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ON AN ESTIMATE FOR SOLUTIONS OF NONLINEAR

ELLIPTIC VARIATIONAL INEQUALITIES1}

HARUO NAGASE

Introduction

Let Ω be a bounded domain in Rn with the boundary dΩ of class C M

and E be a compact subset (resp. a compact subset on an (n — ^-dimen-

sional hypersurface of class C0)1) in Ω. We assume that the usual function

spaces C\Ώ\ Cξ(Ω), LP(Ω), WUp(Ω) and W%*(Ω) are known.

The first constraint condition is given by the following set:

( 1) JBΓ, = {v e Wip(Ω); v(x) e K(x) a.e. (resp. p.p) xeE},

where K(x) is a closed convex set in R1 depending on x.

Next let d^Ω and d2Ω be two disjoint open subsets of dΩ such that

dΩ = dj2[jdjί and 3ίΩφ0. We set

CJ0)(β) = {υeCι(Ώ); υ = 0 in a neighborhood of d^β}.

The completion of C|0)(β) with respect to the norm ||M||I,P = \\u\\p + \\Pu\\p

2)

is denoted by W^f(Ω). The following set K2 defines the second constraint

condition:

( 2 ) K2 = {ve Wltf(Ω) v(x) e k(x) p.p. xedjϊ},

where k(x) is also a closed convex set in R1 depending on x.

The aim of this paper is to establish an estimate for the solution

ue Ki of the following variational inequality:

( 3 ) ± <α,(x, Vu\ dxj(u - ϋ)> + (αo(x, u\ u - υ)£(f, u - υ)
3=1

for any υ e Ku

Received March 24, 1986.
x) The content of this paper was lectured by the author at the Nonlinear P.D.E.

Symposium, held at Tokyo University from February 24 to 26, 1986.
2) For the sake of simplicity we write || |U*(0)==ll UP and (dxu, dX2u, •••, dXnu)=Fu.
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where we describe the pairing between Wl'p(Ω)(Wltf(Ω)) and its dual by

< , ) and the inner product of L\Ω) by ( , ).

At first we note that the norm \\u\\Up is equivalent to the norm \\Vu\\p

in Wl*p(Ω) or W\$(Ω) by Poincare's inequality.

In the case when K = Kx (resp. K = i Q and E = Ω (resp. dλΩ = 0),

many authors obtained a number of results with respect to the properties

of solutions of (3) for operators SLJ and K(x) (resp. k(x)) of various types.

Here we do not refer explicitly to such cases.

Before stating our theorem, we will refer to results related to our

problems. D. Kinderlehrer ([23]) proved the existence of a Lipschitz con-

tinuous solution in R2 under the assumption that a1 = as(η)S) satisfies

Σ2j=ι(aj(v) - α/flOXfr - VJ)^\V ~ ?T (v>0) and E is a segment. In [13]

J. Frehse discussed the continuity of the first order derivatives of solutions

when <Zj satisfies Σlli=ι(daj/dVi)(v)ίiζj^\ζf(^>0) a n d E is an (n — ^-dimen-

sional manifolds. Also G. H. Williams ([38]) proved the existence of a

Lipschitz continuous solution for the case that a} satisfies the inequality

Σ5»i(α/#, z, η) - aj(x, z\ ηf))(j]j ~ T/J) + (αo(#, z, η) - aQ(x, z', ηf))(z - zf) ^

C\η — η'f(C > 0) and £ is a subset in β. In the above three cases K(x) is

only of the type K(x) = {u(x) ^> φ(x)} for a given function φ(x). Additionally

when n = 2 and d2Ω = (α, b) X {x2 = 0} particularly, D. Kinderlehrer ([24])

showed that solutions belong to class Cha(Ω Ud2Ω) under the same condition

on cij as in [23] and with the assumption that k(x) = {u(x) ^ ψ(x)} for some

function ψ(x).

Secondly we mention results for the cases when a^ degenerate. To

begin with we impose the next conditions on aά (j = 0,1, - - -,n):

Σ aj(x, z, η)ηj ;> a\η\v - 6(*)i<z|p - /(*),

ao(x, 0,37)1 ^ dix)^^'1 + ^(x)!^^"1 + m(x).

( 4 )

Assuming that a3 (j = 1, , n) are independent of z and that b, g, h,

and I equal to zero and that furthermore α0 = \z\p~2z, H. Beirao da Veiga

([35]) obtained the L°°(β) estimate for solutions of variational inequalities

under the constraint condition that u{x)'^φi{x) on Et (i = 1, , m). In

[35] the boundary condition is of either Dirichlet, Neumann or Signorini's

3) In place of the operator aj(x, u, fit) we consider the function cijix, z, η) defined
on ΩχR*χRn.
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type, furthermore the mixed type of these conditions is also treated. More-

over in [36] he established the L°°(Ω) estimate and the Ca(Ω) estimate under

the assumption (4) for the constraint condition K = {v e Whp(Ω); v(x) >̂

ψ(x) on dΩ, v(x) = ψ(x) on Γ}. H. Beirao da Veiga-F. Conti ([37]) proved

that solutions belong to Ca(Ω) when a3 (j = 1, , ή) are independent of

z and α0 = 0 in (4), in addition α ; satisfies the condition Σ ?=i (
α/x> v) ~~

aj(x}7];))(ηj — ̂ y)>0. Here the constraint condition is of type: u(x)^φ(x)

on E. When b = e = g = 0 in (4), A. Domarkas ([9], [10]) showed that

solutions belong to Ca(Ω) for the constraint condition K: K ~ {v e WlyP(Ω);

v(x) ^ φi(x) on Ex and v(x) <L φ2(x) on E2} or K = {υe WUp(Ω); υ(x) ̂  ψt(x)

on Γ1 and v(x) ̂  ψ2(^) on Γ2} In the above works E and i^ are subsets

of Ω and Γ, Γ'i are subsets of dΩ, additionally φi(x), ψ(x) and ψi(x) are

some given functions.

Throughout this paper letp ;> 2 and let us assume that a ̂ > 0 if p ^ n,

0^a<n(p - ΐ)l(n - p) - 1 if p < n.

Now we impose the following assumptions on a3 (j — 0, 1, , ή):

ASSUMPTION A.

(I) (i) α, = aj(x, η) e C°(Ω X βw) Π Cι(Ωχ(Rn - .{0})), α/x, 0) = 0,

i = 1, , n.

(ii) ± ψl(X, ηfaξ, ̂  T^ + |,|'-")|f Γ,

'(χ,v)

'•(χ,v)

(II) (i) α0 = ao(x, z) e C°(Ω x Rx) Γ) C\Ω X (R - {0})), cφt, 0) = 0.

(ii)

da0

dxk

x,z

(x,

IIV

z)

°<
^ Λ{\z\

Ύz (x,

- i )

z) ύ Λ(\z\" + 1),

in the above x € Ω, zeR1 — {0}, ηe Rn — {0} and £ e i?n. And yc0 is a non-

negative constant, T and Λ are some positive constants.

Hereafter we write by the same C all constants independent of u and

/, which appear in (3). We define the following function Φ(x) in Rn:

Φ(x) =
(άis(x,EUdΩ)

[dis (x, 3i2)

for the case oΐ K = Kx

for the case oΐ K = K,
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where dis (A, JB) is the distance between A and B.

Our theorem is as follows.

THEOREM. Under the assumption A if fe W1)P*(β) (resp. L\Ω)) in the

case of κ0 = 0 (resp. tcQφ0), the following assertions hold for the solution u

of the nonlinear varίational inequality (3).

( I ) In any case Φ(x)aά(x, Vu) e Whp\Ω\ Φ(x)\Fu\p/2 e WU\Ω\ j = 1, , n.

(II) 7/̂ o = 0,

(Ill) If KiΦO, Φ(x)Fue WU2(Ω) and

\\Φ(-)Fu\\l2 + \\Φ(')aj( , Fu)\\ϊ*p* + \\ύ

where β = max(p, a + 2) and p* is the dual number of p, i.e., 1/p + 1/p*

= 1

In connection to the estimate in our theorem the following results were

obtained by G. H. Yakovlev. He gave first the estimate of \\dXj(\dx.u\p/2)\\LHΩδ)

for solutions of the variational problem which is derived from the func-

Γ f n 1
tional of the form I(v) — \2Z\^χP^ + o,(x)v \dx with the Dirichlet bound-

JflU=i J

ary condition ([40]). Here Ωδ = {xeΩ; dis(x, dΩ)>δ}.

In [43] also he obtained estimates of
| |α/ , u,Fu)\\wι^{Ωδ) and

for weak solutions of the nonlinear elliptic equation

= ao(x, u, Fu) under weaker assumptions than ours. The method in [43]

is to use the quotient of differentials with the usual parallel transfor-

mation, namely,

h \U\X\, #2> ' * *> #i-l> %i "T" h, %i + U ' ' *> Xn) U\X)\ ,

which implies that the estimate of the norm is obliged to be restricted in

Ωδ. In this paper we use a transformation with weight function Φ(x), so

we can estimate the norm in the whole Ω. Our estimates are very similar

to that of G. H. Yakovlev ([41]), where a nonlinear elliptic equation with

the Dirichlet boundary condition was treated. He prepared the estimate

for smooth solutions and applied the Galerkin's method, so his technique

can not be applied to our variational inequality.

Finally we refer to the regularity of weak soultions of the nonlinear

elliptic equation. Let us put v = u ± φ in (3) for a solution u and any

function φ in CQ(Ω\E) (resp. Cj°(fl)) in the case of K = Kλ (resp. K = K2),
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then we see that u is a weak solution of the nonlinear elliptic equation

(5 ) - Σ 3XJ(a£x, Vu)) + a(xy u) = /

in Ω\E (resp. Ω).

J. C. Evans ([11]) and J. L. Lewis ([26]) proved that weak solutions of

(5) belong to C\&(Ω\E) (resp. C& (Ω)) when α, = \Fu\p'2dXju and α0 = 0.

Besides E. DiBenedetto ([8]) and P. Tolksdorf ([33]) showed the same results

under weaker assumptions on a3 and α0 than those of [11] and [26].

1.

The existence of a unique solution for the variational inequality (3)

is derived from Lemma 1.2 in this section.

First we will prepare the following lemma which will be frequently

used in this paper:

LEMMA 1.1. Under the assumption A the following assertions hold:

(i) αy (/ = 0, 1, , ή) are estimated in such a way that

(1.1) \a,(

(1.2) Wo(x

(ii) (P. Tolksdorf [33, p. 129] and P. Lindqvist [28, p. 310]) There exists a

positive number ΐQ depending only on ϊ and p such that

(1.3) Σ (<*/*, V) - <*j(x, r/ )) (Vj - η',)

(1.4) (αo(x, z) - αo(x, «0) (̂  - *0 ^ 0 .

e β , 27, ^ e i?Ώ α72rf z, zf e R\

Proof.

(i) The estimates (1.1) and (1.2) are derived from (I)-(ϋ) and (ΪΙ)-(ii)

in the assumption A and the equalities

a A*, V)=[t ^ (x, tη)vidt9 aQ(x, z) = [ ^ (x, tz)z dt.
Joί=i dηi Jo dz

(ii) Without loss of the generality we may assume that \η\<\η'\.

According to simple calculations and (I)-(ii) in the assumption A, we see that
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(1.5) Σ (<*/*> v) - <*,(*, V')) (Vi ~ V'j)

= Σ f — a^x>
7=1 Jo ar

^ Γ Σ ψ1 (*, tv+(l- t)V')(VJo i,S"i dηt

^ r ΓV, + |ίr? + (l - ίVΓ2)k

Jo

On the other hand it holds that

(1.6) \tη + (l
= (3/4 - t)W\ - (ί

^ ( ί + 1 / 4 ) ( 1 ^ 1 - 1

for all ί e [0, 1/4]. The inequalities (1.5) and (1.6) imply (1.3). The estimate

(1.4) can be proved more easily. Q.E.D.

Remark. In (1.6) we note that the estimate \tη + (1 — t)η'\ :> (1/4)

|J/ — 3?| holds for all te [0, 1/4]. Thus we have the following estimate in

place of (1.3):

(1.7) ± (α,(*, η) ~ aj(x, yf)) (v, - η'3) ̂  ro(/co + \η - 9

;p-2)l9 - ?7

This is due to K. L. Kuttler Jr. ([25]).

LEMMA 1.2. For u, ve Wϊp(Ω)(Wltf(Ω)) we define the operator A in

such a way that (A(ύ), v) = 2> = 1 <α/x, Fu), dXjv} + (ao(x, u), v), then the

operator A ίs pseudo-monotone and coercive from W\v(Ω)(Wl${Ω)) to its

dual space.

Proof. We write Wl*p(Ω) (Whf(Ω)) simply by V and its dual space by

V.

In order to prove the pseudo-monotonicity of the operator A, it is

enough to show that the operator A is (i) bounded, (ii) hemi-continuous

and (iii) monotone (J.L. Lions [29], p. 179).

(i) Boundedness.

According to the definition

(1.8) \(A(u), v)\ ̂  Σl<α,(*, Vu\ dXjv)\ + \(aQ(x9 u\ ϋ)\.
i i
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We estimate each term on the right-hand side of (1.8).

At first we obtain

(1.9) |<α/x, Fu\ dXJυ)\ <, c £ ( κ 0 + \Fu\*-*)\Fu\.\Fυ\ dx

^ C(\\Fu\\P4Fv\\p + Wu\\*-ψv\\p) 9

by (1.1) and Holder's inequality. Since p ^ 2, p and p* satisfy 1 < p * <̂

2 ^ p. Thus the inequality \\Fu\\p* ^ C\\Fu\\p is verified. Therefore from

(1.9) we deduce the estimate

(1.10) {(a^x, Vu\ dXjυ}\ ^ C(\\u\\v + \\u\\p

v-
ι)\\υ\\v .

On account of Lemma 1.1 and Holder's inequality, we obtain similarly

the inequality

(1.11) |(αo(*, u\ ϋ)\ <,

By Poincare's inequality, we get

(1.12) \\u\\p* ̂  C\ψu\\r rg C\\Fu\\p £ C\\u\\r,

(1.13) l | y | |p^C| |Fι ; | | p ^C| | ι ; | | Γ .

And Sobolev's imbedding theorem yields the inequality

(1.14) l|w||(β+i), ^C | |M|L P ,

because 0 <; a < n(p - l)/(n - p) - 1 for p < n. From (1.11)-(1.14) it fol-

lows that

(1.15) |(αo(*, M), υ)\ <, C(\\u\\v + ||u||βΓ

+1)l|υ||Γ .

Combining (1.8), (1.10) with (1.15), we derive the following estimate

from the definition of the dual norm of A(u) in V7:

(1.16) I|A(M)||F, ^ CQIttHΓ1 + il^il^1 + | |u | | F ).

(ii) Hemi-continuity.

Let us suppose that \λ\ ̂  λ0. For u, v and we V, it is valid that

(1.17) (A(u + λϋ), w) =

by the definition of the operator A. Applying the inequalities (1.1) and

(1.2) to each term of the integrand in (1.17), we have
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|α,(x, F(u + λυ))dXjw\ £ C{κ,(\Fu\ + λ,\Fυ\) + {Fu^1 + λl-1\Fυ\p-ψw\,

|αo(x, u + λv)w\ < C{(\u\ + λΰ\υ\) + \u\a+1 + λa

0

+1\v\a+1}\w\

By the same way as in the proof of (i), we can prove that each term on

the right-hand sides is integrable. Hence (A(u + λv), w) is continuous

with respect to λ by Lebesgue's convergence theorem.

(iii) Monotonicity.

From the remark after Lemma 1.1, it holds for any u, v e V that

(1.18) (A(u) - A(ϋ), u-v)^ T0(κ0\\F(u - v)\\l + \\F(u - υ)\\$

^ 0.

Consequently, we have shown the pseudo-monotonicity of the operator A.

Finally we prove that the operator A is coercive. Setting v = 0 in

(1.18), we have

Hence

(A}U} U) ^ Croll^liΓ1 > oo as | | M | [ Γ > oo .
Mr

Therefore the operator A is coercive. Q.E.D.

As we have mentioned at the beginning of this section, a solution of

the variational inequality (3) exists for any feV (J. L. Lions [29, p. 247]).

The uniqueness of solutions follows immediately from (1.18).

The estimate for the gradient of the solution u is carried out in the

next lemma.

LEMMA 1.3. Under the assumption A if feLp\Q) (resp. L\Ω)) and Λ;0

= 0 (resp. Λ O^O), the gradient of the solution u of the variational inequality

(3) is estimated as follows:

(1.19) *0||Fw||i + \\Fu\\l ^ C(l + ||/||£) (resp.

Proof. We denote by u0 the particular solution of (3) for / = 0. We

easily see that

(1.20) Σ (aj(x, Fu) - aj(x9 Fu0), dXj{u - uύ)} + (aQ(x, u) - αo(x, uQ), u - u0)

^ (/, u - u0).

Applying the inequalities (1.4) and (1.7) to the left-hand side, we get
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(1.21) U**ψu - Fuϋ\\l + ψu - Vu,\\t) ̂  K/, u - Mo)I

Using Holder's inequality and Poineare's inequality for the right-hand side

of (1.21), we obtain the estimate (1.19). Q.E.D.

We give a sufficient condition to assure that a sequence of functions

converges weakly in Lq(Ω).

LEMMA 1.4. Let u be a distribution in Ω and let {ι/v}Γ=i be a sequence

in Lq(Ω)(1<q < oo) such that the norms \\uv\\q are uniformly bounded. If

for any φ e C~(β),

(uv, φ) > (u, φ) as v > oo ,

then u belongs to Lq(Ω) and the sequence uv converges weakly to u in Lq(Ω).

Proof, From the assumption it holds for any φ e Cj°(β),

(1.22) \(u,φ)\

For arbitrary υ e Lq*(Ω) we take a sequence {φk}k==1 in CQ(Ω) such that

Wφk — v\\q*—>0 as ^->oo, then from (1.22) the sequence {(u, φk)}k=ι i s a Cauchy

sequence. Accordingly, lim^oo (u, φk) exists and from (1.22) it is trivial

that the limit depends only on v and does not depend on any choice of

the sequence. Hence we can express lim^oo (u, φk) = lu(v). It is easy to

verify that lu is a linear functional on Lq*(Ω), so there exists an element

Lu in Lq(Ω)(=(Lq*(Ω))') such that lu(v) = (Lu, v) for all υeLq\Ω). The de-

finition of lu(ϋ) ensures the equality (u, φ) = (Lu, φ) for any function φ in

C^(Ω), which is dense in Lq*(Ω). Thus we can conclude that u — Lu and

therefore u e Lq(Ω). The remainder of the proof is due to Theorem 3 in

[44, p. 121]. Q.E.D.

2.

We introduce a coordinate transformation with the weight function

Φ(x) and prepare some results with respect to it. We refer to some lemmas

in [20].

Let h be a non-zero vector in Rn with the length h — \h\. Hereafter

h is assumed to be sufficiently small. As mentioned in the introduction

we put Φ(x) = dis (x, ΘΩ (J E) (resp. dis (x, dΩ)) for K = K, (resp. K = K2) and

we consider the transformation of the coordinates:
4 ) g* is the dual number of q, i.e., q*=q/{q — 1).
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(2.1)

We write h = (hu h29

we have

(2.2)

&h y = x + Φ(x)h.

>,hn) and / = d(yuy2, ,xn), then

1 + KdXιΦ

1 + h2dX2Φ

h2dXnΦ

Let us put e = h xh and let e be arbitrarily fixed. Noting t h a t \dXjΦ\

<; 1 ([20, p. 57]), we see that the determinant J of / is not zero for suffi-

ciently small h, therefore the mapping Φh and its inverse Φj;1 are both

one-to-one from Rn onto itself. If we set Ψ(y) = — Φ(x)(= — Φ{Φu\y)))9

it is written

(2.3) ~\ x=y+Ψ(y)h.

Here we remark that from (2.2) we can put J = 1 + hJx and the deter-

minant J1 of the Jacobian J1 connected with the inverse transformation

Φϊ1 can be described in the form J " 1 = 1 + hJ2, where Jλ and J2 are uni-

formly bounded in x e Ω and h 6 Rn. Furthermore the transformation Φh

maps x e Ω to y e Ω and x e Ωc to ye Ωc respectively, so it is a one-to-one

mapping from Ω onto itself.

Now we define

aShu)(x) = Φ(χ)k), (Thu)(y) = u(y + Ψ(y)h),

(2.4)

{(Qhu)(y) = A

Hereafter we write simply by Shu, Thuf

• , respectively.

LEMMA 2.1 ([20, p. 58, 59]).

(i) We have

Fx(Shu) = ShFxu

the functions (Shu)(x), (Γftu)(y),

(2.5)
Vv(Tbu) = ThVυu

Px(Phu) = PhPxu

PV(QHU) = QhFvu

h(e-ShFxu)PxΦ ,

h(e-ThVvu)VvΨ,

(e ShPxu)FxΦ ,

{e-ThFvu)FyΨ.

(ii) If ue W

of h and u such that

< q < oo), there exists a constant C independent
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(2.6) \\Phu\\q, \\Qhu\\q<C\\Fu\\q.

We do not repeat the proof of the above lemma, since it is parallel to

that of [20].

The following lemma is as important as Lemma 1.4 for the proof of

our theorem.

LEMMA 2.2. If ue Lq(Ω) (1 < q < oo), then for any function φ in CQ(Ω)

it holds that

(2.7) (Phu - J2u, φ) • ((e F) (Φu), φ) as h • 0 ,

where the derivative (e-F)(Φu) of Φu is in the sense of the distribution.

Proof For any u e Lq(Ω) and φ e Lq\Ω) the formula

(2.8) (Phu, φ) - (J2u, φ) = - (Shu9 Phφ)

holds. The function φ belongs to C^(Ω) in this case, so we can prove the

following convergence by the similar technique as in [20] (Lemma 5 in p.

59):

(2.9) Phφ > Φ(e - V)φ in Lq\Ω) as h > 0 .

On the other hand it is an immediate consequence that

(2.10) Shu >u in Lq(Ω) as h >0,

from the fact that u e Lq{Ω). Therefore the right-hand side on (2.8) tends

to — (u}Φ(e-P)φ) by virtue of (2.9) and (2.10). In this way we arrive at

the assertion of this lemma. Q.E.D.

3.

This section is devoted to the statement and the proof of the main

proposition in this paper. It is very important for the proof of our

theorem.

PROPOSITION. Let us assume the assumption A. Then the following

estimates hold for the solution u of the varίatίonal inequality (3):

(i) If κ0 = 0 and fe Whp\Ω),

(ii) If κ0Φθ and feL\Ω),

\\PhFu\\l
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where β = max (p, a + 2).

Proof. From now on we write simply dx. = d} or dyj = 3, and we ab-

breviate the notation of sums.

As Shu and Thu belong to Kt (i = 1 or 2) (see p. 60 in [20]), so we

can put v = Shu and JΓAM in (3). Hence we obtain the inequalities

<α/x, Fa), 3/M - Shu)} + (ao(x, u),u - Shu) £(f,u - Shύ),

(aj(y, Vu), dj(u - Thu)} + (ao(y, u), u - Thu) ^ (/, u - Thu) .

Adding these two inequalities, we have

(3.1) <α/x, Vu), ds{u - Shu)} + <α/y, Vu), dj(u - Thu)}

+ (ao(x, u), u - Shu) + (aQ(y, u), u - Thu)

<(f,u- Shu) + (f,u- Thu).

Denoting each term on the left-hand side by Ij (j = 1, 2, 3, 4) in turn from

the left, we write Iλ and /2 as follows by Lemma 2.1:

Ix = <α,(x, Vu), dju - Shdju) - h(aj(x, Fu), (e-

J2 = <(i + hJdSha,(x, Vu\ ShdjU - djUy - Λ<α,(y, Vu\ (e ThFu)dj¥} .

Consequently, we get

(3.2) 1 + Iz = (S^j - aj9 Shdju - 3jM> + h^S^, ShdjU - d<u)

After putting the right-hand side of (3.2) by Σ/= 5 I,, we estimate each

term Ij. We rewrite J5 in the form

(3.3) J5 = (aj(Shx, ShFu) - α,(x, ShFu), S&u - 3,u>

For the first term in (3.3), the following estimate holds:

(3.4) |<α7(SΛx, ShFu) - α,(x, ShFu), ShdjU - djU}\

£ Ch2 [ (κo\ShFu\ \PhFu\ + \ShFurv\PhFu\)dx

£ ChX^WFuMlP.FuW, + WFuWl^WS^u^-^P^W

Here we have used the equality

aj(Shx, ShFu) - α/x, ShFu) = Γ fl <^l(χ + 0<J>(*)*, ShFu)hkΦ(x)dθ
U fc=i 5χ f c

and the inequality in the assumption A.
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Secondly the remainding term in (3.3) is estimated from below by (1.3)

as follows:

(3.5) (djix, ShVu) - α/x, Fu), Shdόu - d^u)

In this way (3.3), (3.4) and (3.5) yield that

(3.6) 75 :> ^ M l

-ChXκo\\Fu\\l+\\Fu\\ζ).

Next we see by Lemma 1.1 that

(3.7) \I6\ £ Ch2 f (Λo + \ShFur*)\ShFu\ \PhFu\dx

< CK{κ,\\FuU\PhFu\\2

Before proceeding to successive terms I7 and 78, we note that we can

write FyΨ = FJFQJ'1) = - Φ*Φ) (I + hH), where I is the unit matrix and

each component of the matrix H is essentially bounded (see p. 64 in [20]).

Consequently, it is seen that

(3.8) I1 + I8=- h{(ap (e> ThFu) [ ( - Fβ(x)) (I + hH)],}

+ h\aJΛe'ThFu)(FxΦH)J>

= h{(Shap (e FψdjΦ) - <α,, (e-

) + h\aj, (e ThFu) ψxΦH)^ .

Again we write IΊ + 78 = £]}U I3 in (3.8). We rewrite I9 in the same way

as in (3.3), i.e.,

(3.9) J9 = h(aj(Shx, ShFu) - α,(x, ShFu\ (e Fu)djΦy

+ h(aj(x, ShFu) - dj(x, Fu\ (e>Fu)d$)

+ h(a,j(x, Fu), e-(Fu - ShFu)dόΦ) .

By applying the similar technique as in (3.4) to the first term of (3.9), we

get the inequality

(3.10) h\(aj(Shx, ShFu) - α/x, ShFu), (e-Fu)d^}\ £ Ch2 fellJ7^ + \\Fu\\>).

5) We write the j-th component of a vector U by Uj.
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The second term of (3.9) is estimated as follows:

(3.11) h\(aj(x, ShFu) - α/x, Fu), (e'Fu)djΦ)\

^ Ch2 ί (AΓ0 + \Fur2 + \ShFur2)\PhFu\.\Fu\dx
J Ω

In the above estmiates we have used the assumption A and the equality

α/x, ShFu) - at(x, Fu) = Γ Σ ^L (x, θShFu + (1 - θ)Fu)(Shdiu - dtu)dθ .
Jo »=i dηi

According to Lemma 1.1 the last term of (3.9) is estimated as follows:

(3.12) h\(fljy e (Fu - ShFM)3,Φ>! ^ Ch2 f (/c0 + \Fu\p-2)\Fu\-\PhFu\dx
J a

By virtue of (3.9)-(3.12) we get

(3.13) 1I,| S Clr{κ,\\FunPhFu\\2 + Kΰ\\Fu\\l + \\Fu\%

On the other hand by Lemma 1.1, 710 and In are immediately esti-

mated, that is,

(3.14) 1I1O|, \In\ ^ Ch\κ,\\Fu\\l + \\Fu\%).

Consequently (3.8), (3.13) and (3.14) yield that

(3.15) | I 7 + -is! ύ Ch*U\\FuUPkFu\\2 + \\Fu\\l) + \\Fu\\*

With the aid of (3.2), (3.6), (3.7) and (3.15) we obtain the inequality

(3.16) Z + I^ϊϋlt {κQ\\PhFu\\l + \\\ShFu\^-^ΨhFu\\l
4

- Ch\κ,\\Fu\\l + \\Fu\φ .

Now we estimate the sum of J3 and I4. It is written in the form

(3.17) I3 + l = (a,, u - Shu) + ((1 + hJ^S^ Shu - u)

= (aQ(Shx, Shu) - ao(x, Shu), Shu - u)

+ (αo(s, Shu) - aQ(x, u\ Shu - u) + h{Jβha^ Shu ~ u).
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Similarly as in (3.4) we can estimate the first term of (3.17) as follows:

(3.18) \(<h(Shx, Shu) - αo(*, Sku), Shu - u)\

rg Ch2 ί (1 + \Shu\'+1)\Phu\dx
JΩ

Here we have used Lemma 2.1 and (1.14).

Because of Lemma 1.1 the second term of (3.17) is non-negative, i.e.,

(3.19) (αo(x, Shu) - aQ(x, u), Shu-u)^0.

For the last term in (3.17) we attain the following estimate from Lemma

1.1 and Holder's inequality:

(3.20) ΛKJAαo, Shu - u)\ £ Ch2 ί (1 + \Shu\')\Shu\.\Phu\dx
J Ω

^ Ch%\PhuUShu\\p, + ||P»«||,(||S»«||(β+1)ί.)«+1}.

Similarly as in (3.18) we obtain the following inequality from (3.20):

(3.21) A K J A c , Shu -u)\£ Ch>(\\Fu\\l + | |F«| |;+0 .

In this way we arrive at the inequality

(3.22) I3 + J4 ^ - C/ι2(||Fu||;+2 + ψu\\v + \\Vu%)

from (3.17), (3.18), (3.19) and (3.21).

Finally we estimate the right-hand side of (3.1). By simple calcula-

tions it holds that

(3.23) (/, u - Thu) + (/, u - Shu) = h*{(Phf, Phu) + (J&f, Phu)}.

Let us suppose that κ0 = 0. From (3.23) and (ii) in Lemma 2.1 we have

(3.24) I the right-hand side of (3.1)| ^ Chψu\\p\\f\\Up,.

Combining (3.1), (3.16), (3.22) with (3.24), we deduce that if κ0 = 0,

^ C(\\Fu\\l + | |Γ M | | r 2 + HΓαll, + ||Γ«||Ϊ + ||/||?,V)

Therefore if κ0 — 0, our proposition is correct in virtue of Lemma 1.3.

Secondly we suppose that A:0 Φ 0. In this case we transform the'first

term in the brackets on the right-hand side of (3.23) into the following
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form by the expression (2.8) in the proof of Lemma 2.2:

(Phf, Phu) = - (Shf, PhPhu) + (JJ, Phu).

Taking account of (3.23) and (ii) in Lemma 2.1, we obtain the inequality

(3.25) I the right-hand side of (3.1)| ^ Ch2\\f\\2(\\PhFu\\2 + \\Fu\\2).

Hence from (3.1), (3.16), (3.22) and (3.25) it follows that

^ C(κQ\\Fu\\l + \\Fu\\p + \\Fu\\;+> + \\Fu\\p + \\Fu\\l + \\f\\ί).

Thus the proof of our proposition is accomplished by the straight-forward

application of Lemma 1.3. Q.E.D.

4.

In this section we prove our theorem.

At first we show that Φ(x)aj(x, Fu) belongs to WUp*(Ω) and we estimate

its WUp*(Ω) norm. Considering Lemma 1.4 and Lemma 2.2, we first give the

uniform LP*(Ω) estimate for the sequence {Ph(a5{x, Fu)) — J2aό{x, Fu)}h>Q,

where h is sufficiently small. We write Ph(aj(x, Fu)) in the form

(4.1) Ph(aj(x, Fu)) = [α,(SΛx, ShFu) - α,(*,

+ [aj(x, ShFu) - aj(x,

Similarly as in (3.4) we see that

(4.2) | | [ c / S Λ ShFu) - a,(x, ShVu)]h^\$ ^ C(*Π|Fu||jS + ψu\\t)

For the second term of (4.1), we get the inequality

(4.3) ||[α,(*, ShFu) - a fa Fu)]h~ψpt

by the same way as in (3.11).

Because of 1 < p * < 2 ^ p , we have \\PhFu\\p* ^ C\\PhFu\\^ And the

integral terms are estimated in the following way:

ί \
J Ω

\PhFuf\ShFuf{p-2)dx

dx\ JjS f tFw| ( p* ( I )-2 ) / 2 ) ( 1- ί'*/ 2 )"1cίΛ:



VARIATIONAL INEQUALITIES 85

P*β

where we use Holder's inequality and Minkowski's inequality. Another

integral term is similarly estimated.

Hence we conclude from (4.3) that

(4.4) Ufa/*, ShVu) - α,(x, Fu)]h-%1

£ C{tf\\PJ?u\\r + \\Pu\\l + (\\\ShFu\^ΨhFu\\l + \\\Fur-^

Because of (4.1), (4.2) and (4.4) it holds that

(4.5) \\Ph(aj(x, Fu)ψpl ^ C{4\\\Fu\\$ + \\PhFu\\r) + \\Γu\\*

Therefore if /c0 = 0,

from (4.5), Proposition and Lemma 1.3. We write the right-hand side by

Cΐf. Moreover if κ0 Φ 0, we have similarly

where β = max (p, a + 2). The right-hand side is written by Cϊf.

On the other hand the functions J2 are uniformly bounded in x and

h. Thus by Lemma 1.1

(4.6) \\J2aj(x, Fu)\\p ̂  C(κr\\Fu\\ll + \\Fu\\v) .

Applying the estimate for Vu in Lemma 1.3 to each term on the right-hand

side of (4.6), the LP*(Ω) norms of the functions J2aό(x, Fu) are estimated as

follows: if AΓQ = 0 (resp. tc0 Φ 0),

^ Cϊ°f (resp. Cϊf) .

From the above the LP*(Ω) norms of the sequence {Ph{aό{x, Fu)) —

x, Fu)}h>0 are estimated. That is, if κ0 = 0 (resp. tc0 Φ 0),

(4.7) \\Ph(aj(x, Fu)) - J2aj(x, Fu)\\$ ̂  Cϊ«f (resp. Crf).

Because α/x, Fu) e LP*(Ω), we conclude on account of Lemma 2.2 that

for any φ e CQ(Ω)

v Indeed,
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{Ph{a3{x, Vu)) - J2α,(x, Vu), φ) > ((e V)(Φaj(x, Vu% φ) ,

as h > 0 .

Hence Lemma 1.4 yields that the distribution (e-V)(Φaύ{x, Vu)) belongs to

LP\Ω) and that

(4.8) Pniajix, Vu)) - J2α/x, Vu) , (e- V) (Φα,(x, Vu)) in LP\Ω),

as h >0,

where " r" means the weak convergence.

Therefore from (4.7) and (4.8) we derive that if κΰ = 0 (resp. tcQ Φ 0),

(4.9) ||(e V)(Φafa Fu))\\£ ^ CϊQ

f (resp. Cϊf).

The assertion with respect to Φ(x)\Vu\pβ can be treated more easily.

By simple calculations we deduce the inequality

From this inequality and the estimate in Proposition we have for the case

of A:0 = 0 (resp. κ0 Φ 0)

n\\lύCry (resp. Cϊf).

Since the functions J2 are uniformly bounded, we get from Lemma 1.3

r\\l ^ Cϊ) (resp. Cϊf),

if κQ = 0 (resp. A:0 Φ 0).

Thus the L\Ω) norms of the sequence {Ph(\Vu\p/2) - J^Vu\p/2}h>0 are

estimated as follows: if ΛT0 = 0 (resp. Λ:0 Φ 0),

(4.10) \\Ph(\Vu\p/2) - J,\Vu\p% ^ Cr°f (resp. Cϊf).

With the aid of a priori estimate (4.10) we can select a sequence

with /ιv->0 (y-*oo) and choose a function v e L2(Ω) such that

(4.11) Phv(\Vu\p'2) - J2\Vu\p/2 r v in L\Ω) as v > oo ,

and besides if AT0 = 0 (resp. /c0 Φ 0),

(4.12) \\v\\l^Cϊ°f (resp. Cr,).

By Lemma 2.2 we see that for any function φ in C^(Ω)

(4.13) (Ph(\Vu\p'2) - J2\Vu\p'\ φ) > ((e.V)(Φ\Vur2), φ)

as h > 0 .
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From (4.11), (4.12) and (4.13) it holds that υ = (e F)(Φ\Fu\p/2) and if Λ;0 = 0

(resp. κQ Φ 0),

(4.14) \\(e F)(Φ\Fu\^)\?2 £ Cϊϋ

f (resp. Cϊf).

By virtue of (4.9) and (4.14) we have proved the required for Φ(x)aj(x, Fu)

and Φ(x)\Fu\p/\ And the proof of the part for Φ(x)Fu is left. We briefly

explain it. On account of the estimate (ii) in Proposition, ||PAu||1)2 are

uniformly bounded in h, more precisely,

if Λ:0 φ 0.

Accordingly there are a sequence {hμ}^=ι with hμ-+0(μ-> oo) and an

element w in VF1?2(β), to which the sequence Phuu converges weakly in

W^\Ω) as //-> co. On the other hand the sequence Phu converges strongly

to Φ(e-F)u in U{Ω) as μ-»oo, which is shown by the same way as in

Lemma 5 in [20]. Consequently we have that w = Φ(e-F)u and

Thus the proof of our theorem is finished. Q.E.D.

Remark. The same conclusion is obtained if we replace α/x, Fu) by

\Fu\p~2dXju or \dXJu\p~2dXJu in our theorem.
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