G. Kempf
Nagoya Math. J.
Vol. 107 (1987), 63-68

A DECOMPOSITION FORMULA FOR REPRESENTATIONS*

GEORGE KEMPF

Let H be the Levi subgroup of a parabolic subgroup of a split reductive group G. In characteristic zero, an irreducible representation V of G decomposes when restricted to H into a sum $V=\oplus m_{\alpha} W_{\alpha}$ where the W_{α} 's are distinct irreducible representations of H. We will give a formula for the multiplicities m_{α}. When H is the maximal torus, this formula is Weyl's character formula. In theory one may deduce the general formula from Weyl's result but I do not know how to do this.

My formula will also be valid in a Grothendieck group in positive characteristic. The proof uses a modification of Demazure's character formula [1] but I think that my formulation is more useful for calculations.

§1. The fundamentals

Let $T \subset B \subset G$ be a maximal torus contained in a Borel subgroup of G. The characters (or weights) of T are identified with characters of B. The Grothendieck group of finite dimensional B-modules is the free abelian group generated by the weights, which we will call the group ring.

We have G-linearized coherent sheaves on the homogeneous space $G / B[5,3]$. The G-linearized invertible sheaves correspond to characters of B. For each weight ψ, we have an invertible sheaf $\mathcal{O}_{G / B}(\psi)$. If ψ is dominant, then $\mathcal{O}_{G / B}(\psi)$ has non-zero sections. A general G-linearized coherent sheaf \mathscr{W} has a composition series with invertible factors $\mathcal{O}_{G / B}\left(\psi_{i}\right)$ for $0 \leq i \leq \operatorname{rank} \mathscr{W}=n$. Then we write

$$
[\mathscr{W}]=\sum_{1 \leq i \leq n} \psi_{i} .
$$

Thus the class [\mathscr{W}] determines the image of \mathscr{W} in the Grothendieck group of G-linearized coherent sheaves. This symbol is contained in the group ring of the characters.

[^0]We will need some linear operators on the group ring. Let α be a root. We will define a linear operator L_{α} by the rules:

$$
L_{a}(\psi)=\left\{\begin{array}{l}
\sum_{0 \leq i \leq\left\langle\psi, \alpha^{v}\right\rangle} \psi \alpha^{-i} \quad \text { if }\left\langle\psi, \alpha^{v}\right\rangle \geq 0 \\
0 \quad \text { if }\left\langle\psi, \alpha^{v}\right\rangle=-1 \\
-\sum_{1 \leq n \leq-\left\langle\psi, \alpha^{v}\right\rangle-1} \psi \alpha^{n} \quad \text { if }\left\langle\psi, \alpha^{v}\right\rangle \leq-2
\end{array}\right.
$$

Let α be a basic root. Let $P=P(\alpha)$ be the parabolic subgroup containing B with exactly one negative root $-\alpha$. Consider the projection $\pi: G / B \rightarrow G / P$. If \mathscr{W} is a G-linearized coherent sheaf on G / B, then $\pi^{*} \pi_{*} \mathscr{W}$ and $\pi^{*} R^{1} \pi_{*} \mathscr{W}$ are G-linearized coherent sheaves on G / B. The difference $\left[\pi^{*} \pi_{*} \mathscr{W}\right]-\left[\pi^{*} R^{1} \pi_{*} \mathscr{W}\right]$ is additive in \mathscr{W} because $R^{i} n_{*} \mathscr{W}=0$ for $i>1$ and π is flat. Thus we have a linear operation $\pi^{*} \pi_{*}$ on the group ring such that $\pi^{*} \pi_{*}(\psi) \equiv\left[\pi^{*} \pi_{*} \mathcal{O}_{G / B}(\psi)\right]-\left[\pi^{*} R^{1} \pi_{*} \mathcal{O}_{G / B}(\psi)\right]$. The principal result is

Theorem 1. $\quad L_{a}(\psi)=\pi^{*} \pi_{*}(\psi)$.
Proof. Now π is a $P / B \approx P^{1}$-bundle and $\left\langle\psi, \alpha^{v}\right\rangle$ is the fiber degree of $\mathcal{O}_{G / B}(\psi)$. By Serre's theorem, $\pi_{*} \mathcal{O}_{G / B}(\psi)=0$ if $\left\langle\psi, \alpha^{v}\right\rangle\left\langle 0\right.$ and $R^{1} \pi_{*} \mathcal{O}_{G / B}(\psi)$ $=0$ if $\left\langle\psi, \alpha^{v}\right\rangle>-2$. Thus if $\left\langle\psi, \alpha^{\nu}\right\rangle=-1, \pi^{*} \pi_{*}(\psi)=0$ and the formula is true. If $\left\langle\psi, \alpha^{v}\right\rangle \geq 0$, then $\pi_{*} \mathcal{O}_{G / B}(\psi)$ is locally free of rank $1+\left\langle\psi, \alpha^{v}\right\rangle$. Then $\pi^{*} \pi_{*} \mathcal{O}_{G / B}(\psi)$ a G-equivariant filtration with factors

$$
\psi, \psi \alpha^{-1}, \cdots, \psi \alpha^{-\langle\psi, \alpha \nu\rangle} .
$$

This can be checked on a fiber where it is rather trivial property of \boldsymbol{P}^{1} and rank 1 groups. Hence the formula is true. For the case $\left\langle\psi, \alpha^{v}\right\rangle \leq$ -2 , note that $\mathcal{O}_{G / B}\left(\alpha^{-1}\right)$ is the relative dualizing sheaf for π. Hence $R^{1} \pi_{*} \mathcal{O}_{G / B}\left(\alpha^{-1}\right)$ is trivial as a G-sheaf. By duality we have a G-equivariant perfect pairing $R^{1} \pi_{*} \mathcal{O}_{G / B}(\psi) \otimes \pi_{*} \mathcal{O}_{G / B}\left(\psi^{-1} \alpha^{-1}\right) \rightarrow \mathcal{O}_{G / P}$. It follows that $\pi^{*} R^{1} \pi_{*}$ $\mathcal{O}_{G / B}\left(\psi^{\prime}\right)$ has composition factors $\psi_{1}, \cdots, \psi_{r}$ where $\psi_{1}^{-1}, \cdots, \psi_{r}^{-1}$ are composition factors of $\pi^{*} \pi_{*} \mathcal{O}_{G / B}\left(\psi^{-1} \alpha^{-1}\right)$ but $\left\langle\psi^{-1} \alpha^{-1}, \alpha^{v}\right\rangle \geq 2-2=0$. Hence the last set of characters is $\psi^{-1} \alpha^{-1}, \cdots, \psi \alpha^{-(1+\langle\psi-1, \alpha\rangle\rangle-2)}$. Thus $\left\{\psi_{1}, \cdots, \psi_{r}\right\}$ is $\left\{\psi \alpha, \cdots, \psi \alpha^{\left(-1-\left\langle\psi, \alpha^{\eta}\right\rangle\right) \alpha}\right\}$. In other words the formula is true in this case.
Q.E.D.

The above duality gives a symmetry in the formula for L. In fact $L_{\alpha}(\psi)=-L_{\alpha}\left(\psi \alpha^{-\left(\left\langle\omega, \alpha^{\nu}\right\rangle+1\right) \alpha}\right)$. Recall the twisted action $s^{*} \psi=s(\psi \rho)^{-1}$ of the Weyl group on weights where ρ is the square root of the product of the positive roots. Here $s_{\alpha}^{*} \psi=\psi \alpha^{-\left(\left\langle\psi, \alpha^{\nu}\right\rangle+1\right)}$ where s_{α} is the symmetry about α.

Thus $L_{\alpha}(\psi)=-L_{\alpha}\left(s_{\alpha}^{*} \psi\right)$.
Given a G-linearized sheaf \mathscr{W} on G / B, the cohomology groups $H^{i}(G / B, \mathscr{W})$ are G-modules. Thus we may regard the Euler charactreistic $\chi(\mathscr{W})=\sum(-1)^{i} H^{i}(G / B, \mathscr{W})$ as an element of the Grothendieck group of G-modules. When $\mathscr{W}=\mathcal{O}_{G / B}(\psi)$ we will denote its Euler characteristic by $\chi_{G / B}(\psi)$. Also we extend $\chi_{G / B}$ to all of the group ring additively.

A useful identity due to Hirzebruch and Borel is
Theorem 2. For any s in the Weyl group

$$
\chi_{G / B}(\psi)=(-1)^{\text {1ength }(s)} \chi_{G / B}\left(s^{*} \psi\right) .
$$

Proof. As s is the product of symmetries s_{α} about basic roots, we may assume that $s=s_{\alpha}$. This theorem will follow from the symmetry of L if we prove

Lemma 3. $\quad \chi_{G / B}(\psi)=\chi_{G / B}\left(L_{\alpha}(\psi)\right)$.
Proof. By the Leray spectral sequence for π and the additivity of Euler characteristics we have

$$
\chi_{G / B}(\psi)=\chi\left(\pi_{*} \mathcal{O}_{G / B}(\psi)\right)-\chi\left(R^{1} \pi_{*} \mathcal{O}_{G / B}(\psi)\right)
$$

The point is that last quantity equals $\chi_{G / B}\left(\pi^{*} \pi_{*} \psi\right)$ which equals $\chi\left[L_{\alpha}(\psi)\right]$ by Theorem 1. The point is a direct consequence of Lemma 4 where $f=\pi$ and $\mathscr{W}=R^{i} \pi_{*} \mathcal{O}_{G / B}(\psi)$.

Lemma 4. Let $f: X \rightarrow Y$ be a morphism such that $f_{*} \mathcal{O}_{X} \approx \mathcal{O}_{Y}$ and $R^{i} f_{*} \mathcal{O}_{X}=0$ if $i>0$. For any locally free sheaf \mathscr{W} on Y, we have natural isomorphisms

$$
H^{i}\left(X, f^{*} \mathscr{W}\right) \approx H^{i}(Y, \mathscr{W})
$$

Proof. By the projection formula, $R^{i} f_{*} f^{*} \mathscr{W} \approx R^{i} f_{*} \mathcal{O}_{X} \otimes \mathscr{W}$. Thus $\mathscr{W}=\mathcal{O}_{Y} \otimes \mathscr{W}$ is the only non-zero direct image of $f * \mathscr{W}$. The isomorphism follows by a degenerate Leray spectral sequence.
Q.E.D.

To use Theorem 2 one should note that $s(\psi \rho)=s^{*}(\psi) \rho$. We may always find an element of the Weyl group such that ($\left.s^{*} \psi\right) \rho$ is contained in the positive Weyl chamber. Here are two possibilities. If ψ is singular; i.e. $\left\langle\psi \rho, \beta^{v}\right\rangle=0$ for some root β, then $\left\langle\left(s^{*} \psi\right) \rho, \alpha^{v}\right\rangle=0$ for some basic root α, i.e., $\left\langle s^{*} \psi, \alpha^{v}\right\rangle=-1$. Thus by Lemma $3, \chi_{G / B}\left(s^{*} \psi\right)=0$ and hence by Theorem 2, $\chi_{G / B}(\psi)=0$. If χ_{ρ} is non-singular, $\chi_{G / B}(\psi)=(-1)^{\text {lengths }}\left[V_{G}\left(s^{*} \psi^{\prime}\right)\right]$
where $V_{G}(\sigma)$ is the induced G-module $\Gamma\left(G / B, \mathcal{O}_{G / B}(\sigma)\right)$ for a dominant weight σ. This equality follows from the Borel-Weil vanishing theorem; $H^{i}\left(G / B, \mathcal{O}_{G / B}(\sigma)\right)=0$ for $i>0[2,4]$.

§ 2. A variation

Let Q be a parabolic subgroup of G which contains B. We want to decompose as a Q-module the induced representation $V_{G}(\psi)$ for a positive weight ψ. As we have just seen $\chi_{G / B}(\psi)=\left[V_{G}(\psi)\right]$. Thus we will decompose Euler characteristic for arbitrary $\bar{\omega}$. For any G-module M we have the restricted Q-module $M=\operatorname{res}_{Q} M$. The operation res $_{Q}$ extends to an operator res_{Q} from the Grothendieck group of G to that of Q.

Recall that Schubert variety in G / B is the closure of a B-orbits. We will be working with two Q-invariant Schubert varieties $X \varsubsetneqq Y$ such that there is a basic root α such that X and Y have the same image in $G / P(\alpha)$ under the projection π. In [2] X is called a moving divisor in Y. The geometry of this situation is very simple. Let σ_{Y} and σ_{X} be π restricted to Y and X. Then $\sigma_{Y}: Y \rightarrow \pi Y$ is a \boldsymbol{P}^{1}-fibration and $\sigma_{X}: X \rightarrow \pi Y$ is birational.

Let \mathscr{W} be Q-linearized coherent sheaf on Y which is induced by a G-linearized sheaf on G / B. The Grothendieck group of such sheaves is the group ring again. We will also consider the analogous sheaves on X. Consider $\sigma_{X}^{*} \sigma_{Y *} \mathscr{H} \equiv\left[\sigma_{X}^{*} \sigma_{Y *} \mathscr{W}\right]-\left[\sigma_{X}^{*} R^{1} \sigma_{Y *} \mathscr{W}\right]$ in the Grothendieck group for X. The operation $\sigma_{3}^{*} \sigma_{Y *}$ is additive because the direct images $R^{i} \sigma_{Y *} \mathscr{H}$ commute with base extension by σ_{X}.

Thus we may regard $\sigma_{X}^{*} \sigma_{Y *}$ as a transformation of the group ring into itself. Let $\sigma_{X}^{*} \sigma_{Y} \mathcal{O}_{Y}(\psi) \equiv \sigma_{X}^{*} \sigma_{Y}(\psi)$.

Theorem 5. $\quad \sigma_{i}^{*} \sigma_{Y}(\psi)=L_{\alpha}(\psi)$.
Proof. This theorem follows from Theorem 1. Explicitly by base extension $\left.R^{i} \pi_{*} \mathcal{O}_{G / B}(\psi)\right|_{\pi Y} \approx R^{i} \sigma_{Y *} \mathcal{O}_{Y}(\psi)$. Hence $\sigma_{X}^{*} R^{i} \sigma_{Y *} \mathcal{O}_{Y}(\psi)=\left.\pi^{*} R^{i} \pi_{*} \mathcal{O}_{G / B}(\psi)\right|_{X}$. Thus $\sigma_{X}^{*} \sigma_{Y *}(\psi)=\left.\pi^{*} \pi_{*}(\psi)\right|_{X}$ which equals $L_{\alpha}(\psi)$ by Theorem 1 . Q.E.D.

We may regard the Euler characteristics $\chi_{Y}(\mathscr{W})=\sum(-1)^{i} H^{i}(Y, \mathscr{W})$ and $\chi_{X}(\mathscr{W})=\sum(-1)^{i} H^{i}(X, \mathscr{W})$ in the Grothendieck group of Q-modules for any Q-linearized coherent sheaf \mathscr{W} on Y or X. These operations extend additively to the corresponding Grothendieck groups. For any weight ψ, let $\chi_{X}(\psi)=\chi_{X}\left(\mathcal{O}_{X}(\psi)\right)$ and similarly for Y.

Theorem 6. $\quad \chi_{\mathrm{r}}(\psi)=\chi_{X}\left(L_{\alpha}(\psi)\right)$.

Proof. This is a variation of Lemma 3. By the Leray spectral sequence for $\sigma_{Y}, \chi_{Y}(\psi)=\chi\left(\sigma_{Y *} \mathcal{O}_{Y}(\psi)\right)-\chi\left(R^{1} \sigma_{Y *} \mathcal{O}_{Y}(\psi)\right)$. Now the point is that the last difference is $\chi\left(\sigma_{X *} \sigma_{Y}(\psi)\right)$ as σ_{X} satisfies the hypothesis for Lemma 4 by [6]. Thus we get $\chi_{Y}\left(\psi^{r}\right)=\chi_{X}\left(L_{\alpha}(\psi)\right)$ by Theorem 5 .
Q.E.D.

Next we start with a chain $G / B=Y_{0} \supset Y_{1} \supset \cdots \supset Y_{n}=Q / Q \cap B$ of Q invariant Schubert varieties such that Y_{i} is a moving divisor in Y_{i-1} with the root α_{i}. For the most interesting case where Q approximates G most closely the geometry of the Q-invariant Schubert varieties is worked out in detail in [2]. In this case we get by induction

Corollary 7.
a) $\chi_{Q / Q \cap B}\left(L_{\alpha_{n}} \cdots L_{\alpha_{i}} \psi\right)=\chi_{Y_{i-1}}(\psi)$ and
b) $\chi_{G / B}(\psi)=\chi_{Q / Q \cap B}\left(L_{\alpha_{n}} \cdots L_{\alpha_{1}} \psi\right)$.

By the vanishing theorems in [4, 6], if ψ is dominant, $H^{i}\left(Y_{j}, \mathcal{O}_{Y_{j}}(\psi)\right)$ $=0$ for $i>0$. Thus $\chi_{Y_{j}}(\psi)=\left[\Gamma\left(Y_{j}, \mathcal{O}_{Y_{j}}(\psi)\right)\right]$ and we get

Theorem 8. If ψ is dominant,
a) $\left[\Gamma\left(Y_{i}, \mathcal{O}_{Y_{i}}(\psi)\right)\right]=\chi_{Q / Q \cap B}\left(L_{\alpha_{n}} \cdots L_{\alpha_{i}} \psi\right)$ and
b) $\quad\left[\operatorname{res}_{Q} V_{G}(\psi)\right]=\chi_{Q / Q \cap B}\left(L_{\alpha_{n}} \cdots L_{\alpha_{1}} \psi\right)$.

The only thing remaining is to replace Q by its Levi subgroup H. Let $B^{\prime}=B \cap H$. Then we have

$$
\left[\operatorname{res}_{H} V_{G}(\psi)\right]=\chi_{H / B}\left(L_{\alpha_{n}} \cdots L_{\alpha_{1}} \psi\right)
$$

where the last Euler characteristics can be expressed in terms of the induced representations $V_{H}(\psi)$. This gives the decomposition formula.

In case $Q=B, \chi_{Q / Q \cap B}$ is the identity and one gets formulas analogous to Demazure's character formula. Also in characteristic zero it should be recalled that the induced representation $V_{G}(\psi)$ are irreducible.

References

[1] M. Demazure, Desingularisations des variétés de Schubert généralisées, Ann. Ecole Nat. Sup., 7 (1974), 53-88.
[2] G. Kempf, Linear systems on homogeneous space, Ann. of Math., 103 (1976), 557-591.
[3] , The Grothendieck-Cousin Complex of an Induced Representation, Adv. in Math., 29 (1978), 310-396.
[4] V. B. Mehta and A. Ramanathan, Frobenius splitting and cohomology vanishing for Schubert varieties, Ann. of Math., 122 (1985), 27-40.
[5] D. Mumford, Geometric Invariant Theory, Springer, New York, 1982.
[6] A. Ramanathan, Schubert varieties are arithmetically Cohen-Macaulay, Invent. Math., 80 (1985), 283-294.

Department of Mathematics
The Johns Hopkins University
Baltimore, Maryland 21218
U.S.A.

[^0]: Received February 25, 1986.

 * Partially supported by NSF Grant \#MPS75-05578.

