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UNION AND GLUEING OF A FAMILY OF COHEN-MACAULAY
PARTIALLY ORDERED SETS

TAKAYUKI HIBI

Summary. By means of simple exact sequences in com-
mutative algebra, we can derive some effective criteria for Cohen-
Macaulay property of finite partially ordered sets.

Introduction

Given a finite partially ordered set (poset for short), for example,

Figure 1

are there any effective criteria for Cohen-Macaulayness of it? This ques-
tion is our main motivation to organize this paper. Why is this question
so important? Because we have a conjecture that every "integral lattice"
(or poset) is Cohen-Macaulay, which is proposed in [15, § 2, d)]. This
conjecture is quite open except one partial affirmative answer obtained
in [17, § 2, Corollary].

Historically, the notion of Cohen-Macaulay posets originated in
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Baclawski [1] and [2]. Baclawski's definition is purely topological and
is influenced by Folkman's result [11, Theorem 4.1], which in current
terminology says that a geometric lattice is Cohen-Macaulay. On the
other hand, Stanley [26] and Reisner [24] independently gave the ring-
theoretical definition of Cohen-Macaulay posets (or complexes) under an
influence of a commemorable work of Hochster [19].

The foundation in a theory of Cohen-Macaulay posets is a pioneering
work of Reisner [24], in which it is proved that one can define Cohen-
Macaulay posets by using either topology or ring theory. Also, the proof
by Stanley [26] of the upper bound conjecture for spheres is one of the
most dramatic applications of commutative algebra to combinatorics.

In this paper, we will apply local cohomology theory in commutative
algebra to a theory of Cohen-Macaulay posets and complexes. Since our
tool is based on only depth sensitivity and long exact sequences of local
cohomology modules, the method is quite simple and rather formal.

This paper is divided into four sections. In Section 1, after recalling
some basic definitions and terminology from commutative algebra and
combinatorics, we shall analyze two exact sequences concerning with
Stanley-Reisner rings of simplicial complexes, which will play essential
roles throughout all of this paper.

In Section 2, based on the exact sequences considered in Section 1,
from a purely ring-theoretical viewpoint, we shall give quite simple and
elementary alternative proofs to well-known and important combinatorial
results, the rank selection theorem and Cohen-Mac aulayness of shell able
complexes and G-complexes.

On the other hand, Section 3 is a purely combinatorial content,
which is also associated with graph theory. In order to apply the argu-
ment for simplicial complexes, contained in Section 1, to finite partially
ordered sets in Section 4, we shall define explicitly an "intersection", a
"union" and the "glueing" of a family of partially ordered sets.

Finally, in Section 4, we shall state our criteria for Cohen-Macaulay
property of finite partially ordered sets and, as an example of applica-
tions, we shall treat the partially ordered set Πn of partitions of the
integer n ordered by refinement. Also, we shall consider a question that
what conditions of partially ordered sets ensure Buchsbaum posets to be
Cohen-Macaulay.

It seems likely impossible that we can apply our criteria to all finite
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partially ordered sets. Nevertheless, we hope that our criteria will turn

out to be useful in a theory of Cohen-Macaulay posets in our further

work, see [34].

*i)] ~> k[Δ\ -> k\Δ'\ -> 0

In this section we shall consider mainly an exact sequence stated in

the above title.

(1.1) To begin with, we will recall some fundamental definitions and

results on Stanley-Reisner rings k[Δ].

Let V be a finite set, called the vertex set, and Δ a sίmplίcίal complex

on V. Thus Δ is a family of subsets of V satisfying (i) {v} e V for all

veV and (ii) σ e Δ, τ dσ imply r e Δ.

Let H e a field and A = k[v;ve V] the polynomial ring in #(V)-

variables over k, where #(V) means the cardinality of V as a set. By

abuse of notation, we are regarding the vertices v as indeterminates over

k. Define IΔ to be the ideal of A generated by all square-free monomials
υiivi2 '' * vίr s u c h ^ a t {υiι9 vu, , vίr} g Δ, and k[Δ]:= A/Iά. The ^-algebra

k[Δ] is called the Stanley-Reίsner ring on Δ in commemoration of Stanley

[26] and Reisner [24]. From now on, we will consider A and k[Δ] as

graded rings over k with the standard grading, i.e., the degree of each

v e V is one.

An element a e Δ is called a face and its dimension dim σ is #((/)•

A maximal face, with respect to inclusion, is also called a facet. The

dimension of Δ, denoted by dim Δ, is max {dim σ σ e Δ). Note that dim a

and dim Δ in this paper are one more than those in [2] or [10]. Also, Δ

is called pure if dim σ = dim Δ for all facets σ e Δ.

We will denote by dim k[Δ] (resp. depth k[Δ]) the dimension (resp.

depth) of k[Δ] as a graded ^-algebra. It can be checked, see Stanley [30,

p. 63], that dim k[Δ] coincides with dim Δ. In the following, we often

regard k[Δ] as a graded A-module, in this case, of course, dim k[Δ] (resp.

depth k[Δ]) coincides with dim^£[J] (resp. depths k[Δ]), the dimension (resp.

depth) of k[Δ] as a graded A-module. Note that depth k[Δ] is always

positive since k[Δ] is a reduced ^-algebra.

A simplicial complex Δ is called Cohen-Macaulay over a field k if

k[Δ] is a Cohen-Macaulay ring. Express the ideal Id as an intersection

of prime ideals in A, and we see that every Cohen-Macaulay complex Δ

is pure, see Reisner [24, Lemma 9].
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(1.2) Let Δ be a simplicial complex on the vertex set V. For σ e J,

define

\\nkΔ(σ) = {τeΔ; σf)τ = 0, σΌτeΔ},

star /a) = {τ e Δ; σϋτ e Δ}.

Then we have

)] = k[\iήkj(σ)][v; veσ] .

By Hochster [20, (5.6)], both linkj(<τ) and star/σ) are Cohen-Macaulay if

Δ is Cohen-Macaulay.

Now consider the following graded A-module homomorphism Φσ defined

by

σ
Φa: A(-#(*)) >k[Δ]

Φ Φ

Λ— >/Π u,

where σ e Δ. Refer to Goto-Watanabe [14, P. 181] for the definition of

A( — #(</)). Since there is no confusion, for simplicity, we will write A

instead of A(—#(σ)). What is the kernel of ΦaΊ Let / = \\i v^ be a mono-

mial in A, then Φσ(/) = 0 if and only if Supp(/):= {v^ ni > 0} g star/σ).

Hence we obtain an injection

Φ,: Jfeίstar/ej)]-% AM

as graded A-modules.

Moreover, if σu σ2, , σn e Δ then we have

)] ^ ' ^ '"Ή k[Δ\

Φ φ

(fuft, •••,/.)' > Σ { Λ Π w}

However, this map Φ(σi,σ2,...,σn) is not necessarily injective and it is easy

to see that

LEMMA. Φ{βl,β%,...Λβn) is injectίve if and only if a^a^Δ for all i Φ j.

What is the cokernel of Φ(σuσ,,...,σn^ The image of Φ(σi,σ2,...,σn) is an

ideal of k[Δ] which is generated by σu σ2, , σn. Hence the cokernel of

Φ*u.*,.:,*n) i s
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k[Δ — ( r e J ; t'Ώσi for some i}].

Summarizing the above observations, we have

THEOREM. Let Δ be a simplicial complex on the vertex set V and

σ1?σ2, •• >ffn faces of Δ satisfying σ^σ^Δ for all ί Φ j . Then we have

the exact sequence

(*) 0 > 0 AtstarXσ,)] > k[Δ] > k[Δ'] > 0

as graded A-modules, where A = k[v; ve V] and

Δf = Δ — {τ e Δ; r D ^ for some ί}.

(1.3) Let A = ®n^An be a noetherian graded ring defined over a

field k = Ao, m = A+ = ©w > 0An, and M = 0 n e z ^ « a finitely generated

graded A-module. We denote by fflJ^M) the ί-th local cohomology module,

that is to say,

HUM) = ljmExti(A/m*, M),

see Goto-Watanabe [14, P. 187].

Recall some fundamental properties of fflJ^M). First, if d = dim^M

and t == depth^M, then H U ^ ) = 0 unless t<ί<d and Hd

m(M) Φ 0 and

^ ( M ) ^ 0 . Secondly, if

0̂  >L >M—>N >0

is an exact sequence of graded A-modules, then there exists a long exact

sequence

0 > Hl(L) > Hl(M) > Hl(N)

> HUN)

of local cohomology modules.

Combining the above local cohomology theory with Theorem (1.2),

we obtain the following

COROLLARY. Let Δ be a pure simplicial complex of dimension d and

σu σ2, , σn faces of Δ satisfying σt U σ^•, £ Δ for all i Φ i. Also, let Δf =

Δ — {τ e Δ; τlDσ^ for some i}.
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a) If Δ is Cohen-Macaulay and dim Δ; < d, then dim Δ' — d — 1 and

Δ' is also Cohen-Macaulay.

b) If star/σj are Cohen-Macaulay for all ί and Δ' is Cohen-Macaulay

of dimension d, then Δ is also Cohen-Macaulay.

Next, we will state two basic results on Buchsbaum rings and modules

from Stϋckrad-Vogel [31] and Schenzel [25].

LEMMA A (Stύckrad-Vogel). Let A = ®n^QAn be a noetherian graded

ring defined over a field k — Ao, m — ®n>0An and M=@nezMn a

finitely generated graded A-module of dimension d. Then M is a Buchs-

baum A-module if the natural map

is surjectίve for all i Φ d. Moreover, if A is a polynomial ring over k then

the converse is also true.

The above lemma is called the surjectίvίty criterion for Buchsbaum

modules.

A simplicial complex Δ is called Buchsbaum over k if k[Δ] is a

Buchsbaum ring, which is equivalent to the fact that k[Δ] is a Buchsbaum

A-module, where A = k[v; ve V] as usual.

LEMMA B (Schenzel). A simplicial complex Δ is Buchsbaum if and

only if, for every σ e Δ, except a = 0, link^α) is Cohen-Macaulay.

A Buchsbaum complex Δ is also called almost Cohen-Macaulay in

Baclawski [2].

(1.4) Thanks to the exact sequence (*) of (1.2) and Corollary (1.3),

we can give quite simple ring-theoretical proofs to important combina-

torial results, which we shall achieve in Section 2. Here we treat only

two extreme cases.

EXAMPLE A. Let Δ be a pure simplicial complex of dimension d,

d, σ2, ,σn the set of all facets (maximal faces) of Δ and

4 ^ = {re J ; # ( * • ) < < * - ! } .

In this case, the exact sequence (*) is nothing but

0 > 0 k[υ; veσ,] > k[Δ] > k[Δd_x] > 0
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which is considered in Baclawski-Garsia [4, P. 178]. Since diuίk[Δd_ι] =

d — 1, by Corollary (1.3) a), k[Δd_1] is Cohen-Macaulay if so is Δ.

On the other hand, suppose that Δ is Buchsbaum. We have the

following commutative diagram

, k[Δ\)

with natural maps if i < d — 1, where zn is the irrelevant ideal of the

polynomial ring A over k whose indeterminates are the vertices of J.

Since φ is surjective by Lemma A of (1.3), ψ must be surjective, hence

k[Δd-A is also Buchsbaum again by Lemma A of (1.3).

Repeating the above procedure, we see that if Δ is Cohen-Macaulay

(resp. Buchsbaum) of dimension d, then

is also Cohen-Macaulay (resp. Buchsbaum) for all i < d, see Baclawski-

Garsia [4, Theorem 5.5].

EXAMPLE B. Let Δ be a pure simplicial complex on the vertex set

V and υ e V. Then, by (*) we have

0 > £[star/M)] > k[Δ] > k[Δ]l(v) • 0 .

Hence if both the localization k[Δ]v (= k[linkΔ({υ})][v, υ'1]) and the quotient

k[Δ]l(v) are Cohen-Macaulay, then k[Δ] is also Cohen-Macaulay by Corol-

lary (1.3) b). Note that if dim (k[Δ]l(v)) < dim k[Δ] then Δ = star/{ι;}).

This result is false in general. For example, let A = k[x, y]l(xy, y2),

v = x (resp. A = k[x, y} z]l(xz, yz), v — x + y), then A is not Cohen-

Macaulay, however, both Aυ — k[x, x'1] (resp. k[x,y, l/(x + y)]) and A/(v)

= k[y\l(y2) (resp. k[x, z]l(xz)) are Cohen-Macaulay.

(1.5) Let V be a finite set which is a union (not necessarily a disjoint

union) (JJβ l Vt of non-empty subsets V4 of V and J t simplicial complexes

on the vertex sets Vi (1 < i < ή). Define Δ = |J?-i Λ> which is a simplicial

complex on the vertex set V. Note that dim Δ = max {dim Δt 1 <̂  f ^ n}

and that J is pure if each J f is pure with dim Δt — dim J.

When Δ = |J?-i ^i turns out to be Cohen-Macaulay? For simplicity,

we treat the case of n = 2.
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LEMMA. Let n = 2. We have the natural exact sequence

(**) o > k[Δx U Δ2] • M 4 ] Θ k[Δ2] > k[Δ, n 4 ] • 0

o/ graded modules over A = £[υ; u e VJ.

The above lemma was first considered in Hochster [19].

Again, combining the above exact sequence (**) with the local

cohomology theory of (1.3), we immediately have the following

COROLLARY. Let Δu 4 be Cohen-Macaulay complexes of dimension d.

Then 4 U 4 is Cohen-Macaulay if and only if depth k[Δx Π 4] > d — 1.

EXAMPLE A, Let Δ be a simplicial complex on the vertex set V and

#(V) > 2. Then depth k[Δ] > 2 if and only if the geometric realization \Δ\

is connected.

To see why this is true, first assume that \Δ\ is not connected. Then,

there exist non-empty subsets Vx and V2 of V and simplicial complexes

4 on Vi (ί = 1, 2) such that V =V^V2, VίΠV2= 0 and Δ - 4 U 4 .

Hence by (**) we have the exact sequence

0 • k[Δ] • k[Δ>] ® k[Δ2] > k > 0 ,

so Hi(k[Δ]) ψ 0.

Conversely, suppose that \Δ\ is connected. We shall prove depth k[Δ]

> 2 by induction on $(V). We can choose v e V such that the geometric

realization of the subcomplex Δf = {τ e Δ; v g τ} on the vertex set V — {υ}

is connected. By assumption of induction depth (MstarXju})]) > 2 and

depth k[Δ;] > 2, hence Wjik[Δ]) — 0 if i < 2, see the exact sequence con-

tained in Example B of (1.4).

EXAMPLE B. Let Δ be a simplicial complex on the vertex set V.

The extension of J by an element ve V, denoted by Δ oc v, is a simplicial

complex on V U {ι/} (ι/ g V) such that (i) σ7 = {ι/, i;,, , vt} e Δ oc v if and

only if σ = {u, ϋ^ - , i J e J, where î , , vi e V — {u}, (ii) for σC V — {u},

σ e J oc i; if and only if σ e Δ, and (iii) {υ, u'JgJoc v. If J is Cohen-Macaulay,

then so is Δozv.

To see this, let Δ' = {τ e Δ ocv; v £ r}. Then J o c u ^ J I J J ' . Hence,

thanks to the above corollary, we have only to check that depth k[Δ Π Δ'\

> dim k[Δ] — 1. This inequality follows by the exact sequence contained

in Example B of (1.4), since Jfe[JΓϊ4'] = k[Δ]l(v).
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§ 2. Rank selection theorem, shellable complexes and (/-complexes

Based on the exact sequences (*) and (**) of Section 1, in this

section, we shall give quite elementary proofs to some combinatorial

results on Cohen-Macaulay posets and complexes.

(2.1) We begin with some definitions and terminology on partially

ordered sets.

All posets to be considered are finite. The length of a chain (totally

ordered set) C is the cardinality #(C) as a set. The rank of a poset Q,

denoted by rank (Q), is the supremum of lengths of chains contained in

Q. The rank of an element a in a poset is the supremum of lengths of

chains descending from a, and written by r(a). If two elements a and β

in a poset are incomparable, then we will write a •/ β. A clutter is a

poset in which no two elements are comparable. A poset ideal in a

poset Q is a subset I such that a e I, β e Q and β < a together imply

βel. A poset P is called a subposet of Q if P c Q and, for α, β e P, a <β

in P if and only if a < β in Q.

When we regard a poset Q only as a finite set F forgetting the

partial order, we call V the underlying set of Q and Q is called a poset

on V.

Let Q be a poset on V and define J(Q), called the order complex of

Q, to be the simplicial complex on V whose faces are the chains of Q.

We will use such terminology as "Q is pure" or "Q is Cohen-Macaulay"

to mean the corresponding statement for Δ{Q). Thus Q is pure if and

only if all maximal chains of Q have the same length. Note that rank (Q)

= dim Δ(Q). Moreover, a Cohen-Macaulay (resp. Buchsbaum) poset Q is

one for which A(Q) is a Cohen-Macaulay (resp. Buchsbaum) complex.

The Stanley-Reisner ring of a poset Q, denoted by k[Q], is the Stanley-

Reisner ring k[J(Q)] of J(Q), thus

k[Q] =k[a;aeQ]l(aβ;a7tβ).

Also, as an analogue of simplicial complexes, if C is a chain of a poset

Q then we define

link^C) = {a e Q; a e C and C U {a} e J(Q)}

star^C) = { α e Q ; C U W e A(Q)},

which should be considered as subposets of Q. Note that linkJ(Q)(C) =

J(linkQ(C)) and starJ(Q)(C) = J(starQ(C)).



100 TAKAYUKI HIBI

(2.2) Rank selection theorem. Probably one of the most important

results in a theory of Cohen-Macaulay posets is the "rank selection the-

orem", which first appeared in Baclawski [2, Theorem 5.4] and Munkres

[23, Theorem 6.4] with purely topological proofs. On the other hand,

starting from the definition [28, P. 63] of Cohen-Macaulay rings by the

Hubert functions, Stanley [29, Theorem 4.3] also gave an elementary ring-

theoretical proof to this theorem.

Let Q be a pure poset of rank d. Suppose that S is any subset of

[d]:= {1, 2, , d}. Define the rank-selected subposet Qs with respect to

S to be

Qs = {aeQ;r(a)eS}.

Note that rank(Q5) = #(S).

The rank selection theorem states that if Q is Cohen-Macaulay then

so is Qs for any Sd[d].

We shall prove this theorem by using (*) of (1.2). We may assume

S = [d] — {i}9 i e [d]. Let {au a29 , an) be the set of all rank i elements

of Q. Then the exact sequence (*) asserts

0 > © A[starQ({α<})] > k[Q] • k[Qs] > 0 .
ί = l

Hence Qs is Cohen-Macaulay by Corollary (1.3) a).

Moreover, with the same argument as in Example A of (1.4), we see

that if Q is Buchsbaum then so is Qs for all S c [ d ] , since A[starρ({αJ)]

is Cohen-Macaulay by Lemma B of (1.3). This Buchsbaum analogue of

the rank selection theorem was proved, in topological sence, in Baclawski

[2, Theorem 6.5].

(2.3) Shellable complexes. A pure complex Δ of dimension d is called

shellable if its all facets (maximal faces) can be listed Fu F2, , F8 in

such a way that

is pure of dimension d — 1 for all i > 1, where Ft = {σ 6 Δ\

If we define

= [veFs; Fs - {υ}e (C

then
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star/σ) = Fs,

In fact, if r e starj(σ) and τ & Fs then σ[jτ e Fό for some j < s, hence σ e Fj9

thus σ e ({J'jZ\Fj) Π F,, in other words, σ(ZFs — {υ} for some v e σ, a contra-
diction. On the other hand, {reJ; τ3σ} coincides with Fs — (Uί-i
thus i - { r e i ; rDa} = UJ -IF,-.

Hence, thanks to (*) of (1.2), we have

0 > k[Fs] > k[Δ] > k\\J 0 ,

so, by induction on s, we see that a shellable complex is Cohen-Macaulay
by Corollary (1.3) b).

The notion of shellability originated in the study of polytopes. A
fundamental result of Bruggesser-Main [9] concerning the shellability of
the boundary complexes of simplicial polytopes is essential in McMullen
[22] and Hochster [19]. The Cohen-Macaulayness of shellable complexes
is essentially due to Folkman [11] in topological sense and Hochster [19]
in ring-theoretical sense. See also, Bjδrner [6], [7], Garsia [12] and Kind-
Kleinschmidt [21].

(2.4) G'Complexes. Let J be a simplicial complex on the vertex set
V. For WdV, define

Δw = {σeA; σdW},

which is a simplicial complex on W.
We call Δ a G-complex (or "matroid") if Δw is pure for all WczV.

Refer to Stanley [27, § 7] for further information.
Note that if J is a G-complex and a e Δ then link^(σ) is, hence star^(σ)

is also, a G-complex. To see why link^cr) is a G-complex, let W be a
subset of the vertex set of link/σ), and τu r2 facets of (link/<7)V. Then
ΓiUα, r2Uσ are facets of ΔWΌ<n hence ftfoUtf) = feUσ), thus #(τx) = #(r2).

Now, using (*) and (**) of Section 1, we shall give a direct proof,
without the requirement of some combinatorial properties of G-complexes,
to the Cohen-Macaulayness of G-complexes. Let J be a G-complex of
dimension d on the vertex set V. We shall prove Δ is Cohen-Macaulay
by induction on #(J). Let υu v2e V (ux Φ v2) and V, = V — {υt}, Δi = Δv.
(ί — 1, 2). We may assume dim Δt — d, otherwise Δ = star/{uj) (ί = 1, 2).
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Since Δι[\Δ2 — Δv_{VuV<i], Διf]Δ2 is a G-complex and άim.(Διf]Δ2) > d — 1.

By assumption of induction, Δλ Π Δ2 is Cohen-Macaulay, hence, thanks to

Corollary (1.5), Δ1U Δ2 is Cohen-Macaulay. If σ = {uj, u2} g J, then J =

J t U zl2 and we have done. On the other hand, if σ e J then

Δ — {τβΔ; τZDσ} = Δ,UΔ2,

hence we have the exact sequence

0 > M s t a r » ] • k[Δ] > k[Δ, U Δ2] > 0

by (*) of (1.2). Since star/σ) is a G-complex, star/σ ) is Cohen-Macaulay

by assumption of induction. Hence Δ is also Cohen-Macaulay by Corol-

lary (1.3) b).

If Δ is a G-complex, then the Stanley-Reisner ring k[Δ] is a 'level ring"

defined in Stanley [27, § 3]. The concept of level rings intermediates

between Cohen-Macaulay and Gorenstein which will be of interest from

viewpoints of both commutative algebra and combinatorics. See [3], [16]

and [35] for some results on level rings.

§ 3. Comparability graphs and order complexes of partially ordered

sets

In order to apply Corollary (1.3) and Corollary (1.5) concerning with

the Cohen-Macaulayness of simplicial complexes to finite partially ordered

sets, in this section, we shall define explicitly an "intersection", a "union"

and the "glueing" of a family of finite partially ordered sets.

(3.1) First, recall some definitions and terminology from graph

theory.

A graph G is a finite set V Φ 0 together with a (possibly empty) set

E of two-element subsets of distinct elements of V. Each element of V

is referred as a vertex and V itself as the vertex set of G and the members

of the edge set E are called edges. In general, we represent the vertex

set and edge set of a graph G by V(G) and E(G), respectively. Note

that, by our definition, all graphs considered in this section have no

loops and multiple edges.

The edge e = {u, u} is said to be join the vertices u and v. If e = {u, v}

is an edge of a graph G, then u and v are adjacent vertices, while u and

e are incident, as are υ and e. Furthermore, if ex and e2 are distinct edges

of G incident with a common vertex, then ex and e2 are adjacent edges.
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A graph H is called a subgraph of a graph G if V(H)cV(G) and

E(H)dE(G). If H is a subgraph of G, then we write HdG. Also, a

graph G is called complete if {w, v] e E(G) for all u, v e V(G), u Φ v,

Let V be a finite set which is a union (not necessarily a disjoint

union) U?=i ^ °f non-empty subsets V̂  of V and Gt graphs on the vertex

sets Vi (1 < i < 72). Then we define the union U?=i G* (resp. the intersec-

tion Π ^ i ^ i ) to be a graph on the vertex set V (resp. Π?=i ^*) whose

edge set is U?=i #((?,) (resp. pβ^EiGJ).

(3.2) A graph G is said to be a comparability graph if there exists

a partial order on V(G) such that, for u, υ e V(G), u Φ v, {u, v} e E(G) if

and only if u and u are comparable with respect to the partial order on

V(G).

By a cycle of a graph G is meant here any finite sequence of vertices

vu v29 - 9vn of G such that {vi9 vi + ι\, 1 < i < τi, and {yn, u3} are in E(G),

and for no vertices a and /3 and integer i, j < τi, ί Φ jf a = vt — vjy β — ui + 1

= vj + ί or a = vt = υn, β = υi + ι = Vx. A cycle is odd or even depending

on whether n is odd or even. By a triangular chord of a cycle î , u2, , vn

of G is meant any one of the edges of the form {vί9vi+2}, 1 < i < ^ — 2,

or {ιv1? ux} or {uΏ, u2}.

LEMMA (Gilmore-Hoffmann [13]). A graph G is a comparability graph

if and only if each odd cycle has at least one triangular chord.

EXAMPLE. The graph G of Figure 2 is not a comparability graph

since an odd cycle p, z, b, c, y has no triangular chord.

Figure 2

(3.3) Let Δ be a simplicial complex on the vertex set V. We will

associate Δ with a graph G(Δ), called a skelton, whose vertex set is V

and edge set is the set of all faces of Δ with #(σ) = 2.
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For which simplicial complexes Δ, does there exist a poset Q such

that Δ = Δ(Q)? The answer was obtained in Stanley [29], namely,

LEMMA (Stanley). A simplicial complex Δ is of the form Δ = Δ(Q) for

some poset Q if and only if Δ satisfies the following:

(i) the ideal IΔ is generated by quadratic monomials, and

(ii) the skelton G(Δ) is a comparability graph.

In fact, the "only if" part is obvious. To see the "if" part, let the

skelton G(Δ) be a comparability graph, say G(Δ) — G(Δ(Q)) for some poset

Q. Then it is easy to see that Δ c Δ(Q). To show Δ 3 Δ(Q), let σ e J(Q),

namely σ is a chain of Q. Then every two-element subset {x, y} of σ is

an edge of G(Δ(Q)) = G(Δ), hence {x, y] e Δ. This σ e Δ since IΔ is generated

by quadratic monomials.

(3.4) Let V be a finite set which is a union U?=i ^ °f non-empty

subsets V€ of V and Qt posets whose underlying sets are Vt (1 < i < 7i).
Then a poset Q whose underlying set is Π?=i ^ί i s called an intersection

of a family {QJi<i<w, if i(Q) = Π?=i^(Qi) Of course, an intersection is

not necessarily unique even though it exists.

Since the ideal I^n=iΔ{Qύ of A — k[υ; υeV] is generated by quadratic

monomials, there exists an intersection of

in Δ(Qt)) = Π

n if and only if

is a comparability graph.

Note that the intersection of comparability graphs is not necessarily

a comparability graph. For example,

Figure 3 Figure 4

are comparability graphs, however, G^G, is not a comparability graph.

So, it is natural to find a sufficient condition for the existence of an
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intersection of {Qi}ι<ι<n

LEMMA. Suppose that, for a, βe Π?=i ^> there exist no ί and j , ί Φ j ,

such that a < β in Qt while a> β in Q;. Then there exists an intersection

of {QJi^, .

In fact, for a, βe Π?=i V<> define a < β if a < β in all Q̂ , and we obtain

a poset Q whose underlying set is Π?=i ^* satisfying J(Q) = p)?=i Δ(Qt).

Of course, the condition of the above lemma is not a necessary con-

dition.

(3.5) Now, as an analogue of a union of simplicial complexes, we

will define a "union" and "glueing" of a family of partially ordered sets.

DEFINITION. Let V be a finite set which is a union IJ?=i Vt of non-

empty subsets Vi of V. Also, let Qt be posets whose underlying sets

are V, (1 < i < ή).

a) A poset Q whose underlying set is V is called a union of a

family { Q J ^ ^ if Δ(Q) = UUΔ{Qt).

b) A poset Q whose underlying set is V is called a glueing of a

family {QJ^^n if each Q, is a subposet of Q and Δ(Q) - U ί

When does there exist a union or a glueing of a family of partially

ordered sets?

PROPOSITION. Work in the same notation as in the above definition.

a) There exists a union of {QJi<^n if and only if (i) the graph

G(U?-i AQz)) = U?=i G(^(Qi)) is a comparability graph and (ii) every com-

plete subgraph of |J? = 1 G{Δ{Q^j) is a subgraph of G{Δ(Q^j) for some i.

b) There exists a glueing of'{QJi^^n if and only if (i) /or α/ί ί =^; cmd

α, j8 e Vέ (Ί Vj9 a < β in Qt if and only if a < β in Qj and (ii) if al9 a2 e Vii9

a2, az e Vu, , a8, as+ί e Vu and a, < a2 in Qil9 a2 < a2 in Qί2, , as < as + 1

in Qis, then {au ατ2, , tfs + i} C Vt for some t.

Proof a) Let I — I^^Δ{Qi). The problem is whether I is generated

by quadratic monomials or not.

First, assume that I is not generated by quadratic monomials. Let

σ = [vί9 v2, - , vp} (p > 3) be a subset of V such that σ £ U^sslA(Qi) and
σ ~~ {VJ} e Ui=iΔ(Qi) for all j . Then, there exists a complete subgraph G'

of U?=iG(J(Qi))-whose vertex set is σ. If Gf is contained in G{Δ{Qτ)) for

some /, then a is a chain of Qi? hence σ e A(Qt) (Z{J7l=1Δ(Qι), a contradic-

tion.
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Conversely, assume that I is generated by quadratic monomials and

that G' is a complete subgraph contained in U?=i G(Δ{Q^)) whose vertex set

is a — {υu v2, , vp} (p > 3). Then, v^j g I for all i, j , hence vxv2 vp £ I.

So, σ c Δ(Qτ) for some i. Thus G' is a subgraph of G(Δ(Qτ)).

b) First, we shall prove "if" part. Suppose that the condition (i)

and (ii) are satisfied. Then, we can define a partial order <v on V as

follows. Let vl9 v2e V. Define vι <vv2 if and only if vu v2e Vi for some

i and vx < v2 in Qt. By (i), this definition does not depend on the choice

of Vi containing υx and υ2. Also, let vu v2, vse V and v1<vv2, v2<vvz.

By the definition of <v we have vl9 υ2e Vi9 v2,v3e Vό for some i, j and

vt < ι;2 in Qiy v2 < υz in Qό. Then, vu v2, vz e Vt for some t by (ii), and

Vi < v2, v2 < u3 in Qf by (i). Hence v1 < u3 in Qί? this ^ < F u3. So, < F

is a partial order on V. Let Q be a poset with this partial order < F

whose underlying set is V. Then we see immediately that Δ{Q) — U7l=1Δ(Qί)

by (ii).

Secondly, we shall prove "only if" part. Suppose that a family

{Qί}i<ί<n h a s a glueing Q. Since each Qt is a subposet of Q, for a, β e Vi9

a < β in Qt if and only if a < β in Q, hence (i) holds. Also, au a2 e Vit,

a2, az e Vi2, - , as, as + ί € Vίs and ^ < a2 in Q i l? α:2 < az in Qί2, •• , α ( < α ί + 1

in Qίs, then αj < a2 < < α s + 1 in Q, hence {«j, α2, , as + ί] e Δ(Q) =

U?-i ^(Q*). So, K, α2, , as + ί} e Δ(Qτ) for some i. Q.E.D.

EXAMPLE A. Let V - and V, = , < 6 , V 2
Also,

let

Figure 5

Then G = G(Δ{QX)) U G(J(Q2)) looks like the graph of Figure 7, which is

a comparability graph. In fact, the partial order on V induced by the

following poset Q of Figure 8 produces the above graph G.

So, thanks to the above proposition, we see that there exists a union

of Qi and Q2, however, there exists no glueing of Qj and Q2.

Note that a union of a family of posets is not necessarily unique
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even though it exists, while a glueing of a family of posets is unique if

it exists. Hence, from now on, we call the glueing of a family of posets.

COROLLARY. Let V be a finite set which is a union VΊ U V2 of non-

empty subsets Vi of V and Qέ posets whose underlying sets are Vi (ί — 1, 2).

Suppose that (i) for a, βe Vίf]V2, a < β in Qx if and only if a < β in Q2

and (ii) 1^.= Vt — (VΊΠ V2) are poset ideals of Qt (ί = 1, 2). Then, there

exists the glueing of Qί and Q2,

This corollary is treated in [32, § 4]. So, our concept of the glueing

of a family of posets is a generalization of that in [32].

EXAMPLE B. Let Q be a poset and I, J poset ideals of Q. Then,

the subposet Q — (I ΓΊ J) of Q may be considered the glueing of Q — I

and Q — J. In particular, if IΠ J = 0 then Q itself is the glueing of

Q - I and Q - J.

§ 4. Criteria of Cohen-Macaulay partially ordered sets

The purpose of this final section is to state criteria of Cohen-Macaulay

posets and to show some examples.

(3.1) To begin with, we consider
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EXAMPLE. Let Q be a pure poset of rank d, i e [d], and {au a2i ,

<*n, βi, βii '' i βm} ̂ e set of rank i elements of Q (n, m > 1).

Thanks to Proposition (3.5) b), two families {starQ({αί})}1<ί<TO and

{star^j/y)}^^ have the glueings Qίal and Qίβl, respectively. Also, Q is

the glueing of the family {starρ({αj), starQ^})}^^^.

However, Q[α] and Qίβl are not necessarily subposets of Q, hence Q

is not necessarily the glueing of Q[α] and Qίβl. For example, if

then

] = « •

; = or,

in this case y and 6 are comparable in Qίβl while incomparable in Q[α],

hence there exists no glueing of Q[α] and Q[/S]. Of course, in general, Q

is a union of Q[α] and Q M .

Nevertheless, if i = 1 or d then Q w and Q[/5] are subposets of Q and

Q is the glueing of ζ>[α] and Qm.

Note that, for each i e [d], there exists an intersection QA of Q[α] and

Qm by Lemma (3.4). For example,

O

y

bb

Figure 12
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is an intersection of QM of Figure 10 and Qίβl of Figure 11. In general,

an intersection QA of Q M and Q[/3] is not necessarily a subposet of Q,

however, we can take QA as a subposet of Q if i — 1 or d.

Before starting our next work, we had better introduce one nota-

tion. Let P and Q be posets whose underlying sets are VP and VQ,

respectively. We define a new poset P φ Q, called the sum, whose under-

lying set is the disjoint union of VP and VQ and the partial order of

P ® Q is defined by x < y if (i) x < y in P, or (ii) x < y in Q, or (iii)

x e P and ̂  e Q. For example,

Figure 13 Figure 14

Figure 15

If P and Q are Cohen-Macaulay over a field £, then so is P 0 Q since

(4.2) Now, we will state our main

THEOREM. Let k be a field and Q a pure poset of rank d.

a) (Extension lemma A) Suppose that two elements x, y e Q satisfy

x < y and r(y) — r(x) = 2, and that Q is Cohen-Macaulay. Then, the new

poset Q with a, a <£ Q, whose partial order preserves that of Q and, in

addition, xf < a <y' for all xf < x, y' > y, is also Cohen-Macaulay.

b) (Extension lemma B) Let x, y be two elements of Q satisfying

x */* y and r(y) — r(x) = 1. Suppose that any element ξ < x (resp. η > y) is

comparable with y (resp. x), and that Q is Cohen-Macaulay. Then, the

new poset Q with an additional comparable relation x < y is also Cohen-

Macaulay.

c) (Union critertion) Let i e [d] and {au a2, , an, βu β2, , βm} the

set of rank i elements of Q (n, m > 1). A/50, let Qίal (resp. Qίβ ) be the

glueing of the family {starρ({α:J)}1<,<re (resp. {starρ({^})}^^J, and QΛ an

intersection of Q[α] and Qίβl. Suppose that both Q w and Qm are Cohen-

Macaulay over k. Then, Q is Cohen-Macaulay over k if and only if

depth k[QA] = d - l .
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d) (Glueing criterion) Let {aly a2, , an, βu β2, , βm} be the set of

minimal (resp. maximal) elements of Q (n, m> 1), and

i = feeQ; v> βj f°r

Qc«] = {ξ e Q; ξ < at for some i]

Qίβi = iv e Q; V < βj for some j}

which will be naturally considered as subposets of Q. On the other hand,

let QA be the subposet of Q consisting of all elements x of Q satisfying

x>at and x > βj (resp. x < at and x < β3) for some ί and j . Suppose

that QM and Qίβl are Cohen-Macaulay over k. Then, Q is Cohen-Macaulay

over k if and only if depth k[QA] = d — 1.

Proof. In case a) (resp. b)) we denote the new poset by Qf. Since

x < y (resp. ξ < y for all ξ < x and η > x for all η > y) in Q, we have

J(Q')-{τeJ(Q'); τZD{a}}

(resp. J(Q0 - {r e J(Q'); τ 3 {x, y}} = Δ(Q)),

which is Cohen-Macaulay. Also,

starQ,({tf}) = {ξeQ; ξ <x}@{a}@{ηeQ; η>y}

(resp. starQ,({x < y}) = {ξ e Q; ξ < x} ® {η e Q; η > y})

is Cohen-Macaulay of rank d. Hence, thanks to Corollary (1.3) b), Q' is

Cohen-Macaulay.

On the other hand, in case c) (resp. d)), by Example (4.1), the poset

Q is a union (resp. the glueing) of Q[α] and Qίβl, hence the result c) (resp.

d)) is an immediate consequence of Corollary (1.5). Q.E.D.

We have some remarks about the above results. First in case a)

(resp. b)) the new poset Qf is the glueing (resp. a union) of starρ,({α:})

(resp. starQ,({x < y})) and Q, secondly the results a) and d) are special

cases of c), and thirdly in case a) if r(y) — 2 (resp. r(x) = d — 1) then

we may consider Q U {— oo}, x = — oo (resp. Q U {°o}, y = °°)> where — oo

(resp. oo) is a least (resp. greatest) element of QU{— oo} (resp. Q U {oo})

which is not contained in Q.

EXAMPLE A. In cases a) and b) the conditions concerning with x

and y are indispensable. In fact,
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Figure 16

are Cohen-Macaulay, however,

y

Figure 17

Figure 18

are not Cohen-Macaulay.

Figure 19

EXAMPLE B. By using the union criterion c) and the glueing criterion
d), we see that the following posets are not Cohen-Macaulay.

.a
Figure 20 Figure 21

(4.3) Since our results of (4.2) are most fundamental in this paper,
we had better consider an elementary combinatorial proof without using
(*) or (**) of Section 1.

In [12], Garsia obtained a purely combinatorial and linear algebraic
characterization of Cohen-Macaulay posets. Recall some basic results
from [12].

Let k be a field, Q a pure poset of rank d and
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the rank ί form in the Stanley-Reisner ring k[Q] (1 < i <d).

If c = {qu q2, - , qn} C Q then we denote by δ(c) the square-free mono-

mial qxq2 qn of k[Q]. Note that δ(c) = 0 unless c is a chain.

Let ^(Q) be the set of all chains of Q and Jί(Q) the set of all maximal

chains of Q. For c € «XQ), define

L(c) = J(c) Π <?i,
i g r ( c )

where r(c) is the rank set of c, i.e.,

r(c) - {r(x); xec} .

Note that

L(c) = Σ 3(m),
ccmeur(Q)

in particular, L(m) = δ(m) for m e Jl(Q).

LEMMA (Garsia). In the same notation as above, Q is Cohen-Macaulay

over k if and only if there exists a collection £${Q) of chains of Q which

satisfies

(i) #{c € <g{Q); r(c) = S} = #{B e &(Q); r(6) c S} for all Sd[d] and
(ii) in k[Q], L(m) cα?ι 6e expressed as a linear combination

(w6 e A) for all m e

Now, based on Garsia's characterization, we shall give an another
proof to b) of Theorem (4.2). Presumably, similar proof would be given
to c).

We will work in the situation of b) of Theorem (4.2). Let T = {r(x).
r{y)}. Since both

P = {ξeQ;ξ <x}Φ{ηeQ;η>y}

and Q are Cohen-Macaulay, we can choose @x = 3$(]F) and 3S% =

which satisfy the conditions (i) and (ii) in the above lemma.

Let

We shall prove that this collection J* of chains of Q' satisfies Garsia's
conditions (i) and (ii) in the above lemma. In the following, the rank
set of a chain c of P is meant the rank set as a chain of Q.

First, if Sa[d] and S^)T then
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= |{6 e ̂ 2 ; r(&) c S}

= #{6 6 a; r(b) c S}.

On the other hand, if S C [d] a n d S D Γ then

- #{c 6 «(Q); r(c) = S} + #{c e <g(P); r(c) = S - T}

= #{B e ̂ 2 ; r(b) c S } + #{B e #,; r(B) c S - ϊ 1 }

= #{b e ̂  r(a) c S}.

Secondly, let m 6 ̂ £(Q'). If m 3 {*, y} then

5(m - {x, y}) = Σ ^6^(6) Π «i

in ife[Q] modulo the ideal generated by all z e Q — P, hence

Σ
«2/

- {x, y}) - Σ ^6ί(B) Π

Thus, multiplying by xy on both sides, we have

δ(m) = Σ wjSQά U {x, y}) Π θt
6€^i i£r(W{x,y})

since δ(c)xy — 0 if c ςzί P, in other words,

£(m) = Σ

as desired. On the other hand, if m ~fi {x, y} then

L(m) = Σ

in k[Q] modulo the ideal (xy)} hence

L(m) - Σ ŵ ΛB) = Σ

and the right-hand side is expressed as Σlve$-^wvL(b;). Q.E.D.

(4.4) Work in the same notation as in Example (4.1).

Let & be a certain property for pure posets. Suppose that this

property 0> satisfies the following: (i) if Q is a pure poset with a unique

minimal element a and Q has this property ^ , then the subposet Q — {a}
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( = liήkQ({a})) also has this property ^ , (ii) if Q is a pure poset of rank d

having this property & and Q has at least two minimal elements, then

for i = 1 and some n, m > 1, Q[α], QCi3] have ^ and QΛ is pure poset of

rank d — 1 having ^ , and (iii) any chain has this property &.

Then, by an obvious induction and d) of Theorem (4.2), we see that

this property 0> implies the Cohen-Macaulay property.

EXAMPLE. An element y of a poset Q is a cover of an element x e Q

if x < y and no element of Q is properly between x and y.

A poset Q is called wonderful if the following condition holds in the

poset QU{ —oo, oo} obtained by adjoining least and greatest elements to

Q: If yu y<ι<z are covers of an element x, then there exists an element

y <z which is a cover of both yx and y2.

Now, [10, Lemma 8.2] shows that every wonderful poset is pure and

that 0* = "wonderful" satisfies the above conditions (i), (ii) and (iii).

Hence every wonderful poset is Cohen-Macaulay. Of course, our argument

is an axiomatization of the method contained in [10, P. 42].

(4.5) We shall consider some concrete examples.

EXAMPLE A. The following posets of Figure 22-24 are all Cohen-

Macaulay. Indeed, it is a routine work to check that Qt — {xj are

wonderful. Hence Qt are Cohen-Macaulay thanks to a) and b) of Theo-

rem (4.2).

Figure 22

Figure 23



COHEN-MACAULAY PARTIALLY ORDERED SETS 115

Figure 24

EXAMPLE B. We shall show that the poset

a

Figure 25

is Cohen-Macaulay. Let Qf = Q - {r, δ}. Then, linkβ,({α:}), link^,^}) and

link^({/32}) coincide with Qx, Q2 and Qz in the above Example A, respec-

tively.

Since an intersection of s ta r^^}) and stare({/32}) looks like

Figure 26

which is a wonderful poset of rank 3, the glueing Q'ίβl of star^d/^}) and

starQ/({j92}) is Cohen-Macaulay. On the other hand, the poset Qx of

Example A, which is Cohen-Macaulay of rank 3, is an intersection of

Q'ίβ2 and starρ,({α:}), hence the poset Qf, which is the glueing of Q'ίβl and

starve*}), is Cohen-Macaulay. So, thanks to a) and b) of Theorem (4.2)

again, we see that Q is Cohen-Macaulay.

Let Πn be the partially ordered set of partitions of an integer n ordered
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by refinement, see Birkhoff [5, I, Example 10, P. 16]. According to Bjorner

[6, Example 6.2], Πn is wonderful if and only if n < 7. On the other hand,

Π8 is not wonderful but is shellable, namely, the simplicial complex A(Π8)

is shellable. In general, it is proved in [6, Theorem 6.1] that if Q is a

wonderful poset then Δ(Q) is shellable. See also Bjorner-Wachs [8].

Here, as an application of Theorem (4.2), we shall prove the Cohen-

Macaulayness of 779 directly.

The poset Q(0) = 779 - {x,y, z}, where x = (1,1, •••,!), y = O j ^ J - , 2),
9-times 7-tϊmes

z = (9), is just the poset of Figure 1.

First, we shall prove Q(1) = Q(0) - {(1, 1, 1, 1, 1, 1, 3), (1, 1, 1, 1, 1, 2, 2),

(1, 1, 1, 1, 1, 4)} is Cohen-Macaulay. Let a = (1, 1, 1, 1, 2, 3) and β =

(1, 1, 1, 2, 2, 2) of Q(1). Then the poset linkβ(1,({α}) is just the poset of

Figure 25 of Example B, hence liήkQ(1)({a}) is Cohen-Macaulay, thus

starQd)({α}) is Cohen-Macaulay. On the other hand, by the same method

as in the case of sta.γQil)({a}), we can prove sta.γQ(1)({β}) is also Cohen-

Macaulay.
Now, an intersection of starρ(1)({α:}) and starQ(1)({/3}) looks like

Figure 27

which can be checked to be Cohen-Macaulay by the glueing criterion

d) of Theorem (4.2), hence, again thanks to d) of Theorem (4.2), Q(1) is

Cohen-Macaulay.

Secondly, apply the extension lemmas a) and b) of Theorem (4.2) to

Q(1) and (1, 1, 1, 1, 1, 4), and we see that Q(2) = Q(o) - {(1, 1, 1, 1, 1, 1, 3),

(1,1, 1,1,1, 2, 2)} is Cohen-Macaulay. Hence Q(3) = Q(0) - {(1, 1, 1, 1, 1, 1, 3)}

is also Cohen-Macaulay.

Finally, again applying a) and b) of Theorem (4.2) to Q(3) and

(1, 1, 1, 1, 1, 1, 3), Qi0) is Cohen-Macaulay, which means Π9 is Cohen-

Macaulay. Q.E.D.
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After this paper was submitted, the author received Bjόrner's letter

of May 8, 1986, in which the recent paper Ziegler [33] was referred.

According to [33], both /79 and /710 are shellable, however, for n > 19,

the posets Πn are not Cohen-Macaulay.

The author would like to thank Prof. A. Bjorner for his information

about the partition posets Πn.

(4.6) The final topic of this paper is to consider a question that

what conditions of partially ordered sets ensure Buchsbaum posets to be

Cohen-Macaulay.

We will propose the following

DEFINITION. A pure poset Q of rank d is called an L{n)-poset, where

n is a positive integer, if for each ie [d] there exist n elements ap, ap,

-"9a^ of rank i such that (i) a?\ aP, , a™ are all the minimal

elements of Q and (ii) for each r e [d — 1] and s > 1,

( 0 [ < \ oo)) n [aΐ\ oo) = U [ < + 1 \ <*>) >

where [a, oo) = {x e Q; x > a} for a e Q.

LEMMA. Let Q be an L(n)-poset. Suppose that the subposets [af\ oo) of

Q are Cohen-Macaulay for all j , 1 < j < n. Then, the subposet U5=i [&f\ °°)

of Q is Cohen-Macaulay for every s, 1 < s < n. In particular, Q itself is

Cohen-Macaulay.

Proof. We shall prove by induction on d. The case d = 1 is trivial.

Let d > 1. Since [α < υ , oo) is Cohen-Macaulay for every j , [af\ oo) is

Cohen-Macaulay for every j . Hence, by assumption of induction, the

subposets U5=i la?\ °°) of Q a r e Cohen-Macaulay for all 5. Now, we shall

prove each subposet U5=i \.aT> °°) °f Q ^s Cohen-Macaulay by induction

on s. Let s > 1. Since Uy=i [̂ y1}? °°) a n ( i [̂ s1^ °°) a r e Cohen-Macaulay,

thanks to the glueing criterion d) of Theorem (4.2), | J } β l [af\ oo) is Cohen-

Macaulay, because the subposet

(s-l \ s

^ J l(Xj , oo) \ \ ] [ocs o o ; _ ^ j [pίj , o o ;

of Q, which may be regarded as an intersection of U5=ί iaf\ °°) a n ( i

[tf(/\ oo), is Cohen-Macaulay of rank d — 1. Q.E.D.

Now, combining the above lemma with Lemma B of (1.3), we obtain
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PROPOSITION. Let Q be an L{n)-poset. Then Q is Cohen-Macaulay if

and only if Q is Buchsbaum.

EXAMPLE. Let Πn be the partition poset of the integer n > 4 con-

sidered in (4.5). Also, let Πin) = Πn - {xn,yn, zn], where

(τi-l)-timcs

Then, /7(n) is an L(2)-poset of rank n — 3. In fact, it is easy to see that

a[ί) = Oj'i'i-'hι + 2 )
(n-(i + 2))-times

< = (1,1, •••,!, 2, i + 1),
(n-(ι + 3))-times

ίe[n — 3], satisfy the conditions (i) and (ii) in our definition of L(2)-posets.
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