MODULAR FORMS OF DEGREE n AND REPRESENTATION BY QUADRATIC FORMS IV

YOSHIYUKI KITAOKA

Let M be a quadratic lattice with positive definite quadratic form over the ring of rational integers, M^{\prime} a submodule of finite index, S a finite set of primes containing all prime divisors of $2\left[M: M^{\prime}\right]$ and such that M_{p} is unimodular for $p \notin S$. In [2] we showed that there is a constant c such that for every lattice N with positive definite quadratic form and every collection $\left(f_{p}\right)_{p \in S}$ of isometries $f_{p}: N_{p} \rightarrow M_{p}$ there is an isometry f : $N \rightarrow M$ satisfying
$f \equiv f_{p} \bmod M_{p}^{\prime}$ for every $p \mid\left[M: M^{\prime}\right]$
$f\left(N_{p}\right)$ is primitive in M_{p} for every $p \notin S$,
provided the minimum of $N \geqq c$ and rank $M \geqq 3$ rank $N+3$.
Our aim is to show that the condition rank $M \geqq 3$ rank $N+3$ can be weakened to $\operatorname{rank} M \geqq 2 \operatorname{rank} N+3$ if $\operatorname{rank} N=2$. The argument suggests that it is the case without limit on rank N.

In Section 1 we complete a result of van der Blij [8], in Section 2 we take out the Eisenstein series from the generating theta series, in Section 3 we give an estimate of local densities from below and in Section 4 we give an asymptotic formula for numbers of isometries and show the existence of an isometry in question.

Notation. We denote by $\boldsymbol{Z}, \boldsymbol{Q}, \boldsymbol{Z}_{p}$ and \boldsymbol{Q}_{p} the ring of rational integers, the field of rational numbers and their p-adic completions respectively. If A is a commutative ring, $M_{m, n}(A)$ is the set of $m \times n$ matrices with entries in A. For $X \in M_{m, n}(A)^{t} X$ means the transposed matrix and we put $Y[X]={ }^{t} X Y X$ for $Y \in M_{m, m}(A) . \quad 1_{m}$ is the unit matrix of order m. Let M be a module over A and N a submodule. N is called primitive if M / N is a free module. Similarly $P \in M_{m, n}(A)(m \geqq n)$ is called primitive
if it can be completed to a matrix in $M_{m, m}(A)$ whose determinant is a unit in A. For a quadratic module we denote by $B(),, Q()$ the associated bilinear form, quadratic form with $Q(x)=B(x, x)$ respectively.
§ 1.
Let $S \in M_{m, m}(\boldsymbol{Z}), T \in M_{n, n}(\boldsymbol{Z})(m \geqq n)$ be symmetric positive definite matrices respectively, $P \in M_{m, n}(Z)$ and ν a natural number. They are fixed once and for all in this section. By $\mathfrak{P}((S, \nu)$ we denote a set of all positive definite matrices S^{\prime} in $M_{m, m}(Z)$ such that $S^{\prime}=S\left[U_{p}\right]$ for some $U_{p} \in$ $G L_{m}\left(Z_{p}\right)$ with $U_{p} \equiv 1_{m} \bmod \nu Z_{p}$ for every prime p. If for $S^{\prime}, S^{\prime \prime} \in \mathfrak{P G}(S, \nu)$ there is a unimodular matrix $U \in G L_{m}(Z)$ such that $S^{\prime}=S^{\prime \prime}[U], U \equiv 1_{m}$ $\bmod \nu$, then we say that S^{\prime} and $S^{\prime \prime}$ are equivalent and write $S^{\prime} \sim S^{\prime \prime}$. Put

$$
\begin{aligned}
& A(S, T ; P, \nu)=\sharp\left\{X \in M_{m, n}(Z) \mid S[X]=T, X \equiv P \bmod \nu\right\}, \\
& E(S, \nu)=A\left(S, S ; 1_{m}, \nu\right), \\
& M(S, \nu)=\sum_{\mathfrak{B}(S, S, \nu) / \tilde{\nu} \vartheta S^{\prime}} 1 / E\left(S^{\prime}, \nu\right), \\
& A_{0}(S, T ; P, \nu)=M(S, \nu)^{-1} \sum_{\forall \otimes(S, \nu) / \tilde{\partial} \cdot S^{\prime}} A\left(S^{\prime}, T ; P, \nu\right) / E\left(S^{\prime}, \nu\right), \\
& \alpha_{p}(S, T ; P, \nu)=2^{-\delta_{m, n}} \lim _{a \rightarrow \infty}\left(p^{a}\right)^{n(n+1) 2-m n} \\
& \quad \times \sharp\left\{X \in M_{m, n}\left(Z_{p} / p^{a} Z_{p}\right) \mid S[X] \equiv T \bmod p^{a} Z_{p}, X \equiv P \bmod \nu Z_{p}\right\} .
\end{aligned}
$$

Here S^{\prime} runs over a complete set of representatives of equivalence classes in $\mathfrak{P G}(S, \nu)$ and $\delta_{m, n}$ is the Kronecker's delta function.

The purpose of this section is to prove the following theorem which is already proved in [8] if P is primitive as an element in $M_{m, n}\left(Z_{p}\right)$ for $p \mid \nu$.

Theorem.

$$
A_{0}(S, T ; P, \nu)=\varepsilon \delta_{\nu, m, n} \gamma_{m, n}|S|^{-n / 2}|T|^{(m-n-1) / 2} \prod_{p} \alpha_{p}(S, T ; P, \nu)
$$

where

$$
\begin{gathered}
\varepsilon= \begin{cases}1 & \text { if } m>n+1 \text { or } m=n=1, \\
1 / 2 & \text { otherwise },\end{cases} \\
\gamma_{m, n}=\pi^{n(2 m-n+1) / 4} \prod_{k=0}^{n-1} \Gamma((m-k) / 2)^{-1}, \\
\delta_{\nu, n, n}= \begin{cases}1 & \text { if } m \neq n \text { or if } \nu=1,2, \\
2^{\alpha(\nu)-2} & \text { if } m=n \text { and if } \nu \geqq 3 \text { and }(\nu, 4)=2, \\
2^{\alpha(\nu)-1} & \text { otherwise. }\end{cases}
\end{gathered}
$$

Here $\omega(\nu)$ denotes the number of different prime factors of ν.
The proof is proceeded along the original idea of Siegel [7].
Since Theorem is proved for $\nu=1$, we may assume $\nu>1$ and we fix, once and for all a natural number ν_{0} of a power of ν such that ν_{0} is divided by $|T| \nu^{2}$ in Z_{p} for $p \mid \nu$. Then $\nu_{0} \geqq 4$ holds. Put

$$
G_{m}(r)=\left\{G \in G L_{m}(\boldsymbol{Z}) \mid G \equiv 1_{m} \bmod r\right\}
$$

for a natural number r and then it is known that $G_{m}(r)$ is torsion-free for $r \geqq 3$.

Lemma 1. For $S^{\prime} \in \mathfrak{B G}(S, \nu)$ we have

$$
E\left(S^{\prime}, \nu\right) \#\left(\left\{H \in \mathfrak{P G}(S, \nu) \mid H \widetilde{\nu} S^{\prime}\right\} / \widetilde{\nu_{0}}\right)=\left[G_{m}(\nu): G_{m}(\nu)\right] .
$$

Proof. Considering the mapping $S^{\prime} \mapsto S^{\prime}[U]\left(U \in G_{m}(\nu)\right)$, we have

$$
\#\left(\left\{H \in \mathfrak{P G}(S, \nu) \mid H \widetilde{\nu} S^{\prime}\right\} / \widetilde{\nu_{0}}\right)=\#\left(O\left(S^{\prime}\right) \cap G_{m}(\nu) \backslash G_{m}(\nu) / G_{m}\left(\nu_{0}\right)\right),
$$

where $O\left(S^{\prime}\right)$ is $\left\{X \in G L_{m}(Z) \mid S^{\prime}[X]=S^{\prime}\right\}$ as usual. For $U \in G_{m}(\nu)$ the number of $G_{m}\left(\nu_{0}\right)$ cosets in the double coset $\left(O\left(S^{\prime}\right) \cap G_{m}(\nu)\right) U G_{m}\left(\nu_{0}\right)$:s equa. to $\#\left(O\left(S^{\prime}\right) \cap G_{m}(\nu) /\left\{V \in O\left(S^{\prime}\right) \cap G_{m}(\nu) \mid V U G_{m}\left(\nu_{0}\right)=U G_{m}\left(\nu_{0}\right)\right\}\right)=\#\left(O\left(S^{\prime}\right) \cap G_{m}(\nu)\right)=$ $E\left(S^{\prime}, \nu\right)$, noting that $V U G_{m}\left(\nu_{0}\right)=U G_{m}\left(\nu_{0}\right)$ implies $V \in G_{m}\left(\nu_{0}\right)$ and hence V $=1_{m}$ since V is of finite order and $\nu_{0} \geqq 3$. This completes the proof.

Lemma 2. For $S^{\prime} \in \mathfrak{B G}(S, \nu)$, we have

$$
A\left(S^{\prime}, T ; P, \nu\right) / E\left(S^{\prime}, \nu\right)=\left[G_{m}(\nu): G_{m}\left(\nu_{0}\right)\right]^{-1} \sum A(H, T ; P, \nu)
$$

where H runs over a complete set of equivalence classes

$$
\left\{H \in \mathfrak{P}\left(\mathscr{G}(S, \nu) \mid H \sim S^{\prime}\right\} / \widetilde{\nu_{0}} .\right.
$$

Proof. For $H=S^{\prime}[U], U \in G_{m}(\nu)$, we have

$$
\begin{aligned}
A(H, T ; P, \nu) & =\sharp\left\{X \in M_{m, n}(Z) \mid H[X]=T, X \equiv P \bmod \nu\right\} \\
& =\#\left\{X \in M_{m, n}(Z) \mid S^{\prime}[U X]=T, U X \equiv P \bmod \nu\right\} \\
& =A\left(S^{\prime}, T ; P, \nu\right)
\end{aligned}
$$

Hence Lemma 2 follows from Lemma 1.
Let $\left\{P_{j}\right\}$ be a complete set of representatives of $\left\{P^{\prime} \in M_{m, n}(Z) \mid P^{\prime} \equiv\right.$ $P \bmod \nu\} \bmod \nu_{0}$; then P_{j} can be chosen so that $\operatorname{rank} P_{j}=n$ and $P_{j}=$ $U_{j}\left(\begin{array}{cc}B_{j} & A_{j} \\ 0\end{array}\right)$ where $U_{j} \in G L_{m}(\boldsymbol{Z}), A_{j}, B_{j} \in M_{n, n}(\boldsymbol{Z})$ satisfies

$$
\left(\left|B_{j}\right|, \nu\right)=1 \quad \text { and } \quad \nu_{0} A_{j}^{-1} \in M_{n, n}(Z)
$$

We fix such P_{j}, A_{j} once and for all hereafter.
Lemma 3. Put $Q=P_{j}, A=A_{i}$. Then we have for $S^{\prime} \in \mathfrak{P G}(S, \nu)$

$$
A\left(S^{\prime}, T ; Q, \nu_{0}\right)=\sum_{G \in M_{m, n}(Z) / M_{m, n}(Z) A} A\left(S^{\prime}, T\left[A^{-1}\right] ;\left(Q+\nu_{0} G\right) A^{-1}, \nu_{0}\right) .
$$

Proof. Suppose $S^{\prime}[X]=T, X \equiv Q \bmod \nu_{0}$ for $X \in M_{m, n}(Z)$. For $F=$ $\nu_{0}^{-1}(X-Q) \in M_{m, n}(Z)$ we have $S^{\prime}\left[X A^{-1}\right]=T\left[A^{-1}\right]$ and

$$
X A^{-1}=Q A^{-1}+\nu_{0} F A^{-1} \in M_{m, n}(Z) .
$$

If, conversely $S^{\prime}[Y]=T\left[A^{-1}\right], Y \equiv\left(Q+\nu_{0} G\right) A^{-1} \bmod \nu_{0}$, then $S^{\prime}[Y A]=T$ and $Y A \equiv Q \bmod \nu_{0}$ hold.

Lemma 4. Let P_{j}, A_{3} be those as above. Then we have

$$
\begin{aligned}
A_{0}(S, T ; P, \nu)= & M\left(S, \nu_{0}\right) M(S, \nu)^{-1}\left[G_{m}(\nu): G_{m}\left(\nu_{0}\right)\right]^{-1} \varepsilon \delta_{\nu, m, n} \gamma_{m, n} \\
& \times|S|^{-n / 2}|T|^{\left({ }^{(m-n-1) / 2} \prod_{p \nmid \nu}\right.} \alpha_{p}(S, T ; P, \nu) \\
& \times \sum_{S_{i}}\left\{\sum_{P_{j}}{ }_{G \in M_{m, n}(Z) / M_{m, n}(Z) A_{j}}\left\|A_{j}\right\|^{n+1-m}\right. \\
& \left.\times \prod_{p \mid \nu} \alpha_{p}\left(S_{i}, T\left[A_{j}^{-1}\right] ;\left(P_{j}+\nu_{0} G\right) A_{j}^{-1}, \nu_{0}\right)\right\},
\end{aligned}
$$

where P_{j} runs over a complete set of representatives of $\left\{P^{\prime} \in M_{m, n}(Z) \mid P^{\prime} \equiv\right.$ $P \bmod \nu\} \bmod \nu_{0}$ given above and $\left\{S_{i}\right\}$ is given so that $\mathfrak{B}(S, \nu)=\coprod_{i} \mathfrak{\beta}\left(S_{i}, \nu_{0}\right)$ (disjoint union).

Proof. By definition we have

$$
\begin{aligned}
A_{0}(S, T ; P, \nu) & =M(S, \nu)^{-1} \sum_{\Re \in(, \nu) / \widetilde{\vartheta} S^{\prime}} A\left(S^{\prime}, T ; P, \nu\right) / E\left(S^{\prime}, \nu\right) \\
& =M(S, \nu)^{-1}\left[G_{m}(\nu): G_{m}(\nu)\right]^{-1} \sum_{\Re 囚(S, \nu) / \check{\nu} S^{\prime}} \sum A(H, T ; P, \nu),
\end{aligned}
$$

by Lemma 2, where H runs over $\left\{H \in \mathfrak{P}\left(\mathscr{S}(S, \nu) \mid H \widetilde{\nu} S^{\prime}\right\} / \widetilde{\nu_{0}}\right.$

$$
\begin{aligned}
& =M(S, \nu)^{-1}\left[G_{m}(\nu): G_{m}\left(\nu_{0}\right)\right]^{-1} \sum_{\circledast \otimes(S, \nu) / \nu_{0} \ni H} A(H, T ; P, \nu) \\
& =M(S, \nu)^{-1}\left[G_{m}(\nu): G_{m}\left(\nu_{0}\right)\right]^{-1} \sum_{S_{i}} \Re_{\Re\left(S\left(S_{i}, \nu_{0}\right) / \tilde{\sim}_{0} \ni H\right.} A(H, T ; P, \nu) \\
& =M(S, \nu)^{-1}\left[G_{m}(\nu): G_{m}\left(\nu_{0}\right)\right]^{-1} \sum_{P_{j}, S_{i}} \sum_{\mathfrak{B}\left(/\left(S_{i}, \nu_{0}\right) / \tilde{\nu}_{0} \ni H\right.} A\left(H, T ; P_{j}, \nu_{0}\right) \\
& =M(S, \nu)^{-1}\left[G_{m}(\nu): G_{m}\left(\nu_{0}\right)\right]^{-1} \sum_{P_{j}, S_{i}} \sum_{\mathfrak{P}\left(S_{i}, \nu_{0}\right) / \tilde{\nu}_{0} \ni H} \\
& \times \sum_{G \in M_{m, m}(Z) / M_{m, n}(Z) A_{j}} A\left(H, T\left[A_{j}^{-1}\right] ;\left(P_{j}+\nu_{0} G\right) A_{j}^{-1}, \nu_{0}\right),
\end{aligned}
$$

by Lemma 3.
For $H \in \mathfrak{P} \mathscr{G}(S, \nu)$ we have $M\left(H, \nu_{0}\right)^{-1}=A_{0}\left(H, H ; 1_{m}, \nu_{0}\right)=A_{0}\left(S, S ; 1_{m}, \nu_{0}\right)$
$=M\left(S, \nu_{0}\right)^{-1}$, noting that the definition implies the first and third equality and the second follows from $\alpha_{p}\left(H, H ; 1_{m}, \nu_{0}\right)=\alpha_{p}\left(S, S ; 1_{m}, \nu_{0}\right)$ in the proved case. If $T\left[A_{j}^{-1}\right]$ is integral, then $\left|A_{j}\right|^{2}$ divides $|T|$ and hence ν_{0} / ν is divided by $\left|A_{j}\right|$; then $\left(P_{j}+\nu_{0} G\right) A_{j}^{-1} \equiv P_{i} A_{j}^{-1} \bmod \nu . \quad$ By virtue of definition of A_{j}, $P_{j} A_{j}^{-1} \in M_{m, n}\left(Z_{p}\right)$ is primitive for $p \mid \nu$ and hence $\left(P_{j}+\nu_{0} G\right) A_{j}^{-1}$ is also primitive for $p \mid \nu$. Using Theorem which is proved for a primitive P for $p \mid \nu$, we have

$$
\begin{aligned}
& A_{0}(S, T ; P, \nu)=M\left(S, \nu_{0}\right) M(S, \nu)^{-1}\left[G_{m}(\nu): G_{m}\left(\nu_{0}\right)\right]^{-1} \varepsilon \delta_{\nu, m, n} \gamma_{m, n}|S|^{-n / 2} \\
& \quad \times|T|^{(m-n-1) / 2} \prod_{p \nmid \nu} \alpha_{p}(S, T ; P, \nu)\left\{\sum_{P_{j}, s_{i}} \sum_{G \in M_{m, n}(\boldsymbol{Z}) / M_{m, n}(\boldsymbol{Z}) A_{j}}\left\|A_{j}\right\|^{n+1-m}\right. \\
& \left.\quad \times \prod_{p \mid \nu} \alpha_{p}\left(S, T\left[A_{j}^{-1}\right] ;\left(P_{j}+\nu_{0} G\right) A_{j}^{-1}, \nu_{0}\right)\right\},
\end{aligned}
$$

since for $p \nmid \nu \alpha_{p}\left(S, T\left[A_{j}^{-1}\right] ;\left(P_{j}+\nu_{0} G\right) A_{j}^{-1}, \nu_{0}\right)=\alpha_{p}(S, T)=\alpha_{p}(S, T ; P, \nu)$.
Let q be a sufficiently large power of ν_{0} and put $\Lambda=\left\{F \in M_{n, n}(Z) \mid F\right.$ $\left.={ }^{t} F\right\}$.

Lemma 5. Put $Q=P_{j}, A=A$, and denote by $\mathscr{R}\left\{q R\left[A^{-1}\right] \mid R \in A\right\}$. Then the mapping $Y \mapsto Y A$ is bijective from

$$
\underset{R \in \boldsymbol{Q} / q A}{\amalg}\left\{\begin{array}{l|l}
Y \in M_{m, n}(\boldsymbol{Z} / q \boldsymbol{Z}) & \begin{array}{l}
S[Y] \equiv T\left[A^{-1}\right]+R \bmod q, \\
Y \equiv\left(Q+\nu_{0} G\right) A^{-1} \bmod \nu_{0} \\
\text { for some } G \in M_{m, n}(\boldsymbol{Z})
\end{array}
\end{array}\right\}
$$

to

$$
\left\{X \in M_{m, n}(Z) \bmod q M_{m, n}(\boldsymbol{Z}) A \mid S[X] \equiv T \bmod q, X \equiv Q \bmod \nu_{0}\right\}
$$

Proof. The mapping is clearly well-defined and injective. Suppose, conversely that $X \in M_{m, n}(Z)$ satisfies $S[X] \equiv T \bmod q$ and $X \equiv Q \bmod \nu_{0}$. Defining $G \in M_{m, n}(Z)$ by $X=Q+\nu_{0} G, X A^{-1}=Q A^{-1}+\nu_{0} G A^{-1}$ is integral. For $R=q^{-1}(S[X]-T) \in M_{n, n}(Z)$ and $Y=X A^{-1}$ we have $S[Y]=T\left[A^{-1}\right]$ $+q R\left[A^{-1}\right]$. This shows the surjectiveness of the mapping.

Lemma 6. Let V, W be regular quadratic spaces over \boldsymbol{Q}_{p} and M, N lattices on V, W respectively $(\operatorname{dim} V=\operatorname{rank} M, \operatorname{dim} W=\operatorname{rank} N)$. Let h be an integer such that

$$
p^{\hbar} Q(x) \in 2 Z_{p} \quad \text { for all } x \in M^{*}
$$

where $M^{\sharp}=\left\{x \in V \mid B(x, M) \subset \boldsymbol{Z}_{p}\right\}$. If $u \in \operatorname{Hom}(M, N)$ satisfies

$$
Q(x) \equiv Q(u(x)) \bmod 2 p^{h+1} Z_{p} \quad \text { for } x \in M
$$

then there is an isometry u^{\prime} from M to N such that

$$
\begin{aligned}
u^{\prime}(M) & =u(M) \\
u^{\prime}(x) & \equiv u(x) \bmod p^{n+1} u\left(M^{*}\right) \quad \text { for } x \in M
\end{aligned}
$$

Especially we have $u^{\prime}: M \cong u(M)$.
Proof. Since for $y, z \in M^{\#} 2 B(y, z)=Q(y+z)-Q(y)-Q(z) \in 2 p^{-h} Z_{p}$ holds, we have $B\left(p^{h} y, z\right) \in Z_{p}$ and hence $p^{h} M^{\#} \subset\left(M^{*}\right)^{\#}=M$. Next we claim that for $G=u\left(M^{*}\right)$ the three conditions

$$
\begin{aligned}
& \operatorname{Hom}\left(M, Z_{p}\right)=\{x \mapsto B(u(x), w) \mid w \in G\}+\operatorname{Hom}\left(M, p Z_{p}\right), \\
& p^{h} Q(x) \in 2 Z_{p} \quad \text { for } x \in G, \\
& Q(u(x)) \equiv Q(x) \bmod 2 p^{n+1} Z_{p} \quad \text { for } x \in M
\end{aligned}
$$

are satisfied. Let φ be an element of $\operatorname{Hom}\left(M, Z_{p}\right)$; then there is $z \in M^{\#}$ such that $\varphi(x)=B(x, z)$ for $x \in M$. For $x \in M$ we have

$$
p^{h} \varphi(x)=B\left(x, p^{h} z\right) \equiv B\left(u(x), p^{h} u(z)\right) \bmod p^{h+1} Z_{p},
$$

since $p^{h} z \in M$. Thus $x \mapsto \varphi(x)-B(u(x), u(z))$ is in $\operatorname{Hom}\left(M, p \boldsymbol{Z}_{p}\right)$ and the first condition holds. For $x \in M^{*}$ we have

$$
Q\left(p^{h} x\right) \equiv Q\left(p^{h} u(x)\right) \bmod 2 p^{h+1} Z_{p}
$$

and then $p^{n} Q(x) \equiv p^{n} Q(u(x)) \bmod 2 p Z_{p}$. From the assumption $p^{h} Q(x) \in 2 \boldsymbol{Z}_{p}$ holds and hence $p^{h} Q(u(x)) \in 2 Z_{p}$ holds. Thus the second condition holds. The third one is nothing but the assumption. "Satz" in Section 14 in [5] completes the proof.

Lemma 7. For $Q=P_{j}$ and $A=A_{j}$ we have
$\#\left\{X \bmod q \mid S[X] \equiv T \bmod q, X \equiv Q \bmod \nu_{0}\right\}$

$$
=\|A\|^{n+1-m} \sum_{G \in M_{m, n}(Z) / M_{m, n}(Z) A} \#\left\{\begin{array}{l|l}
Y \bmod q & \begin{array}{l}
S[Y] \equiv T\left[A^{-1}\right] \bmod q \\
Y \equiv\left(Q+\nu_{0} G\right) A^{-1} \bmod \nu_{0}
\end{array}
\end{array}\right\} .
$$

Proof. By Lemma 5 we have

$$
\begin{aligned}
& \#\left\{X \bmod q \mid S[X] \equiv T \bmod q, X \equiv Q \bmod \nu_{0}\right\} \\
& \quad=\|A\|^{-m} \#\left\{X \in M_{m, n}(Z) / q M_{m, n}(Z) A \mid S[X] \equiv T \bmod q, X \equiv Q \bmod \nu_{0}\right\} \\
& \quad=\|A\|^{-m} \sum_{R \in a / q 4} \#\left\{Y \bmod q \left\lvert\, \begin{array}{l}
S[Y] \equiv T\left[A^{-1}\right]+R \bmod q \\
Y \equiv\left(Q+\nu_{0} G\right) A^{-1} \bmod \nu_{0} \\
\text { for some } G \in M_{m, n}(Z)
\end{array}\right.\right\} .
\end{aligned}
$$

Here for a prime $\left.p\right|_{\nu}$ we define quadratic lattices $M=Z_{p}\left[v_{1}, \cdots, v_{n}\right]$ and
$N=Z_{p}\left[u_{1}, \cdots, u_{n}\right]$ by $\left(B\left(v_{i}, v_{j}\right)\right)=T\left[A^{-1}\right],\left(B\left(u_{i}, u_{j}\right)\right)=T\left[A^{-1}\right]+R(R \in \mathscr{R})$ respectively. Define a linear mapping $u \in \operatorname{Hom}(M, N)$ by $u\left(v_{i}\right)=u_{i}$; then $Q(u(x)) \equiv Q(x) \bmod q \nu_{0}^{-2}$ holds for $x \in M$ since $R \equiv 0 \bmod q \nu_{0}^{-2}$. From Lemma 6 follows that there is an isometry u^{\prime} from M to N such that

$$
u^{\prime}(x) \equiv u(x) \bmod 2^{-1} q \nu_{0}^{-2} u\left(M^{*}\right) \quad \text { for } x \in M
$$

If, hence we define $D_{p} \in G L_{n}\left(\boldsymbol{Z}_{p}\right)$ by

$$
\left(u^{\prime}\left(v_{1}\right), \cdots, u^{\prime}\left(v_{n}\right)\right)=\left(u_{1}, \cdots, u_{n}\right) D_{p},
$$

then $T\left[A^{-1}\right]=\left(T\left[A^{-1}\right]+R\right)\left[D_{p}\right]$ and $D_{p} \equiv 1_{n} \bmod \nu_{0} Z_{p}$ since q is sufficiently large. Taking $D \in M_{n}(Z)$ which is close to D_{p} for $p \mid \nu$ and considering the mapping $Y \mapsto Y D$, we have

$$
\begin{aligned}
& \#\left\{X \bmod q \mid S[X] \equiv T \bmod q, X \equiv Q \bmod \nu_{0}\right\} \\
& =\|A\|^{-m} \sum_{R \in \mathscr{A} / q .1} \sharp\left\{\begin{array}{ll}
Y[Y] \equiv T\left[A^{-1}\right] \bmod q \\
Y \bmod q & Y\left(Q+\nu_{0} G\right) A^{-1} \bmod \nu_{0} \\
\text { for some } G \in M_{n, n}(Z)
\end{array}\right\} .
\end{aligned}
$$

Since $\#(\mathscr{R} / q \Lambda)=\|A\|^{n+1}$, we complete the proof.
Now we can prove the theorem. Since

$$
\begin{aligned}
& \#\{X \bmod q \mid S[X] \equiv T \bmod q, X \equiv P \bmod \nu\} \\
& \quad=\sum_{P_{j}} \sharp\left\{X \bmod q \mid S[X] \equiv T \bmod q, X \equiv P_{j} \bmod \nu_{0}\right\},
\end{aligned}
$$

Lemma 7 implies

$$
\begin{aligned}
& \prod_{p!\nu} \alpha_{p}(S, T ; P, \nu) \\
& \quad=\sum_{P_{j} G \in M_{m, n}} \sum_{Z / M / M_{m, n}(Z) A_{j}}\left\|A_{j}\right\|^{n+1-m} \prod_{p_{1 \nu}} \alpha_{p}\left(S, T\left[A_{j}^{-1}\right] ;\left(P_{j}+\nu_{0} G\right) A_{j}^{-1}, \nu_{0}\right)
\end{aligned}
$$

and then from Lemma 4 follows

$$
\begin{aligned}
A_{0}(S, T ; P, \nu)= & M\left(S, \nu_{0}\right) M(S, \nu)^{-1}\left[G_{m}(\nu): G_{m}\left(\nu_{0}\right)\right]^{-1} \varepsilon \delta_{\nu, m, n} \gamma_{m, n} \\
& \times|S|^{-n / 2}|T|^{(m-n-1) / 2} \sum_{S_{i}} \prod_{p} \alpha_{p}\left(S_{i}, T ; P, \nu\right) .
\end{aligned}
$$

Since $S_{i} \in \mathfrak{B G}(S, \nu)$ implies $\alpha_{p}\left(S_{i}, T ; P, \nu\right)=\alpha_{p}(S, T ; P, \nu)$, we have

$$
A_{0}(S, T ; P, \nu)=c \varepsilon \delta_{\nu, m, n} \gamma_{m, n}|S|^{-n / 2}|T|^{(m-n-1) / 2} \prod_{p} \alpha_{p}(S, T ; P, \nu)
$$

where $c=M\left(S, \nu_{0}\right) M(S, \nu)^{-1}\left[G_{m}(\nu): G_{m}\left(\nu_{0}\right)\right]^{-1} \sharp\left\{S_{i}\right\}$. Hence c depends only on S for a sufficiently large power of ν. Since Theorem holds for $c=1$ in case $T=S$, we have $c=1$ and complete the proof of Theorem.
§ 2.
Let $S \in M_{m, m}(Z)$ be a symmetric positive definite matrix whose diagonals are even integers and q the level of S, that is, $q S^{-1}$ is also integral and diagonal entries of $q S^{-1}$ are even.

Let P be an element of $M_{m, n}(\boldsymbol{Z})$ and ν a natural number. For $Z=$ ${ }^{t} Z \in M_{n}(C)$ with $\operatorname{Im} Z>0$, we put

$$
\theta(Z, S, P, \nu)=\sum_{N=-P \bmod \nu} \exp (\pi i \operatorname{tr}(Z \cdot S[N])),
$$

where N runs over $\left\{N \in M_{m, n}(Z) \mid N \equiv-P \bmod \nu\right\}$, and

$$
\begin{aligned}
& \theta_{S}^{(n)}(Z ; X, Y) \\
& \quad=\sum_{N \in M M_{m, n}(Z)} \exp \left(\pi i \operatorname{tr}\left(Z \cdot S[N-Y]+2 \pi i \operatorname{tr}\left({ }^{t} N X\right)-\pi i \operatorname{tr}\left({ }^{t} X Y\right)\right)\right.
\end{aligned}
$$

It is easy to see $\theta(Z, S, P, \nu)=\theta_{S}^{(n)}\left(\nu^{2} Z ; 0, \nu^{-1} P\right)$, and the following lemma is nothing but Theorem 1 in [1].

Lemma 1. Let $\Gamma_{0}^{(n)}(q)=\left\{\left.M=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right) \in S p_{n}(\boldsymbol{Z}) \right\rvert\, C \equiv 0 \bmod q\right\} . \quad$ Then for any matrix $M=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right)$ in $\Gamma_{0}^{(n)}(q)$ the generalized theta series satisfies

$$
\begin{aligned}
&|C Z+D|^{-m / 2} \theta_{S}^{(n)}\left(M\langle Z\rangle ; X^{t} A+S Y^{t} B, S^{-1} X^{t} C+Y^{t} D\right) \\
&=\chi_{S}^{(n)}(M) \theta_{S}^{(n)}(Z ; X, Y)
\end{aligned}
$$

where $\chi_{S}^{(n)}(M)$ is some eighth root of unity not depending on X or Y.
For $M=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right) \in S p_{n}(Z)$ with $C \equiv 0 \bmod q \nu^{2}, D \equiv 1_{n} \bmod \nu$ we put $M^{\prime}=\left(\begin{array}{cc}A & B \nu^{2} \\ C \nu^{-2} & D\end{array}\right)$. Then we have $M^{\prime} \in \Gamma_{0}^{(n)}(q)$ and putting $X=0, Y=\nu^{-1} P$ and $Z \rightarrow \nu^{2} Z$ in the lemma we have

$$
\begin{aligned}
\mid C Z & +\left.D\right|^{-m / 2} \theta_{S}^{(n)}\left(\nu^{2} M\langle Z\rangle ; \nu S P^{t} B, \nu^{-1} P^{t} D\right) \\
& =\chi_{S}^{(n)}\left(M^{\prime}\right) \theta_{S}^{(n)}\left(\nu^{2} Z ; 0, \nu^{-1} P\right) \\
& =\chi_{S}^{(n)}\left(M^{\prime}\right) \theta(Z, S, P, \nu)
\end{aligned}
$$

Since $\nu S P^{t} B$ is integral and $\operatorname{tr}^{t}\left(\nu S P^{t} B\right) \nu^{-1} P^{t} D=\operatorname{tr} B^{t} P S P^{t} D=\operatorname{tr}(S[P]$. $\left.{ }^{t} D B\right) \equiv 0 \bmod 2$, we have

$$
\theta_{S}^{(n)}\left(\nu^{2} M\langle Z\rangle ; \nu S P^{t} B, \nu^{-1} P^{t} D\right)=\theta_{S}^{(n)}\left(\nu^{2} M\langle Z\rangle ; 0, \nu^{-1} P\right)=\theta(M\langle Z\rangle, S, P, \nu)
$$

Thus we have proved

Lemma 2. For $M=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right) \in S p_{n}(Z)$ with $M \equiv 1_{2 n} \bmod q \nu^{2}$ we have

$$
|C Z+D|^{-m / 2} \theta(M\langle Z\rangle, S, P, \nu)=\chi(M) \theta(Z, S, P, \nu),
$$

where $\chi(M)$ is some eighth root of unity not depending on P.
Next we prove
Lemma 3. Let $S^{\prime} \in \mathfrak{B G}(S, \nu)$ in the sense of Section 1. Then for $M=$ $\left(\begin{array}{ll}A & B \\ C & D\end{array}\right) \in S p_{n}(Z)$ the constant term of the Fourier expansion of

$$
|C Z+D|^{-m / 2}\left(\theta(M\langle Z\rangle, S, P, \nu)-\theta\left(M\langle Z\rangle, S^{\prime}, P, \nu\right)\right)
$$

vanishes.
Proof. For $M=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right) \in S p_{n}(Z)$ we put

$$
\theta(Z, S, P, \nu)\left|\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)=|C Z+D|^{-m / 2} \theta(M\langle Z\rangle, S, P, \nu)\right.
$$

First suppose $|C| \neq 0$; then noting $M\langle Z\rangle=(A Z+B)(C Z+D)^{-1}=A C^{-1}$ $-\left(Z+C^{-1} D\right)^{-1}\left[C^{-1}\right]$, we have

$$
\begin{aligned}
\theta(Z, S, & P, \nu) \left\lvert\,\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)\right. \\
= & |C Z+D|^{-m / 2} \theta S_{S}^{(n)}\left(\nu^{2} M\langle Z\rangle ; 0, \nu^{-1} P\right) \\
= & |C Z+D|^{-m / 2} \theta_{S}^{(n)}\left(\nu^{2} A C^{-1}-\nu^{2}\left(Z+C^{-1} D\right)^{-1}\left[C^{-1}\right] ; 0, \nu^{-1} P\right) \\
= & |C Z+D|^{-m / 2} \sum_{N \in \sum_{m, n}(Z)} \exp \left(\pi i \operatorname{tr}\left(\nu^{2} A C^{-1}-\nu^{2}\left(Z+C^{-1} D\right)^{-1}\left[C^{-1}\right]\right)\right. \\
& \left.\times S\left[N-\nu^{-1} P\right]\right) .
\end{aligned}
$$

Decomposing N as $N=N_{1}+|C| N_{2}$, we have

$$
\operatorname{tr}\left(\nu^{2} A C^{-1} \cdot S\left[N-\nu^{-1} P\right]\right) \equiv \operatorname{tr}\left(A C^{-1} \cdot S\left[\nu N_{1}-P\right]\right) \bmod 2 .
$$

Thus $\theta(Z, S, P, \nu) \left\lvert\,\left(\begin{array}{ll}A & B \\ C & D\end{array}\right)\right.$ is equal to

$$
\begin{aligned}
\mid C Z+ & \left.D\right|^{-m / 2} \sum_{N_{1} \bmod |C|} \exp \left(\pi i \operatorname{tr}\left(A C^{-1} \cdot S\left[\nu N_{1}-P\right]\right)\right) \\
& \left.\times \sum_{N_{2} \in \sum_{M, n}(Z)} \exp \left(-\pi i \operatorname{tr}\left(\left(Z+C^{-1} D\right)^{-1}\left[C^{-1}\right]\right) \cdot S\left[\nu N_{1}+\nu|C| N_{2}-P\right]\right)\right) \\
= & |C Z+D|^{-m / 2} \sum_{N_{1} \bmod |C|} \exp \left(\pi i \operatorname{tr}\left(A C^{-1} \cdot S\left[\nu N_{1}-P\right]\right)\right. \\
& \times \theta_{S}^{(n)}\left(-\nu^{2}|C|^{2}\left(Z+C^{-1} D\right)^{-1}\left[C^{-1}\right] ; 0, \nu^{-1}|C|^{-1} P-|C|^{-1} N_{1}\right) \\
= & |C Z+D|^{-m / 2} \sum_{N_{1} \bmod |C|} \exp \left(\pi i \operatorname{tr} A C^{-1} \cdot S\left[\nu N_{1}-P\right]\right)
\end{aligned}
$$

$$
\begin{aligned}
& \times\left.\left.|S|^{-n / 2}\left|i \nu^{2}\right| C\right|^{2}\left(Z+C^{-1} D\right)^{-1}\left[C^{-1}\right]\right|^{-m / 2} \theta_{S-1}^{(n)}\left(\nu^{-2}|C|^{-2}\left(Z+C^{-1} D\right)\left[{ }^{t} C\right]\right. \\
& \left.\nu^{-1}|C|^{-1} P-|C|^{-1} N_{1}, 0\right)
\end{aligned}
$$

by Lemma 2 in [1]. Here

$$
\left.\left.|C Z+D|^{-m / 2}\left|i \nu^{2}\right| C\right|^{2}\left(Z+C^{-1} D\right)^{-1}\left[C^{-1}\right]\right|^{-m / 2}
$$

is a constant $\kappa(M)$ depending only on M. Hence the constant term of $\theta(Z, S, P, \nu) \mid M$ is equal to

$$
\kappa(M)|S|^{-n / 2} \sum_{N_{1} \bmod |C|} \exp \left(\pi i \operatorname{tr} A C^{-1} \cdot S\left[\nu N_{1}-P\right]\right)
$$

Since $S^{\prime} \in \mathfrak{P}(5)(S, \nu)$, we have $\left|S^{\prime}\right|=|S|$ and there is some $U \in M_{m}(Z)$ such that $(|U|, \nu|C|)=1, S \equiv S^{\prime}[U] \bmod 2|C|$ and $U \equiv 1 \bmod \nu$. Hence it is clear that the constant term of $\theta(Z, S, P, \nu) \mid M$ depends only on $\mathfrak{B} \mathscr{S}(S, \nu)$.

If the determinant of the C-part of M vanishes, then there is an integral symmetric matrix F such that $M=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right)\left(\begin{array}{cc}0 & 1 \\ -1 & F\end{array}\right)$ with $|C| \neq 0$. Putting $M^{\prime}=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right)$, from the above follows

$$
\begin{aligned}
& \theta(Z, S, P, \nu) \mid M^{\prime} \\
& =\kappa\left(M^{\prime}\right)|S|^{-n / 2} \sum_{N_{1} \bmod |C|} \exp \left(\pi i \operatorname{tr} A C^{-1} \cdot S\left[\nu N_{1}-P\right]\right) \\
& \quad \times \theta_{S^{-1}\left(\nu^{-2}|C|^{-2}\left(Z+C^{-1} D\right)\left[{ }^{t} C\right] ; \nu^{-1}|C|^{-1} P-|C|^{-1} N_{1}, 0\right) .} .
\end{aligned}
$$

Hence we have

$$
\begin{aligned}
& \theta(Z, S, P, \nu) \mid M \\
& =\kappa\left(M^{\prime}\right)|S|^{-n / 2} \sum_{N \bmod |C|} \exp \left(\pi i \operatorname{tr} A C^{-1} \cdot S[\nu N-P]\right) \\
& \left.\quad \times \theta_{S^{-1}}^{(n)}\left(\nu^{-2}|C|^{-2}\left(Z+C^{-1} D\right)\left[{ }^{t} C\right] ; \nu^{-1}|C|^{-1} P-|C|^{-1} N, 0\right) \left\lvert\, \begin{array}{cc}
0 & 1 \\
-1 & F
\end{array}\right.\right) .
\end{aligned}
$$

Here we don't care for the choice of the branch of $|*|^{-m / 2}$ since it is independent of S.

$$
\theta_{S}^{(n)-1}\left(\nu^{-2}|C|^{-2}\left(Z+C^{-1} D\right)\left[{ }^{t} C\right] ; \nu^{-1}|C|^{-1} P-|C|^{-1} N, 0\right)\left(\begin{array}{cc}
0 & 1 \\
-1 & F
\end{array}\right)
$$

is equal to

$$
\begin{aligned}
\mid-Z+ & \left.F\right|^{-m / 2} \theta_{S}^{(n)-1}\left(\nu^{-2}|C|^{-2}\left((-Z+F)^{-1}+C^{-1} D\right)\left[^{t} C\right] ; \nu^{-1}|C|^{-1} P-|C|^{-1} N, 0\right) \\
= & |-Z+F|^{-m / 2} \sum_{G \in M_{m, n}(Z)} \exp \left(\pi i \operatorname { t r } \left(\nu^{-2}|C|^{-2}\left((-Z+F)^{-1}+C^{-1} D\right)\left[^{t} C\right]\right.\right. \\
& \left.\left.\times S^{-1}[G]\right)+2 \pi i \operatorname{tr}{ }^{t} G\left(\nu^{-1}|C|^{-1} P-|C|^{-1} N\right)\right) .
\end{aligned}
$$

Putting $G=q \nu^{2}|C|^{2} G_{1}+G_{2}$, we have

$$
\begin{aligned}
& \operatorname{tr}\left(\nu^{-2}|C|^{-2}\left((-Z+F)^{-1}+C^{-1} D\right)\left[{ }^{t} C\right] \cdot S^{-1}[G]+2 \operatorname{tr}{ }^{t} G\left(\nu^{-1}|C|^{-1} P-|C|^{-1} N\right)\right. \\
& \quad \equiv \operatorname{tr}\left(\nu^{-2}|C|^{-2}(-Z+F)^{-1}\left[{ }^{t} C\right] \cdot S^{-1}\left[q \nu^{2}|C|^{2} G_{1}+G_{2}\right]\right. \\
& \left.\quad+\nu^{-2}|C|^{-2} D^{t} C \cdot S^{-1}\left[G_{2}\right]\right)+2 \operatorname{tr} \operatorname{tr}^{t} G_{2}\left(\nu^{-1}|C|^{-1} P-|C|^{-1} N\right) \bmod 2 .
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \theta_{S^{-1}}^{(n)}\left(\nu^{-2}|C|^{-2}\left(Z+C^{-1} D\right)\left[{ }^{t} C\right] ; \nu^{-1}|C|^{-1} P-|C|^{-1} N, 0\right) \left\lvert\,\left(\begin{array}{cc}
0 & 1 \\
-1 & F
\end{array}\right)\right. \\
& =|-Z+F|^{-m / 2} \sum_{G_{2} \bmod q^{2}|C|^{2}} \exp \left(\pi i \nu^{-2}|C|^{-2} \operatorname{tr} D^{t} C \cdot S^{-1}\left[G_{2}\right]\right. \\
& \left.+2 \pi i \operatorname{tr}{ }^{t} G_{2}\left(\nu^{-1}|C|^{-1} P-|C|^{-1} N\right)\right) \\
& \times \sum_{G_{1}} \exp \left(\pi i q^{2} \nu^{2}|C|^{2} \operatorname{tr}(-Z+F)^{-1}\left[{ }^{t} C\right] S^{-1}\left[G_{1}+q^{-1} \nu^{-2}|C|^{-2} G_{2}\right]\right) \\
& =|-Z+F|^{-m / 2} \sum_{G_{2} \bmod q v^{2}|C|^{2}} \exp \left(\pi i \nu^{-2}|C|^{-2} \operatorname{tr} D^{t} C \cdot S^{-1}\left[G_{2}\right]\right. \\
& \left.+2 \pi i \operatorname{tr}{ }^{t} G_{2}\left(\nu^{-1}|C|^{-1} P-|C|^{-1} N\right)\right) \\
& \times \theta_{S^{-1}}^{(n)}\left(q^{2} \nu^{2}|C|^{2}(-Z+F)^{-1}\left[^{t} C\right] ; 0,-q^{-1} \nu^{-2}|C|^{-2} G_{2}\right) \\
& =|-Z+F|^{-m / 2} \sum_{G \text { mod } q \nu^{2}|C|^{2}} \exp \left(\pi i \nu^{-2}|C|^{-2} \operatorname{tr} D^{t} C \cdot S^{-1}[G]\right. \\
& \left.+2 \pi i \operatorname{tr}{ }^{t} G\left(\nu^{-1}|C|^{-1} P-|C|^{-1} N\right)\right)\left|S^{-1}\right|^{-n / 2} \\
& \times\left.\left.\left|-i q^{2} \nu^{2}\right| C\right|^{2}(-Z+F)^{-1}\left[{ }^{t} C\right]\right|^{-m / 2} \\
& \times \theta_{S}^{(n)}\left(-q^{-2} \nu^{-2}|C|^{-2}(-Z+F)\left[C^{-1}\right] ;-q^{-1} \nu^{-2}|C|^{-2} G, 0\right),
\end{aligned}
$$

where $\left.\left.|-Z+F|^{-m / 2}\left|-i q^{2} \nu^{2}\right| C\right|^{2}(-Z+F)^{-1}\left[{ }^{t} C\right]\right|^{-m / 2}$ is independent of Z and denoting it by $\kappa^{\prime}(M)$

$$
\begin{aligned}
= & \kappa^{\prime}(M)|S|^{n / 2} \sum_{G \bmod q q^{2}|C|^{2}} \exp \left(\pi i \nu^{-2}|C|^{-2} \operatorname{tr} D^{t} C \cdot S^{-1}[G]\right. \\
& \left.+2 \pi i \operatorname{tr}{ }^{\iota} G\left(\nu^{-1}|C|^{-1} P-|C|^{-1} N\right)\right) \\
& \times \theta_{S}^{(n)}\left(q^{-2} \nu^{-2}|C|^{-2}(Z-F)\left[C^{-1}\right] ;-q^{-1} \nu^{-2}|C|^{-2} G, 0\right) .
\end{aligned}
$$

Thus the constant term of $\theta(Z, S, P, \nu) \mid M$ is

$$
\begin{aligned}
& \kappa\left(M^{\prime}\right)|S|^{-n / 2} \sum_{N \text { mod }|C|} \exp \left(\pi i \operatorname{tr} A C^{-1} \cdot S[\nu N-P]\right. \\
& \times \kappa^{\prime}(M)|S|_{G \bmod /\left.q^{2}|C|\right|^{2}} \exp \left(\pi i \nu^{-2}|C|^{-2} \operatorname{tr} D^{t} C \cdot S^{-1}[G]\right. \\
& \left.+2 \pi i \operatorname{tr}^{t} G\left(\nu^{-1}|C|^{-1} P-|C|^{-1} N\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left.+\pi i \nu^{-2}|C|^{-2} \operatorname{tr} D^{t} C \cdot S^{-1}[G]-2 \pi i \nu^{-1}|C|^{-1} \operatorname{tr}{ }^{t} G N\right) .
\end{aligned}
$$

Since $S^{\prime} \in \mathfrak{B}\left(\mathscr{G}(S, \nu)\right.$, there is some $U \in M_{m}(Z)$ such that

$$
\begin{aligned}
& S \equiv S^{\prime}[U] \bmod 2 q \nu^{2}|C|^{2}|S|^{2} \\
& (|U|, 2 q \nu|C||S|)=1 \\
& U \equiv 1 \bmod \nu
\end{aligned}
$$

Taking an integral matrix V such that $U V \equiv 1 \bmod 2 q \nu^{2}|C|^{2}|S|^{2}$ and multiplying integral matrices $|S| S^{-1},|S| V S^{\prime-1}$ to $S \equiv{ }^{t} U S^{\prime} U \bmod 2 q \nu^{2}|C|^{2}|S|^{2}$ from the left, the right respectively, we have

$$
|S|^{2} V S^{\prime-1} \equiv|S|^{2} S^{-1 t} U \bmod 2 q \nu^{2}|C|^{2}|S|^{2}
$$

and hence we have

$$
S^{-1} \equiv S^{\prime-1}\left[{ }^{t} V\right] \bmod 2 q \nu^{2}|C|^{2}
$$

Hence the above constant term is

$$
\begin{aligned}
& \left.+\pi i \nu^{-2}|C|^{-2} \operatorname{tr} D^{t} C \cdot S^{\prime-1}\left[{ }^{t} V G\right]-2 \pi i \nu^{-1}|C|^{-1} \operatorname{tr}^{t}\left({ }^{t} V G\right)(U N)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left.+\pi i \nu^{-2}|C|^{-2} \operatorname{tr} D^{t} C \cdot S^{\prime-1}[G]-2 \pi i \nu^{-1}|C|^{-1} \operatorname{tr}^{t} G N\right) .
\end{aligned}
$$

Thus we have proved Lemma 3.
Put $E(Z, S, P, \nu)=M(S, \nu)^{-1} \sum_{s^{\prime} \in \mathfrak{P}(S, \nu) / \tau} E\left(S^{\prime}, \nu\right)^{-1} \theta\left(Z, S^{\prime}, P, \nu\right)$. Then $g(Z)=\theta(Z, S, P, \nu)-E(Z, S, P, \nu)$ is a Siegel modular form of level $q \nu^{2}$, weight $m / 2$ such that the constant term of $g \mid M$ vanishes for every M in $S p_{n}(\boldsymbol{Z})$.

The Fourier coefficient of $E(Z, S, P, \nu)$ is

$$
A_{0}(S, T ;-P, \nu) \quad \text { for } T>0
$$

and for Fourier coefficients $a(T)$ of $g(Z)$ we have ([3] or [4])

$$
a(T)=O\left((\min T)^{(3-m / 2) / 2}|T|^{(m-3) / 2}\right) \quad \text { for } T>0
$$

if $n=2$ and $m \geqq 2 n+3$.
Clearly we have, for every integral positive definite matrix T

$$
A(S, T ;-P, \nu)=A_{0}(S, T ;-P, \nu)+a(T) .
$$

§ 3.
Let p be a prime and fix an integer a.
Let $S \in M_{m, m}\left(\boldsymbol{Z}_{p}\right), T \in M_{n, n}\left(\boldsymbol{Z}_{p}\right)$ be regular symmetric matrices with $m \geqq$ $2 n+3$ respectively and $P \in M_{m, n}\left(\boldsymbol{Z}_{p}\right)$. An aim in this section is to prove

Proposition. There is a positive number $\kappa(S, P, a)$ such that $\alpha_{p}(S$, $\left.T ; P, p^{a}\right)>\kappa(S, P, a)$ if $\alpha_{p}\left(S, T ; P, p^{a}\right) \neq 0$.

We need several lemmas.
Lemma 1. Let M be a regular quadratic lattice over \boldsymbol{Z}_{p} with $\mathrm{rk} M=m$ and N a submodule of M with $\mathrm{rk} N=n$. If $m \geqq 2 n$, then there is a constant $\kappa(M)$ independent of N such that there is a regular submodule $\tilde{N} \supset N$ of M with $\operatorname{rk} \tilde{N}=2 n$ and $\operatorname{ord}_{p} d \tilde{N} \leqq \kappa(M)$.

Proof. We use the induction on n. We may suppose that $B(x, y) \in \boldsymbol{Z}_{p}$ for all $x, y \in M$ without loss of generality. Suppose that $n=1$ and $M \cap$ $\boldsymbol{Q}_{p} N=\boldsymbol{Z}_{p} v$. Suppose $B(v, M)=B(v, w) \boldsymbol{Z}_{p}=p^{k} \boldsymbol{Z}_{p}$ for $w \in M$; then p^{k} divides $d M$ since v is primitive. If $p^{2 k+1} \mid Q(v)$, then we put $\tilde{N}=Z_{p}[v, w]$. It is clear that $\operatorname{ord}_{p} d \tilde{N}=2 k \leqq 2 \operatorname{ord}_{p} d M$. If $p^{2 k+1} \nmid Q(v)$, then we consider a set

$$
S=\left\{\boldsymbol{Z}_{p} v^{\prime} \subset M \mid \operatorname{ord}_{p} Q\left(v^{\prime}\right) \leqq 2 \operatorname{ord}_{p} d M\right\} \quad\left(\ni \boldsymbol{Z}_{p} v\right)
$$

We can take a finite set $\left\{\boldsymbol{Z}_{p} u_{i}\right\} \subset S$ such that $S=\bigcup_{i} O(M) \boldsymbol{Z}_{p} u_{i}$. For each u_{i} we take $w_{i} \in u_{i}^{\perp}$ such that $\operatorname{ord}_{p} Q\left(w_{i}\right)=\min _{w \in u_{i}^{\perp}} \operatorname{ord}_{p} Q(w)$, and put N_{i} $=Z_{p}\left[u_{i}, w_{i}\right]$. Then for v there is $w \in M$ such that $\tilde{N}=Z_{p}[v, w]$ is regular and $\operatorname{ord}_{p} d \tilde{N} \leqq \max _{i} \operatorname{ord}_{p} d N_{i}$. Thus we can take max $\left(2 \operatorname{ord}_{p} d M, \max _{i} \operatorname{ord}_{p}\right.$ $\left.d N_{i}\right)$ as $\kappa(M)$ for $n=1$. Let $N=Z_{p}\left[v_{1}, \cdots, v_{n}\right]$ be a submodule of M and $2 n \leqq m$. Take $N_{1} \subset M$ such that $N_{1} \ni v_{1}, \operatorname{ord}_{p} d N_{1} \leqq \kappa_{1}(M)$ and rank $N_{1}=2$, where $\kappa_{1}(M)$ is a constant depending only on M. Consider a set

$$
S^{\prime}=\left\{N^{\prime} \subset M \mid \operatorname{rank} N^{\prime}=2, \operatorname{ord}_{p} d N^{\prime} \leqq \kappa_{1}(M)\right\} \ni N_{1}
$$

Since we can take a finite number of binary submodules N_{i}^{\prime} of M such that $S^{\prime}=\bigcup_{i} O(M) N_{i}^{\prime}$, the set $\left\{N^{\prime \perp} \mid N^{\prime} \in S^{\prime}\right\}$ is a finite set up to $O(M)$ and it depends only on M. Decompose [$\left.M: N_{1} \perp N_{1}^{\perp}\right] v_{i}$ as $\left[M: N_{1} \perp N_{1}^{\perp}\right] v_{i}=$ $x_{i}+y_{i}, x_{i} \in N_{1}, y_{i} \in N_{1}^{\perp}$. Since $\operatorname{rank} N_{\mathrm{⿺}}^{\perp}=m-2$ and $\operatorname{dim} \boldsymbol{Q}_{p}\left[y_{2}, \cdots, y_{n}\right] \leqq$ $n-1 \leqq(m-2) / 2$, applying the assumption of the induction, there is a submodule $N_{2} \subset N_{1}^{\perp}$ such that rank $N_{2}=2(n-1), N_{2} \ni y_{i}(i=2, \cdots, n)$ and $\operatorname{ord}_{p} d N_{2} \leqq \kappa\left(N_{1}^{\perp}\right) \leqq \max _{N^{\prime} \in S^{\prime}} \kappa\left(N^{\prime \perp}\right)\left(=\kappa_{2}(M)\right.$ say $)$. Put $N^{\prime}=N_{1} \perp N_{2}$; then
$\operatorname{rank} N^{\prime}=2 n$ and $\operatorname{ord}_{p} d N^{\prime} \leqq \kappa_{1}(M)+\kappa_{2}(M)$. Since $N^{\prime} \ni v_{1},\left[M: N_{1} \perp N_{1}^{\perp}\right] v_{i}$ $(i \geqq 2), \tilde{N}=M \cap \boldsymbol{Q}_{p} N^{\prime}$ contains N, rank $\tilde{N}=2 n$ and $\operatorname{ord}_{p} d \tilde{N} \leqq \operatorname{ord}_{p} d N^{\prime} \leqq$ $\kappa_{1}(M)+\kappa_{2}(M)$. Thus we have completed the proof.

Lemma 2. Let M be a regular quadratic lattice over Z_{p} with rank M $=m$ and N a regular submodule of M with $\operatorname{rank} N=n$, and suppose that $m \geqq 2 n+3$. Then there is a constant $\kappa(M)$ dependent only on M satisfying the following condition. Suppose that for a basis $\left\{v_{i}\right\}$ of $N \boldsymbol{Z}_{p}\left[v_{1}, \cdots\right.$, v_{r}] is primitive in M. Then there are vectors $w_{i} \in M$ such that

$$
\begin{gathered}
w_{i}=v_{i} \quad \text { for } 1 \leqq i \leqq r, \\
B\left(w_{i}, w_{j}\right)=B\left(v_{i}, v_{j}\right) \quad \text { for } 1 \leqq i, j \leqq n, \\
{\left[\boldsymbol{Q}_{p}\left[w_{1}, \cdots, w_{n}\right] \cap M: \boldsymbol{Z}_{p}\left[w_{1}, \cdots, w_{n}\right]\right]<\kappa(M) .}
\end{gathered}
$$

Proof. We use the induction on $n-r$. Suppose $n-r=1$. By virtue of the previous lemma, there are vectors $v_{1}^{\prime}, \cdots, v_{n-1}^{\prime} \in M$ such that for $N^{\prime}=Z_{p}\left[v_{1}, \cdots, v_{n-1}, v_{1}^{\prime}, \cdots, v_{n-1}^{\prime}\right] \operatorname{rank} N^{\prime \perp}=2(n-1)$ and $\operatorname{ord}_{p} d N^{\prime}<\kappa(M)$ hold for some constant $\kappa(M)$. Since rank $N^{\prime \perp}=m-2(n-1) \geqq 5, N^{\perp \perp}$ is isotropic. We fix a maximal lattice $K \subset N^{\perp \perp}$ and decompose K as

$$
K=\boldsymbol{Z}_{p}\left[e_{1}, e_{2}\right] \perp K_{0},
$$

where $Q\left(e_{1}\right)=Q\left(e_{2}\right)=0, B\left(e_{1}, e_{2}\right)=p^{t}$.
Put $v_{n}=u+a_{1} e_{1}+a_{2} e_{2}+z$, where $u \in \boldsymbol{Q}_{p} N^{\prime}, a_{1}, a_{2}, \in \boldsymbol{Q}_{p}, z \in \boldsymbol{Q}_{p} K_{0}$. We claim that there are $x_{1}, x_{2} \in Z_{p}$ such that

$$
x_{1} x_{2}+x_{1} a_{2}+x_{2} a_{1}=0,\left(x_{1}+a_{1}, x_{2}+a_{2}\right) \not \subset p Z_{p} .
$$

If $a_{1}=0$, then we put $x_{1}=0$ and for some $x_{2} \in Z_{p}$ both conditions are clearly satisfied. The case $a_{2}=0$ is similar. Suppose $a_{1} a_{2} \neq 0$ and ord_{p} $a_{1} \leqq \operatorname{ord}_{p} a_{2}$. If $a_{1} \in \boldsymbol{Z}_{p}$, then we choose $x_{2} \in \boldsymbol{Z}_{p}$ so that $x_{2}+a_{2} . \in \boldsymbol{Z}_{p}^{\times}$. Then we have only to put $x_{1}=-x_{2} a_{1}\left(x_{2}+a_{2}\right)^{-1}$. If $a_{1} \notin \boldsymbol{Z}_{p}, a_{2} \in \boldsymbol{Z}_{p}$, then we have only to put $x_{2}=a_{2} / a_{1} \in \boldsymbol{Z}_{p}, x_{1}=-x_{2} a_{1}\left(x_{2}+a_{2}\right)^{-1}$, since $x_{1}=-\left(1+a_{1}^{-1}\right)^{-1} \in$ $\boldsymbol{Z}_{p}^{\times}$and $x_{1}+a_{1} \notin p \boldsymbol{Z}_{p}$. If $a_{1}, a_{2} \notin \boldsymbol{Z}_{p}$, then putting $x_{2}=a_{1}^{-1} \in \boldsymbol{Z}_{p}, x_{1}=-\left(a_{1}^{-1}\right.$ $\left.+a_{2}\right)^{-1} \in \boldsymbol{Z}_{p}$, we have $x_{1} x_{2}+x_{1} a_{2}+x_{2} a_{1}=0$ and $x_{2}+a_{2} \notin \boldsymbol{Z}_{p}$. Thus we have showed our claim.

Put $w_{i}=v_{i}$ for $1 \leqq i \leqq n-1$ and $w_{n}=v_{n}+x_{1} e_{1}+x_{2} e_{2}$; then we have

$$
\begin{aligned}
& B\left(v_{i}, w_{n}\right)=B\left(v_{2}, v_{n}\right) \quad \text { for } i \leqq n-1, \\
& Q\left(w_{n}\right)=Q\left(v_{n}\right)+B\left(x_{1} e_{1}+x_{2} e_{2}, x_{1} e_{1}+x_{2} e_{2}+2 v_{n}\right) \\
&=Q\left(v_{n}\right)
\end{aligned}
$$

Thus $B\left(w_{i}, w_{j}\right)=B\left(v_{i}, v_{j}\right)$ follows for $1 \leqq i, j \leqq n$. Suppose that for $y \in M$, $p^{s} y \in \boldsymbol{Z}_{p}\left[w_{1}, \cdots, w_{n}\right], p^{s-1} y \notin \boldsymbol{Z}_{p}\left[w_{1}, \cdots, w_{n}\right] \quad(s \geqq 1)$; then $p^{s} y=\sum_{i=1}^{n-1} b_{i} v_{i}+$ $b_{n} w_{n}=\sum_{i=1}^{n-1} b_{i} v_{i}+b_{n} u+b_{n}\left(x_{1}+a_{1}\right) e_{1}+b_{n}\left(x_{2}+a_{2}\right) e_{2}+b_{n} z$ holds. From the assumption $\left(b_{1}, \cdots, b_{n}\right)=1$ follows. Since $Z_{p}\left[v_{1}, \cdots, v_{n-1}\right]$ is primitive in M, b_{n} is in Z_{p}^{\times}. Since $y \in M,\left[M: N^{\prime} \perp N^{\prime \perp}\right] y \in N^{\prime} \perp N^{\prime \perp}$ and hence $[M$: $\left.N^{\prime} \perp N^{\prime \perp}\right]\left(p^{-s} b_{n}\left(x_{1}+a_{1}\right) e_{1}+p^{-s} b_{n}\left(x_{2}+a_{2}\right) e_{2}+p^{-s} b_{n} z\right) \in N^{\prime \perp}$; then [$N^{\prime \perp}: K$] $\left[M: N^{\prime} \perp N^{\prime \perp}\right]\left(p^{-s} b_{n}\left(x_{1}+a_{1}\right) e_{1}+p^{-s} b_{n}\left(x_{2}+a_{2}\right) e_{2}\right) \in \boldsymbol{Z}_{r}\left[e_{1}, e_{2}\right]$. Here we note that $\operatorname{ord}_{p} d N^{\prime}<\kappa(M)$ and K is a fixed maximal lattice in $N^{\prime \perp}$, and the number of sumbodule \tilde{N} of M with $\operatorname{ord}_{p} d \tilde{N}<\kappa(M)$ is finite up to $O(M)$ equivalence. Thus [$\left.N^{\prime \perp}: K\right]\left[M: N^{\prime} \perp N^{\prime \perp}\right]<\kappa_{1}(M)$ holds for some constant $\kappa_{1}(M)$ depending only on M. From $\left[N^{\prime \perp}: K\right]\left[M: N^{\prime} \perp N^{\prime \perp}\right] p^{-s} b_{n}\left(x_{i}+a_{i}\right)$ $\in \boldsymbol{Z}_{p}$ for $i=1$ and 2 follows

$$
s \leqq \operatorname{ord}_{p}\left(\left[N^{\prime \perp}: K\right]\left[M: N^{\prime} \perp N^{\prime \perp}\right]\left(x_{\imath}+a_{i}\right)\right),
$$

since $b_{n} \in \boldsymbol{Z}_{p}^{\times}$.
By the choice of $x_{i}, \operatorname{ord}_{p}\left(x_{i}+a_{i}\right) \leqq 0$ for $i=1$ or 2 . Thus there is a constant $\kappa_{2}(M)$ such that $s \leqq \kappa_{2}(M)$. Therefore the index $\left[\boldsymbol{Q}_{p}\left[w_{1}, \cdots, w_{n}\right]\right.$ $\left.\cap M: Z_{p}\left[w_{1}, \cdots, w_{n}\right]\right]$ is bounded from above by a constant depending only on M.

Suppose $n-r \geqq 2$ and put $N^{\prime}=\boldsymbol{Q}_{p}\left[v_{1}, \cdots, v_{n-1}\right] \cap M=\boldsymbol{Z}_{p}\left[u_{1}, \cdots, u_{n-1}\right]$. We may suppose
(1) $u_{i}=v_{i}$ for $1 \leqq i \leqq r$,
since $Z_{p}\left[v_{1}, \cdots, v_{r}\right]\left(\subset N^{\prime}\right)$ is primitive in M.
Applying the assumption of the induction to $N^{\prime} \oplus \boldsymbol{Z}_{p} v_{n}$, there are vectors $u_{i}^{\prime} \in M$ such that
(2) $u_{i}^{\prime}=u_{i}$ for $1 \leqq i \leqq n-1$,
(3) $B\left(u_{\imath}^{\prime}, u_{j}^{\prime}\right)=B\left(u_{i}, u_{j}\right)$ for $1 \leqq i, j \leqq n$
where $u_{n}=v_{n}$,
(4) $\left[\boldsymbol{Q}_{p}\left[u_{1}^{\prime}, \cdots, u_{n}^{\prime}\right] \cap M: Z_{p}\left[u_{1}^{\prime}, \cdots, u_{n}^{\prime}\right]\right]<\kappa_{1}(M)$,
where $\kappa_{1}(M)$ is a constant depending only on M. From (4) follows
(5) $\left[\boldsymbol{Q}_{p}\left[u_{1}^{\prime}, \cdots, u_{r}^{\prime}, u_{n}^{\prime}\right] \cap M: \boldsymbol{Z}_{p}\left[u_{1}^{\prime}, \cdots, u_{r}^{\prime}, u_{n}^{\prime}\right]\right]<\kappa_{1}(M)$.

We choose $v_{n}^{\prime} \in M$ so that

$$
\begin{equation*}
\boldsymbol{Q}_{p}\left[u_{1}^{\prime}, \cdots, u_{r}^{\prime}, u_{n}^{\prime}\right] \cap M=Z_{p}\left[v_{1}, \cdots, v_{r}, v_{n}^{\prime}\right] \tag{6}
\end{equation*}
$$

noting $u_{\imath}^{\prime}=u_{i}=v_{i}$ for $i \leqq r$ by (2), (1) and the primitiveness of $\boldsymbol{Z}_{p}\left[v_{1}, \cdots, v_{r}\right]$. Putting
(7) $\quad v_{i}^{\prime}=v_{i}$ for $i \leqq n-1$,

$$
\begin{aligned}
\boldsymbol{Z}_{p}\left[v_{1}^{\prime}, \cdots, v_{n}^{\prime}\right]= & \boldsymbol{Z}_{p}\left[v_{r+1}, \cdots, v_{n-1}\right]+\boldsymbol{Z}_{p}\left[v_{1}, \cdots, v_{r}, v_{n}^{\prime}\right] \\
& \supset \boldsymbol{Z}_{p}\left[v_{r+1}, \cdots, v_{n-1}\right]+\boldsymbol{Z}_{p}\left[u_{1}^{\prime}, \cdots, u_{r}^{\prime}, u_{n}^{\prime}\right] \text { by }(6) \\
= & \boldsymbol{Z}_{p}\left[v_{1}, \cdots, v_{n-1}, u_{n}^{\prime}\right] \text { by }(2),(1)
\end{aligned}
$$

and
(8) $\left[\boldsymbol{Z}_{p}\left[v_{1}^{\prime}, \cdots, v_{n}^{\prime}\right]: \boldsymbol{Z}_{p}\left[v_{1}, \cdots, v_{n-1}, u_{n}^{\prime}\right]\right]<\kappa_{1}(M)$
follows from (5).
Put $u=u_{n}^{\prime}-u_{n}$; then for $i \leqq n-1$ we have

$$
\begin{aligned}
B\left(u_{i}, u_{n}\right) & =B\left(u_{i}^{\prime}, u_{n}^{\prime}\right) \text { by }(3) \\
& =B\left(u_{i}, u_{n}^{\prime}\right) \text { by }(2)
\end{aligned}
$$

and then $B\left(u_{i}, u\right)=0$ for $i \leqq n-1$.
Since $\boldsymbol{Q}_{p}\left[v_{1}, \cdots, v_{n-1}\right]=\boldsymbol{Q}_{p}\left[u_{1}, \cdots, u_{n-1}\right]$, we have $B\left(v_{i}, u\right)=0$ for $i \leqq n-1$ and hence

$$
B\left(v_{i}, u_{n}^{\prime}\right)=B\left(v_{i}, u_{n}\right)=B\left(v_{i}, v_{n}\right),
$$

where the second equality follows from the definition of $u_{n}=v_{n}$. Thus we can define an isometry σ from N to $Z_{p}\left[v_{1}, \cdots, v_{n-1}, u_{n}^{\prime}\right]$ by
(9) $\left\{\begin{array}{l}\sigma\left(v_{i}\right)=v_{i} \text { for } 1 \leqq i \leqq n-1, \\ \sigma\left(v_{n}\right)=u_{n}^{\prime},\end{array}\right.$
since $Q\left(u_{n}^{\prime}\right)=Q\left(u_{n}\right)=Q\left(v_{n}\right)$ by (3).
Hence $\operatorname{dim} \boldsymbol{Q}_{p}\left[v_{1}^{\prime}, \cdots, v_{n}^{\prime}\right]=\operatorname{dim} \boldsymbol{Q}_{p}\left[v_{1}, \cdots, v_{n-1}, u_{n}^{\prime}\right]=n$ follows. By (6), (7) $\boldsymbol{Z}_{p}\left[v_{1}^{\prime}, \cdots, v_{r}^{\prime}, v_{n}^{\prime}\right]$ is primitive in M and $\boldsymbol{Q}_{p}\left[v_{1}^{\prime}, \cdots, v_{n}^{\prime}\right]=\boldsymbol{Q}_{p}\left[v_{1}, \cdots, v_{n-1}, u_{n}^{\prime}\right]$ $=\boldsymbol{Q}_{p} \sigma(N)$ is regular. Applying the assumption of the induction to $Z_{p}\left[v_{1}^{\prime}, \cdots, v_{n}^{\prime}\right]$, there are vectors $w_{i}^{\prime} \in M$ such that
(10) $w_{\imath}^{\prime}=v_{i}^{\prime}$ for $i=1, \cdots, r$ and n.

$$
B\left(w_{i}^{\prime}, w_{j}^{\prime}\right)=B\left(v_{i}^{\prime}, v_{j}^{\prime}\right) \text { for } 1 \leqq i, j \leqq n
$$

(11) $\left[\boldsymbol{Q}_{p}\left[w_{1}^{\prime}, \cdots, w_{n}^{\prime}\right] \cap M: \boldsymbol{Z}_{p}\left[w_{1}^{\prime}, \cdots, w_{n}^{\prime}\right]\right]<\kappa_{1}(M)$.

Defining an isometry η by $\eta\left(v_{i}^{\prime}\right)=w_{i}^{\prime}$ for $1 \leqq i \leqq n$, we have a submodule $\eta \sigma(N)$ of M since

$$
\boldsymbol{Z}_{p}\left[v_{1}, \cdots, v_{n-1}, u_{n}^{\prime}\right] \subset \boldsymbol{Z}_{p}\left[v_{1}^{\prime}, \cdots, v_{n}^{\prime}\right] .
$$

Moreover we have, by (9), (7), (10)

$$
\eta \sigma\left(v_{\imath}\right)=v_{\imath} \quad \text { for } i \leqq r .
$$

Now we put $w_{i}=\eta \sigma\left(v_{i}\right)$ for $1 \leqq i \leqq n$; then

$$
\begin{gathered}
w_{i}=v_{i} \quad \text { for } i \leqq r, \\
B\left(w_{i}, w_{j}\right)=B\left(v_{i}, v_{j}\right) \quad \text { for } 1 \leqq i j \leqq n
\end{gathered}
$$

hold.
Finally we have

$$
\begin{aligned}
& {\left[\boldsymbol{Q}_{p}\left[w_{1}, \cdots, w_{n}\right] \cap M: Z_{p}\left[w_{1}, \cdots, w_{n}\right]\right]} \\
& \quad=\left[\boldsymbol{Q}_{p}\left[w_{1}^{\prime}, \cdots, w_{n}^{\prime}\right] \cap M: \eta \sigma(N)\right] \\
& \quad=\left[\boldsymbol{Q}_{p}\left[w_{1}^{\prime}, \cdots, w_{n}^{\prime}\right] \cap M: Z_{p}\left[w_{1}^{\prime}, \cdots, w_{n}^{\prime}\right]\left[Z_{p}\left[w_{\mathrm{i}}^{\prime}, \cdots, w_{n}^{\prime}\right]: \eta \sigma(N)\right]\right. \\
& \quad<\kappa_{1}(M)\left[Z_{p}\left[v_{1}^{\prime}, \cdots, v_{n}^{\prime}\right]: \sigma(N)\right] \text { by }(11) \\
& \quad=\kappa_{1}(M)\left[Z_{p}\left[v_{1}^{\prime}, \cdots, v_{n}^{\prime}\right]: Z_{p}\left[v_{1}, \cdots, v_{n-1}, u_{n}^{\prime}\right]\right] \text { by }(9) \\
& \quad<\kappa_{1}(M)^{2} \text { by }(8) .
\end{aligned}
$$

Thus we have completed the proof.
Lemma 3. Let M be a regular quadratic lattice over Z_{p} and N a regular submodule of M with rank $M \geqq 2$ rank $N+3$. For a natural number a there is a constant $\kappa(M, a)$ dependent only on M and a satisfying the following condition. There is an isometry σ from N to M such that

$$
\begin{gathered}
\sigma(x) \equiv x \bmod p^{a} M \quad \text { for } x \in N, \\
{\left[\boldsymbol{Q}_{p} \sigma(N) \cap M: \sigma(N)\right]<\kappa(M, a) .}
\end{gathered}
$$

Proof. We take a basis $\left\{v_{i}\right\}$ of N such that

$$
\boldsymbol{Q}_{p} N \cap M=Z_{p}\left[p^{-a_{1}} v_{1}, \cdots, p^{-a_{n} v_{n}}\right]
$$

with $0 \leqq a_{1} \leqq \cdots \leqq a_{r}<a \leqq a_{r+1} \leqq \cdots \leqq a_{n}$. Define u_{i} by

$$
u_{i}=\left\{\begin{array}{l}
p^{-a_{1}} v_{i} \text { for } i \leqq r, \\
p^{-a} v_{i} \text { for } i>r .
\end{array}\right.
$$

By virtue of the previous lemma, there are vectors $w_{2} \in M$ such that

$$
\begin{gathered}
w_{i}=u_{i}=p^{-a_{i}} v_{i} \quad \text { for } i \leqq r \\
B\left(w_{i}, w_{j}\right)=B\left(u_{i}, u_{j}\right) \\
{\left[\boldsymbol{Q}_{p}\left[w_{1}, \cdots, w_{n}\right] \cap M: Z_{p}\left[w_{1}, \cdots, w_{n}\right]\right]<k(M),}
\end{gathered}
$$

where $\kappa(M)$ is a constant dependent only of M.
Put $z_{i}=p^{a i} w_{i}$ for $i \leqq r$ and $z_{i}=p^{a} w_{i}$ for $i>r$; then we have $B\left(v_{i}\right.$, $\left.v_{j}\right)=B\left(z_{i}, z_{j}\right)$,

$$
\begin{gathered}
z_{i}=v_{i} \quad \text { for } i \leqq r, \\
z_{i} \equiv v_{i} \equiv 0 \bmod p^{a} M \quad \text { for } i>r .
\end{gathered}
$$

Moreover

$$
\begin{aligned}
{\left[\boldsymbol{Q}_{p}[\right.} & \left.\left.z_{1}, \cdots, \boldsymbol{z}_{n}\right] \cap M: \boldsymbol{Z}_{p}\left[z_{1}, \cdots, \boldsymbol{z}_{n}\right]\right] \\
& =\left[\boldsymbol{Q}_{p}\left[w_{1}, \cdots, w_{n}\right] \cap M: \boldsymbol{Z}_{p}\left[w_{1}, \cdots, w_{n}\right]\right] \\
& \times\left[\boldsymbol{Z}_{p}\left[w_{1}, \cdots, w_{n}\right]: \boldsymbol{Z}_{p}\left[z_{1}, \cdots, \boldsymbol{z}_{n}\right]\right] \\
= & p^{\Sigma_{i=1}^{r} a_{i}+(n-r) a}\left[\boldsymbol{Q}_{p}\left[w_{1}, \cdots, w_{n}\right] \cap M: \boldsymbol{Z}_{p}\left[w_{1}, \cdots, w_{n}\right]\right] \\
\leqq & p^{n a} \kappa(M) .
\end{aligned}
$$

We have only to put $\sigma\left(v_{i}\right)=z_{i}$ and $\kappa(M, a)=p^{n a} \kappa(M)$.
Now we can prove Proposition. Let S, T, P, a be those at the beginning of this section, and suppose $\alpha_{p}\left(S, T ; P, p^{a}\right) \neq 0$; then there is $X \in M_{m, n}\left(Z_{p}\right)$ such that $S[X]=T, X \equiv P \bmod p^{a}$. By virtue of Lemma 3 there is $Y \in M_{m, n}\left(Z_{p}\right)$ such that $Y \equiv P \bmod p^{a}, S[Y]=T$ and for elementary divisors $p^{a_{1}}, \cdots, p^{a_{n}}$ of $Y \sum_{i=1}^{n} a_{i}<\kappa(S, a)$ holds where $\kappa(S, a)$ is a constant independent of T. Take a natural number b larger than $a, a_{i}(1 \leqq i \leqq n)$. Clearly $\alpha_{p}\left(S, T ; P, p^{a}\right) \geqq \alpha_{p}\left(S, T ; Y, p^{b}\right) \neq 0$ holds. Let

$$
Y=U\left(\begin{array}{ll}
p^{a_{1}} & \\
& \ddots \\
& 0
\end{array}\right) V, U \in G L_{n}\left(Z_{p}\right), V \in G L_{n}\left(Z_{p}\right)
$$

and put $U^{-1} Y=\binom{A}{0}, A=\operatorname{diag}\left(p^{a_{1}}, \cdots, p^{a_{n}}\right) V \in M_{n, n}\left(Z_{p}\right) . S[Y]=T$ implies $S\left[Y A^{-1}\right]=T\left[A^{-1}\right]$ and hence $T\left[A^{-1}\right]$ is integral since $Y A^{-1}=U\binom{1_{n}}{0}$. We consider the mapping $X \mapsto X A$ from

$$
\left\{\begin{array}{l|l}
X \in M_{m, n}\left(\boldsymbol{Z}_{p}\right) \bmod p^{t} & \begin{array}{l}
S[X] \equiv T\left[A^{-1}\right] \bmod p^{t} \\
X \equiv U\binom{1_{n}}{0^{2}} \bmod p^{b}
\end{array}
\end{array}\right\}
$$

to

$$
\left\{\begin{array}{l|l}
Z \in M_{n, n}\left(Z_{p}\right) \bmod p^{t} M_{m, n}\left(Z_{p}\right) A & S[Z] \equiv T \bmod p^{t} \\
Z \equiv Y \bmod p^{b}
\end{array}\right\} .
$$

It is obviously well-defined and injective.
Hence we have

$$
\alpha_{p}\left(S, T ; Y, p^{b}\right) \geqq|A|^{-m} \alpha_{p}\left(S, T\left[A^{-1}\right] ; U\binom{1_{n}}{0}, p^{b}\right) \neq 0
$$

The last inequality follows from $S\left[Y A^{-1}\right]=T\left[A^{-1}\right], Y A^{-1}=U\binom{1_{n}}{0} . \quad$ Next we have

$$
\begin{array}{r}
\#\left\{X \in M_{m, n}\left(Z_{p}\right) \bmod p^{t} \mid S[X] \equiv T\left[A^{-1}\right] \bmod p^{t}, X \equiv U\binom{1_{n}}{0} \bmod p^{b}\right\} \\
\\
\geqq[X x] \equiv T\left[A^{-1}\right][x] \bmod p^{t+1} \\
\geqq p^{-m n} \sharp\left\{\begin{array}{l}
\text { for every } x \in M_{n, 1}\left(Z_{p}\right), \\
X \in M_{m, n}\left(Z_{p}\right) \bmod p^{t+1} \\
X \equiv U\binom{1_{n}}{0^{2}} \bmod p^{b}
\end{array}\right\}
\end{array}
$$

by considering the canonical mapping from the latter set to the former set,

$$
\begin{aligned}
& =p^{-m n+n \operatorname{ord}_{p}|S|} \\
& \times \#\left\{\begin{array}{l|l}
X \in M_{m, n}\left(\boldsymbol{Z}_{p}\right) \bmod p^{t+1} S^{-1} M_{m, n}\left(\boldsymbol{Z}_{p}\right) & \begin{array}{l}
S[X x] \equiv T\left[A^{-1}\right][x] \bmod p^{t+1} \\
\text { for every } x \in M_{n, 1}\left(Z_{p}\right), \\
X \equiv U\binom{1_{n}}{0} \bmod p^{b}
\end{array}
\end{array}\right\}
\end{aligned}
$$

for a sufficiently large t.
By virtue of "Satz" in Section 14 in [5]

$$
\left.\begin{array}{l}
\left(p^{t+1}\right)^{n(n+1) / 2-m n} \\
\quad \times \sharp \begin{cases}X \in M_{m, n}\left(Z_{p}\right) \bmod p^{t+1} S^{-1} M_{m, n}\left(Z_{p}\right) & S[X x] \equiv T\left[A^{-1}\right][x] \bmod p^{t+1} \\
\text { for every } x \in M_{n, 1}\left(Z_{p}\right), \\
X \equiv U\binom{1_{n}}{0} \bmod p^{b}\end{cases}
\end{array}\right\}
$$

is constant if t is larger than some constant t_{0} which depends only on S and b. Thus we have

$$
\alpha_{p}\left(S, T\left[A^{-1}\right] ; U\binom{1_{n}}{0}, p^{b}\right) \geqq p^{-m n+n \operatorname{ord}_{p}|S|+t_{0}(n(n+1) / 2-m n)},
$$

since $S\left[Y A^{-1}\right]=T\left[A^{-1}\right]$ and $Y A^{-1}=U\binom{1_{n}}{0}$.
Noting that $|A|^{-m}=p^{-m\left(\Sigma a_{i)}\right.} \geqq p^{-m_{\kappa}(S, a)}$, we complete the proof.
$\S 4$.
Let S be an integral symmetric positive definite matrix of degree m whose diagonals are even integers and n a natural number with $m \geqq 2 n$ +3 , and we take $P \in M_{m, n}(Z)$ and a natural number ν. Let $\theta(Z, S,-P, \nu)$, $E(Z, S,-P, \nu)$ be Siegel modular forms of level $q \nu^{2}$, weight $m / 2$ and degree n defined in Section 2, where q is the level of S, and put

$$
\begin{aligned}
& \theta(Z, S,-P, \nu)=\sum_{T \geqq 0} A(S, T ; P, \nu) \exp (\pi i \operatorname{tr} T Z) \\
& E(Z, S,-P, \nu)=\sum_{T \geqq 0} A_{0}(S, T ; P, \nu) \exp (\pi i \operatorname{tr} T Z)
\end{aligned}
$$

where $A(S, T ; P, \nu)$ and $A_{0}(S, T ; P, \nu)$ are the same as those defined in Section 1 for every positive definite matrix T. As pointed out in Section 2 for $a(T)=A(S, T ; P, \nu)-A_{0}(S, T ; P, \nu) \sum a(T) \exp (\pi i \operatorname{tr} T Z)$ is a Siegel modular form of weight $m / 2$, degree n such that the constant term at every cusp vanishes.

Denote by $A_{\mathrm{pr}}(S, T ; P, \nu)$ the number of $X \in M_{m, n}(Z)$ such that $S[X]$ $=T, X \equiv P \bmod \nu$ and X is primitive in $M_{m, n}\left(Z_{p}\right)$ for $p \nmid \nu$ and put $A_{0, \mathrm{pr}}(S$, $T ; P, \nu)=M(S, \nu)^{-1} \sum_{\mathfrak{P}(S, \nu) / \tau \ni S^{\prime}}\left(A_{\mathrm{pr}}\left(S^{\prime}, T ; P, \nu\right) / E\left(S^{\prime}, \nu\right)\right)$, and $a_{\mathrm{pr}}(T)=A_{\mathrm{pr}}(S$, $T ; p, \nu)-A_{0, \mathrm{pr}}(S, T ; P, \nu)$. Our aim is to get an asymptotic formula for $A_{\mathrm{pr}}(S, T ; P, \nu)$. Let $V=\boldsymbol{Q}\left[v_{1}, \cdots, v_{m}\right], \quad W=\boldsymbol{Q}\left[w_{1}, \cdots, w_{n}\right]$ be quadratic space with bilinear forms defined by $\left(B\left(v_{i}, v_{j}\right)\right)=S,\left(B\left(w_{i}, w_{j}\right)\right)=T$ respectively, and σ_{0} a linear mapping from W to V defined by

$$
\left(\sigma_{0}\left(w_{1}\right), \cdots, \sigma_{0}\left(w_{n}\right)\right)=\left(v_{1}, \cdots, v_{m}\right) P
$$

It is clear, then, that $A(S, T ; P, \nu)$ is the number of isometries σ from W to V such that $\sigma N \subset M$ and $\sigma(x) \equiv \sigma_{0}(x) \bmod \nu Z_{p} M$ for all x in $Z_{p} N$ for every prime p where we put $M=Z\left[v_{1}, \cdots, v_{m}\right], N=Z\left[w_{1}, \cdots, w_{n}\right]$. A_{pr} ($S, T ; P, \nu$) is the number of isometries σ with an additional condition that $\sigma\left(Z_{p} N\right)$ is primitive in $Z_{p} M$ for $p \nmid \nu$. We write $A\left(M, N ; \sigma_{0}, \nu\right), A_{\mathrm{pr}}(M, N$; $\left.\sigma_{0}, \nu\right)$ for $A(S, T ; P, \nu), A_{\mathrm{pr}}(S, T ; P, \nu)$ respectively. Obviously we have

$$
A\left(M, N ; \sigma_{0}, \nu\right)=\sum_{L \supset N} A_{\mathrm{pr}}\left(M, L ; \sigma_{0}, \nu\right)
$$

where L runs over submodules of W such that $L \supset N$ and $Z_{p} L=Z_{p} N$ for $p \mid \nu$. Similarly putting

$$
\begin{aligned}
A_{0}\left(M, N ; \sigma_{0}, \nu\right) & =A_{0}(S, T ; P, \nu) \\
A_{0, \mathrm{pr}}\left(M, N ; \sigma_{0}, \nu\right) & =A_{0, \mathrm{pr}}(S, T ; P, \nu),
\end{aligned}
$$

we have

$$
A_{0}\left(M, N ; \sigma_{0}, \nu\right)=\sum_{L \supset N} A_{0, \mathrm{pr}}\left(M, L ; \sigma_{0}, \nu\right)
$$

where L runs over the same set as above. Using the theory of Hecke algebra of $G L$ as in [4], we have

$$
\begin{aligned}
& A_{\mathrm{pr}}\left(M, N ; \sigma_{0}, \nu\right)=\sum_{L \supset N} \pi(L, N) A\left(M, L ; \sigma_{0}, \nu\right), \\
& A_{0, \mathrm{pr}}\left(M, N ; \sigma_{0}, \nu\right)=\sum_{L \supset N} \pi(L, N) A_{0}\left(M, L ; \sigma_{0}, \nu\right),
\end{aligned}
$$

where L runs over lattices of $Q N$ containing N such that $Z_{p} L=Z_{p} N$ for $p \mid \nu$, and $\pi(L, N)$ is defined as follows: Suppose that $Z_{p} L / Z_{p} N$ is isomorphic to h_{p} copies of $\boldsymbol{Z}_{p} / p \boldsymbol{Z}_{p}$ as \boldsymbol{Z}_{p} modules for every prime p; then we put

$$
\pi(L, N)=\prod_{p}(-1)^{h_{p}} p^{h_{p}\left(h_{p}-1\right) / 2}
$$

Otherwise we put $\pi(L, N)=0$. For a lattice L in $Q N$ such that

$$
L \supset N \text { and } Z_{p} L=Z_{p} N \text { for } p \mid \nu
$$

we take a basis $\left\{w_{i}^{\prime}\right\}$ such that $w_{i}^{\prime} \equiv w_{i} \bmod \nu Z_{p} N$ for $\left.p\right|_{\nu}$ and put $T_{L}=$ $\left(B\left(w_{i}^{\prime}, w_{j}^{\prime}\right)\right)$. It is clear that $A\left(S, T_{L} ; P, \nu\right)=A\left(M, L ; \sigma_{0}, \nu\right)$, and hence we have

$$
a_{\mathrm{pr}}(T)=\sum_{L \supset N} \pi(L, N) a\left(T_{L}\right),
$$

where L runs over the same set as above.
Suppose that

$$
\begin{equation*}
a(T)=O\left((\min T)^{-\varepsilon}|T|^{(m-n-1) / 2}\right) \tag{*}
\end{equation*}
$$

for every positive definite matrix $T \in M_{n, n}(Z)$, where $\min T=\min _{0 \neq x \in Z^{n}} T[x]$ and ε is a sufficiently small positive number. This is the case for $n=2$. We have, then as in [4]

$$
a_{\mathrm{pr}}(T)=O\left((\min T)^{-\varepsilon}|T|^{(m-n-1) / 2}\right)
$$

Thus we have

$$
A_{\mathrm{pr}}(S, T ; P, \nu)=A_{0, \mathrm{pr}}(S, T ; P, \nu)+O\left((\min T)^{-\varepsilon}|T|^{(m-n-1) / 2}\right)
$$

for every positive definite integral matrix T under the assumption (*) which is true for $n=2$.

We denote by $A_{0, \mathrm{pr}}^{\prime}(S, T ; P, \nu)$ the right side of the formula for $A_{0}(S$, $T ; P, \nu)$ in Theorem of Section 1 in which $\alpha_{p}(S, T ; P, \nu)$ is replaced by

$$
2^{-\delta_{m, n}} \lim _{a \rightarrow \infty}\left(p^{a}\right)^{n(n+1) / 2-m n} \sharp\left\{\begin{array}{l|l}
X \in M_{m, n}\left(Z_{p} / p^{a} Z_{p}\right) & \begin{array}{l}
S[X] \equiv T \bmod p^{a} Z_{p}, \\
X \text { is primitive }
\end{array}
\end{array}\right\}
$$

for $p \nmid \nu$. By virtue of Hilfssatz 13 in [7], the identity (\#) holds for $A_{0, \mathrm{pr}}^{\prime}$ instead of $A_{0, \mathrm{pr}}$. Hence the inversion formula in [4] implies $A_{0, \mathrm{pr}}^{\prime}=A_{0, \mathrm{pr}}$. By virtue of Proposition in Section 3 there is a positive constant κ independent of T such that

$$
A_{0, \mathrm{pr}}(S, T ; P, \nu)>\kappa|T|^{(m-n-1) / 2}
$$

if $T>0$ and $A_{0, \mathrm{pr}}(S, T ; P, \nu) \neq 0$, using an argument of the proof of Proposition 9 in [3] with $A_{0, \mathrm{pr}}^{\prime}=A_{0, \mathrm{pr}}$. Thus we have proved the following

Theorem. Let S be a positive definite integral matrix of degree m whose diagonals are even and n a natural number with $m \geqq 2 n+3$. We take $P \in M_{m, n}(\boldsymbol{Z})$ and a natural number ν. Then there exists positive numbers κ, ε such that

$$
\begin{aligned}
& A_{\mathrm{pr}}(S, T ; P, \nu)=A_{0, \mathrm{pr}}(S, T ; P, \nu)+O\left((\min T)^{-\varepsilon}|T|^{(m-n-1) / 2}\right), \\
& A_{0, \mathrm{pr}}(S, T ; P, \nu)>\kappa|T|^{(m-n-1) / 2} \quad \text { if } A_{0, \mathrm{pr}}(S, T ; P, \nu) \neq 0,
\end{aligned}
$$

for every positive definite integral matrix T of degree n, provided $n=2$.
Immediately we have
Corollary. Let $M^{\prime} \subset M$ be positive definite quadratic lattices over \boldsymbol{Z} of rank $m \geqq 2 n+3, S$ a finite set of primes containing all prime divisors of $2\left[M: M^{\prime}\right]$ and such that M_{p} is unimodular for $p \notin S$. There is a constant c such that for every positive definite quadratic lattice N of rank n and every collection $\left(f_{p}\right)_{p \in S}$ of isometries $f: Z_{p} N \rightarrow Z_{p} M$ there is an isometry f : $N \rightarrow M$ satisfying

$$
f \equiv f_{p} \bmod Z_{p} M^{\prime} \quad \text { for every } p \in S
$$

$f\left(Z_{p} N\right)$ is primitive in $Z_{p} M$ for every $p \notin S$,
if $\min _{0 \neq x \in N} Q(x)>c$, provided $n=2$.

References

[1] A. N. Andrianov and G. N. Maloletkin, Behavior of theta series of degree n under modular substitutions, Math. USSR-Izv., 9 (1975), 227-241.
[2] J. S. Hsia, Y. Kitaoka and M. Kneser, Representations of positive definite quadratic forms, J. reine angew. Math., 301 (1978), 132-141.
[3] Y. Kitaoka, Modular forms of degree n and representation by quadratic forms II, Nagoya Math. J., 87 (1982), 127-146.
[4] -, Lectures on Siegel modular forms and representation by quadratic forms, Tata Institute Lectures on Math., Springer-Verlag (1986).
[5] M. Kneser, Quadratische Formen, Vorlesungs Ausarbeitung, Göttingen (1973/4).
[6] O. T. O'Meara, Introduction to quadratic forms, Springer-Verlag (1963).
[7] C. L. Siegel, Über die analytische Theorie der quadratischen Formen, Ann. of Math., 36 (1935), 527-606.
[8] F. van der Blij, On the theory of quadratic forms, Ann. of Math., 50 (1949), 875-883.

