu(T) e
DΛ[[Γ]] which satisfies fu(Λ) = w. Then for k,l^k ^ #(OΛ/mΛ) - 1, the

/j-th Rummer's logarithmic derivative φh — φk,Λ 1 + ^ - ^ O ^ / m ^ is defined

as
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φk(u) = /'the coefficient of Tk in T— log fu(T) mod mΛ .

We extend this to Sx in the usual way.

Now we will calculate φk(η). To carry out this, we embed Q into

Cp, the completion of the algebraic closure of Qp. For a e £)κ, let K(Ea)

be the field generated by the coordinates of ^-division points of E over

K. We know that K(Eπ) is a cyclic extension of degree q — 1 (q — iVπ)

with the conductor (π(l + i)3) Note that (π) totally ramifies in K(Ef,),

and is unramified in K(Ef2).

Choose a prime ideal G of K(Ef) over (π) and embed K(Ef) into Cp,

so that Q is contained in the valuation ideal of Cv. Put q = iQΠK(Eπ),

φ = OΠ-KXE,), *> = OH if = (π), and denote the completions of K, K(Eπ),

K(Ef2), K(Ef) in C.p through this embedding by Kp, K$, Iζ,, Ko, and let £)p,

£)$, £)„, © o be the rings of p-adic integers, mp, m$) mq, ma the valuation

idelas of those fields respectively.

Now consider the following three formal groups over €)p: Gα, the

formal additive group, E the formal group of kernel of reduction mod p,

S the basic Lubin-Tate group. These three formal groups are isomorphic

over Kp to each other. We denote these isomorphisms by

s: Ga-+E s(z) =- -2^(z)l^(z) =-= z + (higher terms),

w: β -> $ w(t) = t + (higher terms).

Especially, w is an isomorphism over Op. Put λ = — 2^3(τ1)/^?/(r1) and

A = iί;(/l). Then they satisfy the equations [π]̂ (/l) — 0 and [τrL(̂ ί) = 0. So

λ and A are prime elements of K%, and satisfy the equation 2 Ξ J mod m|.

From now on, using this A and taking KJKq or K%/Kp as S/JR, we define

Rummer's logarithmic derivatives φk as φkiA: K£ —>£)Jmq, or its restriction

φkiA: K^ -> £\,/ίTv (Note that J is also a prime element of K&.)

Remark 3. Once we fix the embedding K(Ef) —> Cp, /I can be seen as

an element of Cp, and so the corresponding A can be determined uniquely

as an element of Cr But if we think A merely as an element of Q

which satisfies Aq~1 + π = 0, we can not determine which root we have

to take. In fact, determining the root is equivalent to choosing the prime

ideal of K(Ef, μq_u

 Q~W — π) lying above O. This is the reason why the

ambiguity of theorem 1 appears. We shall consider this problem for a

special case in the next section.
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Take u e 1 + mo and choose fu(T) e Oq[[T]] which satisfies fu(Λ) = u.

Let gu(z) = fu(w o s(2:)) e ifq[[V|] be the pull back of fu(T) by the isomor-

phisms s, w. Then we have

PROPOSITION 4 (Coates-Wiles [2]).

φk(u) == ί/ie coefficient of zk in z-— log gu{z) mod mq

/or 1 ^ fe ^ g - 2.

The Rummer's logarithmic derivatives φkU are easier to calculate

than φkiλ, but elliptic units are "expressed" by λ. This proposition fills

this gap.

We will calculate φk(η) by considering η as an element of K&. What

we have to do is to choose fη(T) e ©JIT]] which satisfies fη(Λ) = η, and to

take logarithmic derivatives of gη(z) = fη(w o s(2:)). As ^ = ^(r, λ) Π φ(τ> β3)
mj>

it is sufficient to calculate φk(φ(τ, δ)) for each δ e{7}{J {βό \ j e J). Now

^ , δ) - δv2Δ(&y-Nδ UU'-i*/*(&(z) ~ ^(β))6' s o w e m i ^ h t expect that

φ(z + r2, <x) is a formal power series which is a pull back by s of some

fφ(τ,a)(t), a power series expanding 0(r, α) by λ. The next proposition shows

that this is actually true if f2 Φ 1.

PROPOSITION 5. Assume f2 Φ 1. Let δ e {ϊ}D{β3}, μ e {Ώκlf2Ώκ)
x. Then

the following assertions hold.

i) ^ + ^ 2 , ί)6θg.

ii) φ{z + μτ2,δ)eKχ[z\l

iii) Zte/me Λ(ί) e Kq[[t]] by h(s(z)) = 0(2 + μr2, δ), ί/ie î h(t) e

iv)

Proof. We prove iii) and iv). For the proof of i) and ii), see Ito [3].

Put

F(x,y) =
4 \ Λ; —

We get φ(Tl + μτ2, δ) = F(^(τ^9 &'(τ2)) as an element of jfiTo. Now ^ =

— 2^(r1)/^/(r1) is a prime element of K%, and it is easily shown that

^(τ,) - ^(8-\t))\tsaλ9 P'fa) = 0»(β-\t))\t.λ are elements of K*. Here ^(s~\t))

= a(t)lt\ @'{s-\t)) = -2a(t)lf for some α(ί) e 1 + ίZ[[ί]]. So, considering

h(t) = F(0>(s-\t)), &'{s-\i))) as a power series of ί, we get
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h(s(z)) = φ(z + μπ2, δ),

h(X) = ^fo + μτ2, δ) .

This is iv).

Next we want to show iii). As (δ, π) = (/2, π) — 1, δ, ^(μτ2), ^\μτ2),

&(β) are units of Kq. Thus we see F(^(s~\t)), &Xs-\t)))et-*Ωq[[t]]. On

the other hand, we have φ(z + μu, δ) 6 ίΓq[[z]], so h(t) has no terms of

negative power of t. This is iii).

Remark 6. In the above arguments, we regard φ(z + μ;r?, δ) as an

element of ifq[[£]], which need not converge in C.

Due to Proposition 5, we obtain the next proposition.

PROPOSITION 7. Let 1 = p2 or pΐι. Then

Π l(μ-ι)φMτλ + μτ2, δ)) - 12(Nδ - δ*X(δ))Gk,x mod Q .
Q / / ) X

With these data, we can take Kummer's logarithmic derivatives of

NKf/MYfii following the manner of Ito [3]. The result in this case is as

follows.

THEOREM 8. The following assertions hold.

i) φko(Nκf/MVy) = — 3G f c0,,2 m o d £}.

ii) φzklNKfIMηη) = -3G3fc0,,o-i mod £1

iii) φk(NKf/Mη7J) - 0 mod Q, /or A ^ K 3̂ o, 1 ^ A £ q ~ 2.

Now take a prime ideal £y of Kf = K(Ef, μq_u

 q~W — π) lying above

£}, and consider /ί as an element of K/ as we have referred in Remark

3. Let ξ = fym/A*0, so f is a quartic root of —m2 and is contained in

Kf. Considering K' to be a subfield of ifD, we can take Kummer's

logarithmic derivatives of η2, by using the function

fn{T) = s

Taking Kummer's logarithmic derivatives of each side of (1.3), we get

the desired congruences in Theorem 1.

§ 2. Determination of ξ mod C/ in special cases

Theorem 1 involves a quartic root and we did not determine it (or

rather its value modulo €xf) exactly. In case that m i s a prime number
p which is congruent to 3 modulo 4 and π = — p, we can determine it.
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The method we use is to combine λ and Λ in K' through the values of

^-function (associated to Ω£)κ) at division points.

By the definition, q — p2. We can easily show that

and

^Π...^/ί-β) = (-64)ίβ-^V

So we get

π -
(1 + i)9-1

(Note that this is a real negative number.)

We introduce a forth-set according to Matthews [5]. A representative

set of (£Wτr)x//4 (μ, = {±1, ±ί}) in (£)κlπ)x is called a forth-set. If S is

a forth-set, (&κ/π)x is decomposed into four disjoint subsets S, — S, &S>,

- iS. Define

As ^(te) = - ^ ( * ) and ̂ '(fo) = ί^7^), G(βS) = (JL) G(S) for all β e
\ π 'i

Therefore

G(S) - V -

for some e e μ±. Define a(S) e (€)κ/π)x as a(S) = Π ses β Then G(S) depends

only on a(S). In fact, if we consider a(S) as an element of K' through

the natural map (£)κlπ)x ->Og? then G(S)/a(S) is defined as an element

of Kf independently of S.

Now we make a special choise of S, and determine G(S) and α(S).

Let Sί = {α e ΛΓ| 1 ̂  α ̂  (p - l)/2}, S2 = iSt, S+ = {α + 6i e ©*|2 ^ α ^

(p - l)/2, 0 < 6 < α} and S_ = S+ (complex conjugate). Then S = Sa U S2

U S+ U S_ (disjoint union) is a forth-set. Put τ0 = (l/p)fl. We know that

&(z) =Ί?(z), ^/(z)=W7^j, and that - 2«^(α:τo)/^/(ατo) e 2?+ if α e S , and

— 2&f(aτQ)l&f'(aτQ) 6 ζ8i?+ if α: 6 S2. So we get
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Next we have to determine a(S). Let Ft be the finite field with I

elements. The norm map N: F%->F$ is a surjection, and N~\x) con-

sists of (p + 1) elements for any xeF*. As N(μ±) — {1}, the restriction

of N to S is also a surjection, and each fibre of it consists of (p + l)/4

elements.

If p = 3 mod 8, N(a + ai) = 2ar is not contained in (F$f9 and so

N; S1\JS2-+F$ is a bijection. Thus we obtain

= ( Π «)( Π
5 U S r £

: .

If p = 7 mod 8, iV(a + ai) == 2a2 is contained in (F*)2. So if x 6 (F^)2,

N~1(x)Γ\S+ consists of (p — 7)/8 elements, and if not, (p + l)/8 elements.

Thus we obtain

Π « = ( Π «)( Π Na) = ( - l ) ( p + 1 ) / 8(l + 0Cp"1)/2mod.τ.

Novvτ we want to relate Λ(q~1)μ to G(S) and α(S). We have defined

λ, ΛeK; as A = -2^(r1)/^ /(r1), yί a root of Tq~' + π = 0 which satisfies

λ = Λ mod £y2. Observing the action of Gal (KfjK), we see

(2.1) - 2^V 1 )/^Vi) = ζJ mod &/2,

for all v e(£)κlπ)x, where ζveμq_u ζv = vm.oά£ι\ By the definition, we

know that π——p hence / = 4p, 4rj = τc mod i 7 . Multiplying (2.1) for

all v in S9 we obtain

G(-4" 1 S) = α(S)^- 1 ) / 4modjQ / ( ί- 1 ) / 4 + 1

As f — ) - ( i ) = i, G(-4- 1S) = G(S). After all, we get
\ π / * \ 7 r / 4

PROPOSITION 9.

mod £}'

- vΛ2"2(2)-3)/4 mod £y, if p = 3, 7 mod 16,

ΛΛ2~2(23-3)/4 mod Q' , Ϊ / P Ξ 11, 15 mod 16 .

By this proposition, we can rewrite Theorem 1 in this case in the

following exact form.

THEOREM 10. Let L — Q{fy p), where p is a rational prime and p ΞΞ

3 mod 4. Put k0 = (p2 - l)/4. Then

i) (hJhF)st ΞΞ 2("+1>/4Gfc0,P2//2~ X ε modp,
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where ε = 1 if p = 3, 15 mod 16, and e = — 1 if p = 7, 11 mod 16.

ii) (hJhF)(3sv - tu) ΞΞ 2^+1)/4G3fc0,,2/VT X ε modp,

where ε = 1 // p = 11, 15 mod 16, and ε = —1 £/ p = 3, 7 mod 16.

EXAMPLE 11. Let p = 7, L = Q( V 7), F = Q(V 7). Then we have

ηx = 13 + 8 ̂ T + 5VT + 3 ̂ T 3 , A2 = 43 + 26 fyT + 16VT + 10 ̂ T 3 , Λ,,
= 1, hL = 2. So in this case, (hL/hF)st = 3 mod 7 and (hL/hF)(3sv — ta) =

5 mod 7. On the other hand, we have

012>,a - V T x 11232/25 = VT mod 7 ,

G36,O2 = V"2" X 1447788874210204192/127679296875 = 4 / 1 " mod 7.

So we see

2<7+1>'4G12lPβ//2" X (-1) = 3 mod 7,

2(7+1)/4G36,,2/VΛ2" x (-1) = 5 mod 7.

This gives a numerical example of Theorem 10.

§ 3. The sectic case

Let α, b, c, d, e be square free integers such that a Φ 1 and α, 6, c, d,

β, 6 are prime to each other. Let m = ab2c3d4e5. For m, put L = Q( %/m),

F=Q( %m\ N = QWm), K = Q(ω) (ω = e2H% M= KL. Let p be the

character or Gal(MjK) corresponding to the sectic residue symbol ί —)

through the Artin map. Then we have

L(s, p, M\K) = ζL(s)ζQ(s)/ζN(s)ζF(s)

and consequently we have

L'(0, ^, M/ϋΓ) = (hJhNhF)(RLIRNRF).

It is easy to see that hL\hNhF is an integer.

Let εv, εF be the fundamental units of N, F respectively, and ηx a

generator of Keτ[NL/N: EL -> EN] Π Ker [NL/F: EL->EF]. We may assume

77i > 1. Then 2?0 = <± 1, εN, εF, %} is of finite index in EL and the index

devides 6. A simple calculation shows

: E0])logVl,

so we have

(3.1) L'(0, p, M/K) = (hLlhvhF)(6l[EL: £„]) log ^ .
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We will express L'(0, p, MjK) by elliptic units as in the quartic case.

In this case, we use the elliptic curve y2 = 4x3 — 1, instead of y1 — 4x3

— 4x, and we use the same notations for the corresponding object. For

example, E is the elliptic curve y2 = 4x3 — 1, & the associated lattice,

φf(C) the Ramachandra invariant with C a ideal class modulo (/).

Let (/) be the conductor of p, and let ϊ_u ΐω, ϊ_ω be elements of Dκ

prime to 6 which satisfy p(Cr_^) = — 1, ρ(CrJ = ω, p(Cr__ω) = — ω. Then

we have

(3.2) L'(0, p, M/ίΓ) - - 1 ,
6/

Take a finite index set J, ̂  € £>κ and m^ e Z (j e J) which satisfy the

following conditions:

{Nϊω - 1) + (JVr_! - 1) - (Nϊ_ω - 1) + Σ m(Nβs - 1) = 0,
j

Let τ = β// (β 6 # , , fiθx = Jδf) and define η by

)y - φ(τ, ϊω)φ(τ, r-x)φ(τ, T-ωYι \\ φ(τ, β,)m>.

Then η is a unit in Kf and satisfies

y _ AT Φf(Cru)Φf(Cr~i)

Combining this with (3.1) and (3.2), we obtain

(3.3) NKf/M{ψj) = ηWL/hyWl/lEvEM t

Take a prime factor π of a in K. We assume that π — ψ((π)), where ψ

is the grδssencharacter associated to E. We consider K(Ef), K(Ef2),

K(Eπ), K to be subfields of Cp so that π is contained in the valuation

ideal, and denote the completions of those fields by i£α, Kq, K%, Kp res-

pectively. We also define G, Oa, ma and so on as in the quartic case.

Take the prime element A of K$ such that

and define ^fc as ^fc = φky. K£->£)Jmr Here Γj is a π -division point of

«Sf defined from z as in Section 1. Calculating Rummer's logarithmic

derivatives of each sides of (3.3), we obtain the next theorem.
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THEOREM 12. Let k0 = (Nπ — l)/6 and £V 6e ίΛβ prime idβαZ o/

- K(Ef9 ζNπ.u (-π)ιnN*-l)) lying above Q. Embed K' into ΛΓO so

£}' C mo, and consider A as an element of K'. Let ηx = s + t %/m + u

+ v^/m + w ξ/m2 + x %jJn? with s, t, u, v, w, x e Q. Then we have;

i) (hJhNhF)(6l[EL: EQ])t = Gk0Jξ mod Q/

?

ii) (hJhNhF)(βl[EL: E,])(δx - tw) = G5,0,,-χ/ί5 mod O',

where ξ is the sectic root of —m\π defined by the equation $]~m = ξAk\ ρ2

the f/π-part of p, and Gka = Gfc,Z)Γ2 (X = p2 or ρϊλ) the generalized Hurwitz

number.

§ 4. Determination of ξ mod Ω/ in the sectic case

Let 0>{z) be the Weierstrass function associated to E: y2 — 4x3 — 1.

Take a rational prime number p such that p = — 1 mod 9, p = 1 mod 4,

and consider the case when m — p and π — p. Then we have

Π / 0>((alπ)Ω) = π'2,
a mod s

and
7 0"((alπ)Ω) = -Π

a mod 7

Let S (c:(<Dκlπ)x) be a sixth-set, and define G(S), αf(S) by the following

equation:

G(S) = Π (-2^((alπ)Ω)l^((alπ)Ω))9

a(S) = Π « .

Then it holds G(S)6 = p (16/27)(Λ;jr"1)/4. Now consider a(S) to be an element

of Kf through the canonical map (dκlπ)x -> K£. As elements of K', we

see the next relation between A and G(S):

Λ<N.-W = G(S)/a(S) mod O/(Λ7?r-1)/6+1.

To determine G(S)/a(S), we choose the sixth-set S = Sx U S2 U S+ U S_ as

follows:

S+ = {* e ©* 10< arg * < * V 76, Re z < ττ/2},

/Here " π " = 3.14- = the usual number π. We use this

\number only here, π in other places mean the factor of a.

S_ = S+ (complex conjugate).
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Observing the argument of έ?(z), &'(z) for each ze S, we see that G(S)

is a negative real number if p = 1 mod 8, and is a positive real number

if p = 5 mod 8. Thus we have

G(S) -p1/6(16/27)(Λ^-1)/24X e,

where e = — l i f p = l mod 8, and ε = 1 if p = 5 mod 8. On the other

hand, counting the number of elements of each fibre of the norm map

N: S+-+F%, we see a(S) = 3(2>-1)/4mod π. After all we see that £ ==

1 mod £}' in this case, and the theorem can be refined into the following

exact form.

THEOREM 13. Let L = G( -v7 p ), where p — — 1 mod 9 cmd p = 1 mod 4.

i) (hJhNhF)(6l[EL: EQ])t = G (,2_1 ) / 6 modp,

ii) (hJhNhF)(6l[EL: Eΰ])(5x - tw) = G 5 ( p 2 _ 1 ) / 6 modp.

EXAMPLE 14. Let L = Q( ^17). In this case we have;

e* = 4 + VΪ7 ,

ε̂ . = 324 + 126 ξ/ΫJ + 49 Λ/Ϊ72 ,

Vl = 71/3 + 14 ^Ϊ7 + (22/3) ^17 + 4Λ/Ϊ7 + (8/3) VW + 2 VΪ75,

hL = hN = hF = l, [EL: EQ]^6.

So the left hand side of Theorem 13, i) is 14. On the other hand,

G48 - 939/10469809348083296575 X 47 ΞΞ 14 mod 17 .

This gives a numerical example of Theorem 13, i).
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