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ON THE CUBIC THETA FUNCTION

AKINORI YOSHIMOTO

Introduction

The generalized theta function of a totally imaginary field including
Π'th roots of unity, which was defined by T. Kubota [2], was introduced
in his investigation of the reciprosity law of the n-th power residue. If
n = 2, it reduces to the classical theta function. In the case n = 3 for
the Eisenstein field, the Fourier coefficients of the cubic theta function,
which were explicitly expressed by S.J. Patterson, are essentially cubic
Gauss sums [3], Furthermore in the case n = 4 for the Gaussian field
those of the biquadratic theta functions, which have been investigated by
T. Suzuki [4], haven't been obtained completely yet.

The main purpose of the present paper is to construct the cubic theta
function based on Weil's idea [5]. In this procedure Davenport-Hasse's
formula is used, which implies the multiplicative property of the Gauss
sums and corresponds to Gauss's multiplicative formula of Gamma func-
tions that is also used in this process. This fact may be of some im-
portance in the study of the Gauss sums with respect to the character
of a general n-th. power residue. Our method is far simpler than that of
[3], although the automorphic property of the cubic theta function is
proved for a slightly smaller discontinuous group than in the latter.

This paper consists of five sections. Since some of the ideas and the
technique used in this paper are based on those of T. Kubota [2], S.J.
Patterson [3], T. Suzuki [4] and A. Weil [5], overlapping arguments will
be described roughly.

§1. Γ(N)

We denote by Q and C the field of the rational numbers and the
field of the complex numbers respectively. Let Z be the ring of the ra-
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tional integers, λ = V — 3, O — Z(ω) (ω = exp (27ri/3)) and e(z) — exp (27ri

(z + zj) for 26C. We define the upper half space Ή = C X i?J, where..Λ+

is a multiplicative group of positive numbers. If we regard w (eH) as

\z

v ~~υΛ (zeC,veRϊ) and put z = \* ?1 (zeC), then SL(2, C) acts on

# by

(1.1) σ(κ ) = (aw

Defining that the operation on H of the diagonal matrix L , (2: e C),

is trivial, we obtain the operation on H of GL(2, C).

Furthermore if we put

(1.2) Γ(N) = {[« S] e SL(2, O) s [J J] (mod

for any Ne O, then Γ(iV) acts on H discontinuous^ and has a fundamental

domain with the finite volume with respect to the invariant measure

υ~3dxdydv, where z = x + iy eC, v e R+.

We put through the paper

(1.3) N = 3 or 3r,

where r is a prime number of degree 1 such that r = 1 (9). We define

(1.4) χ ( σ )

= 1 (c = 0) ,

where (—) is the cubic residue symbol in Q(ω). Then X is a character
Vβ/l

of Γ(N).

Let « be a cusp of Γ(N) i.e. K e Q(ω) of /c = oo = 1/0. We write K =

alϊ ((a, ΐ) = 1). If («, X) = 1, then we maj' assume that α Ξ 1 (3). Also,

if (a, λ) = 1, then we may assume that Γ Ξ I (3). From the assumptions

we easily have

LEMMA 1. Two cusps tc = a/Y, K' = a'jT' are equivalent to each other

under Γ(N) if and only if a = a' (N\ 7 = 7' (N).
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We put for any cusp K = a\Ί of Γ(N)

We note that Γκ = σ.Γ^σ;1 putting K - σ/oo) for σ£ e SL(2, O)).

A cusp K is called essential if the restriction to Γκ of X is trivial.

We can confirm that the essential cusps of Γ(N) depend only on the

equivalence of Γ(3). We readily check that the set of the essential cusps

of Γ(3) is {0,1, - 1 , oo}. We further classify those of Γ(N) (N = 3r) in

the following four cases after T. Suzuki. For K = a/7

(1) A-type i.e. a ΞΞ 0 (ΛΓ),

(2) B-type i.e. a ΞΞ 0 (3), (a, r) = 1.

(3) C-type i.e. a ΞΞ 1 (3), or = 0 (r),

(4) D-type i.e. a ΞΞ 1 (3), (or, r) = 1.

§ 2. Eisenstein series

For any 2 x 2 matrix M we consider ^-fold tensor product M£, we

put

Mf — M\ (~ = complex conjugate, f = transposition),

and for g = [̂  Jl e SL(2, C) define

(2.1) jig, M;) - (cw + d) det (CM; + d)~1/2.

We also take MQ to be the constant 1. If K is an essential cusp of Γ(N),

then for w e H, Re (s) > 2, we define

(2.2) E£w, ic, Γ(N\ s)=

where v(w) = u for M; = (z, v). From (2.2) we obtain for σ e Γ(N)

(2.3) E£(σ(w), *, Γ(iV), 5) - Z(σ)Λ(σ, M;)^(O;, Λ, Γ(N), S) .

We put

(2.4) ϋΓ,» - J^l^l2 + l)—«^[ -l]*e(-az)dxdy .

If p is another essential cusp and g represents a coset in ΓK\Γ(N)IΓP,

then we write σ~ιgσp = f . ,,*v . For μeλ~*O, we further define

(2.5) ψχs,μ,Γ(N),£)=V(N)-1

gerκ\Γ(N)/rp \ C(g)r
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where ' indicates that the coset with c(g) = 0 is omitted and V(N) means

the volume of the fundamental domain of Γ(N). Then by a standard

argument Ee(w, tc, Γ(N), s) has a Fourier expansion

(2.6) EJtaJtw), K, Γ(N), s) = δκpleυ* + £ if-K,tKμυ)

Xψ:p(s, μ, Γ(N), £)e(μz),

where δκp is the Kronecker's symbol.

By a general theory of the Eisenstein series Eg(w, ιc, Γ(N), s) can be

analytically continued to the whole plane and has a functional equation

(2.7) Etw, K, Γ(N), s) = Σ EJίw, p, Γ(N), 2 - s)M/s)^(s, Γ(N)9 4),
eP()

where Me(s) = K,,/fl), ψ:p(s, Γ(N), £) = ψ:p(s, 0, Γ(N), £), P(N) is the set of

all essential cusps of Γ(N). Therefore by (2.6) and (2.7) we obtain

(2.8) Ks,e(μv)ψ:(s, μ, Γ(N), £)

= pΣN) v2°-'K2_s,_e(μv)ψ;(2 - s, μ, Γ(N), £)Me(s)ψ:p(s, Γ(N), £),

where ψ;(s, μ, Γ(N), £) = ψ;M(s, μ, Γ(N), £).

§ 3. The functional equations
P u t ί = (U, • • - , Q , j = 0 " i , -Jc), ( i * . h = 1 , 2 , l < k < Ί ) ,

(^) r~τ

r = l

Then mlf form the entries of Mt which is the ^-fold tensor product of

2 x 2 Matrix M = (m^), and are written as Mis. For ί e Z we define

ψ.p(β, ^, Γ(N), £) = ψi(β, /*, Γ(JV), A . (̂  > 0) ,

(3.1) = Ψ,+

P(s, //, Γ(iV), - ^)22 (t < Or ,

= ψ:p(s, μ, Γ(N), 0) (S = 0) .

We shall first consider the case N = 3. Calculation in the same way

as in [3] gives

(3.2) ψoo(s, Γ(3), t) = V(S)~ι(l + (-iy)(33s-ψ - l)'X(3s - 3, £)

X ζ(3s - 2, ̂ ) - χ ,

(3.3) ψol(s, Γ(3), ^) - ψo,-i(5, Γ(3), ^) = V(3)- 1(-iyζ(3s - 3, ^)ζ(3s - 2,

J) 11=(1, ,1) (1, ,1) , 22 = (2, ,2) (2, ,2).
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(3.4) ψUs, Γ(3), £) = V(S)-\-l)X(3s - 3, £)ζ(Ss - 2, £)-* 2>,

where ζ(s, £) = Σ ( Γ T Ϊ Ί C Γ '
 B y (2 7>> ( 3 2)> ( 3 3)> ( 3 4 ) a n d t h e results

csl(8)\|c|/

of (3) we have the following theorem.

THEOREM 1. (Patterson). Let £ be an even integer, A(s, £) = 3 - 1 r m

F(8, /£, Γ(3), 4) - (2ττ)-2sΓ(s + μ|/2 - l/3)Γ(s + \£\/2 - 2/3)ψo.(s, ^, Γ(3),

where Γ(s) is the Gamma function and

FUs, μ, Γ(3), ^) = Σ i Σ ΓOi, εAδ)3-δ5(εiδ)-^(5, ε^δ, /i, t) ,

(ελblδ)ze(μδlελb).
2)

Λe function F(s, μ, Γ(S), £) can be analytically continued to the

whole plane as an entire function ifΰφO and to a meromorphic function

at most simple poles at s — 2/3, 4/3 if £ = 0. Furthermore F(s, μ, Γ($), £)

is bounded when | Im(s) | is large in every vertical strip of finite width and

satisfies the functional equation

F(s, μ, Γ(3), £) = A(s, φ^-sMa-s)ί£Y{FΛ2 _ s ?

+ F(2 - s, μ, Γ(3), -£)(e(μ) + (-l)M-i") + ^ έ

Next, we consider the case N = 3r such that r is a prime number

of degree 1 satisfying r = 1 (9). We define g(c, μ) = Σ (—) e(μa/c) for
αmodc \ C / 3

μ € (l/λ)O. Let p = (a'/Γ) e P(N) and a be a character of O defined modulo

r. Then we obtain

ψp(sf μ9 Γ(N), £) -

Xe βΣ r )(-Ξ-

if p = ec'\r such that Q", λr) = 1, where V = r '" 1 ^),
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9, μ, Γ(N), ί) =
\ (Ύ / 3 . _

δ>2

Σ ()

if p = αVr' such that (r', ̂ ) ̂  1 and (rr, r) = 1, where Γ(μ, ελb) is the same

as one defined above.

We now use an idea of T. Suzuki i.e. for K — ajϊ which is an es-

sential cusp of A-type we consider

(3.7)
γ mod 3r \ / / 3
rsl(3)

By (3.5) we obtain

(3.8) (3.7) = v(N)-'(-iy Σ Φ)(-)g(c, μ)(r
) \ r J3 \\c

We put

s, μ, Γ(N), a,ί)= Σ Φ)(-) 8(c, μ)(r
Csl(3) \ Γ /3 \ C
(c,r)=l ι '

so that we have the following lemmas like ones in [4],

LEMMA 2. Let ϊ = 0 (3), a = 1 (3).

CΞ-r(3r) d (m

is given by:

(1) m case 7 = 0 (3r), a = 1 (3)

1 + (-iy y ^
S»-Ψ _ i r l ^ r . V \M\ ) VMΛ ώ

1 ' (c,r) = l

where Φ is the Euler function on O and r\M\r°° means that M runs over

all powers of r.

(2) in case T = 0 (3), (r, r) = 1, or = 1 (3)

smi-s) )Φ(c)\cr«s(ϊ-Y.
\\C\/

LEMMA 3. Let ϊ = 1(3). Then

δ>l,C==l(3)
(c,r) = l

3) ψp{8,μ,Γ{N),4) =
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CΞ-r(3r) d mod 3rc

is given by:

(1) m case T = 0 (r)

(2) m case (r, r) = 1

r ( )
csl(3),(c,r) =

Let fc = a/T be of A-type. Then ψκp(s, Γ(N), £)4) for p = a'\V is given as

follows:

(1) p - a'\t is of A-type.

By Lemma 2 we have

Λ V(N)ψκp(s, Γ(N), i)
f / 3

Σ. (έ)©

(c,r) =

(2) p - αrVr is of B-type.

By Lemma 2 we have

(3.10)
= (-#(£), ^ Σ ^

(c,r) =

(3) p = α7r7 is of C-type.

By Lemma 3 we have
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X Σ Φ(c)\c\A"
csl(3)
(c,r) = l

(4) p = a'lr' is of D-type.

By Lemma 3 we have

(3.12) ί—\ V(N)ψκp(s, Γ(N), ί) = (-iyf—
CSΞ1(3)
(c,r) = l

Let

C(β,α,/)= Σ ( π α(

and note Σr (mod r ) α(r)(r/M)3 = 0 for any M e O such that r\M\r°° if α3 is

not the trivial character l r . Then by (3.9), (3.10), (3.11) and (3.12) we have

PROPOSITION 1. If α3 is not lr,

Σ a(r)(^) ψjs, Γ(N)J)Σ
(mod3r)

K3) 1^) (1 + α ί - l X - l ^ δ ^ X δ ^ 3 ) / ^ 3 ' - 2 - I)-1

(3.13) X ζ(3s - 2, α3, ̂ )ζ(3s - 2, α3, ̂ )" x (i/ p is of B-type),

^) a(a')ζ(3s - 2, α3, ̂ )ζ(3s - 2, α3, S)~ι

a h

(if p is of D'type),

= 0 (otherwise).

Now we can prove

THEOREM 2. Lei £ be an integer, N = Sr (r is a prime number of

degree 1 such that r = 1 (9)) and a be a character defined by modulo r

such that α3 ^ lr and α( —1)( —iy = 1. We put

F(s, μ , Γ(N), a, £) = \rf°(2π)->sΓ(s + \£\/2 - l / 3 ) Γ ( s + \£\/2 - 2/3)

X ψ(s, /i, Γ(Λ0, α, ^ ) ,

A(s, α, ^) = 3- !r l ί !(l - α(^3)33-2si0(l - α ί ^ 3 - 4 ^ " 1 >

), α, ί) = Σ Σ ^ ^0", εΛδ)3-δs(εiδ)-^(s, ε^δ, ^, α, ^ ) ,
β

flere G(a) = Σ α m o d r α(α)e(o/r), G(α, //) = Σ«™dr a(a)e(μalr).
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Then F(s, μ, Γ(N)9 a, £) can be analytically continued to the whole

plane as an entire function. Furthermore F(s, μ, Γ(N), a, S) is bounded

when |Im(s)| is large in every vertical strip of finite width, and satisfies

the functional equation

F(s, μ, Γ(N), α, ί)

= A(s, α,

(3.14) X ( ^ ( 2 - β, μ, Γ(N), a,-£) + F(2 - s, μ, Γ(N), a, -1

X

Proof. If K is of A-type, by (2.7) we readily obtain

ψc(s, μ, Γ(N), i)

(3.15) = πr«M !- !vr- 4 (j£)'(^)~V(s + Ki/2)Γ(2 - s

X ( Σ ΨP(2 - 8, μ, Γ(N), -SyhP(s, Γ(N), £)).
veP(N)

By (3.8) we further obtain

(3.16) Σ ct(r)(-) ΨXs, μ, Γ(N\ £) = V(NY\-iγψ(s, a, Γ(N), α, £).
γ mod 3r \ / / 3
r=i(3)

We also consider the same sum as in (3.16) related to the right hand

side of (3.15) using (3.5), (3.6) and (3.13). We note that if we put

ζ*(s, α, £) = ζ(s, a,

and

f(s, α, £) = \r\'(2π)-Γ(s + 3|ί|/2)ζ*(s, α, ί),

then

Moreover by using J] a{a')e{ — ffafμlr) — a(f')G(a, μ) we have (3.14).
α' mod r

The analytical property of F(s, μ, Γ(N), a, £) can be proved like the

case N = 3.

§ 4. An analogue of Weil's theorem on the upper half space

We shall omit some proofs of the lemmas in this section because

those are like ones in Weil [5].
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Let

x f Γ(t + \φ - l/S)Γ(t + \£\/2 - 2/3)
J Re (s) = σ

X (2πu)-2 t- | ί |-1dί.

LEMMA 4. Lei a be a primitive character defined modulo r and as-

sume that both

ψ(s,£)= Σ α
\m\

and

Ψ(s, M ) = Σ ama(m)\mΓs(^
meλ-3O-{0} \\m\

converge absolutely in some half plane satisfying am = α_m. We further put

Φ{s, S) = (2π)-*sΓ(s + \ί\l2 - l/3)Γ(β + \S\/2 - 2/3)ψ(5j £),

Φ(s, α, ̂ ) - |rr(2ττ)-2sΓ(s + K|/2 - l/3)Γ(s + K|/2 - 2/3)ψ(β, α, 4).

Suppose that Φ(s, £) (β ̂  0) αλid Φ(s, α, ̂ ) can be analytically continued

to the whole plane as entire functions and Φ(s, 0) as a meromorphic func-

tion at most simple poles at s — 2/3, 4/3. Suppose that Φ(s, £) and Φ(s, a, £)

are bounded when |Im(s)| is large in every vertical strip of finite width.

Put now F(w) = 2 amvK1/s(4tπ\m\ϋ)e(mz)9 A = Res Φ(s, 0) and
meλ-Z0-{Q} s = 4/3

suppose that

(4.1) Φ(s, 4) = (

+ πAυiωάw))2'* = F(w) + πAv(w)2/>,

ω1 = I χ ~ J .

Z, on ί/ie oί/ier /land, F(w, a) = Σ ama(m)uif1/3(47r|7n|u)e(m2;) and
mG/ί-3O-{0}

suppose that

(4.2) Φ(5, a, 4) = (-iy(-J-)2'c.φ(2 - 8, 5 ( 7 ) 3 > -^) ,

where C is a constant
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Then

where ω, = I 2 ~Q .

Proof The first half of this lemma is Patterson's lemma (Lemma 7.2

in (3))5) and the latter half of it can be proved similarly.

If we put a(ά) — L, ? for a e C, then we obtain

LEMMA 5.

(4.3) F(w, a) = G(α)"1 £ α(ιOΉ(«(w/r)(u;), α),
w mod r

where F^w, α) = πAu2/3 + F(w, α).

Let Γ_̂  ~^1 be an element of Γ(9) and put r(r, u) = Γ_^

Then we easily obtain

(4.4) a(ulr)ωT2 = r-ωj(r, v)a(υlr) .

Using (4.3) and (4.4), we have

LEMMA 6. Let Ca = Glal—) )IG(a) and suppose that
\ \ r /3/

F(ωrΛ(w),a) =

for any a such that α3 ^ l r, and F^ω^w)) = Fx(w) with F^w) = ττAu2/3 +

F(w). Then for any integers u satisfying (r, ύ) = 1

- FMr, u)a(u/r)(w))

r h

By Lemma 6 and the fact (•—-—\ =1 for a = 0 (3), ϋ ΞΞ 0 (3), we
Vαu + 1/3

LEMMA 7. Let r, r' be prime numbers of degree 1 swcft that r, rf = 1

δ) Here the Laplace operator ^(^g-^p + y-r) ~ v\ir
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(9). If for any character a defined modulo r satisfying α3 ̂  l r

F(ωr,(w),a) =

for any T = ̂ _u "^j e Γ(9)then

holds.

Finally we can prove

THEOREM 3. Let £ e Z, r be a prime number of degree 1 such that

r = 1 (9), and a be a character defined modulo r such that α3 ̂  l r . For

F1(w) = πAv2/B + Σ anvKί/s(4π\m\v)e(mz) with am = α_w,

suppose that F^ω^w)) = Fx(w), and Φ(s, a, £) satisfies the assumptions in

Lemma 4 α7id (4.2) for C = Cα /or any ^ and ei ery a szzc/i ί/iaί a( —1)( —iy =

1. Then for a e Γ(9)

(4.5) FMw)) = KσWw).

Proof. Let σ = ί̂  ^ j e Γ(9). If c = 0, then we easily obtain (4.5).

If c ^ 0, then (a, 9c) = 1. Hence there exist integers s and ί such that

a + 9tc and d + 9sc are prime numbers of degree 1. Put p = α + 9£c,

g = d + 9sc, u = —c and i; = — (b + 9sp + b92st + 9qt). Then we obtain

Lc d\ - L o I J L - M d L o iJ

If we put r = ί P

ΊI ~~V\ then by Lemma 7 we have Ftfiw)) = X^F^w).

This completes the proof.

§ 5. The construction of θ(w)

Let ΓQ be the group consisting of, ωu L . and Γ(9). If we put X

( 0 1 ) = ^^ω^ = "'"' ^ e n Z can be extended to a character of Γo. By

using the results of § 2-§ 4 we can prove

THEOREM 4 (Patterson). For meλ~3O we define
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3n/2+2, if m = ±^3B"4cd3, re > 1,

3 n / 2 + 2 , if m = ±ωλ*n-4cd\ n>l,

+2, if m — ztω2λZn *cd3, n > 1 ,

3 n / 2 + 5 / 2 , ί/ m = ±A 3 r e " 3 cd 3 , n > 0 ,

= 0 , otherwise ,

where ζ — exp (2πi/9), c, d e O such that c, d = 1 (3) ami c is square free.

There is then a constant σQ so that

θ(w) = (70u
2/3 + X] ro(τn)ι;iί1/3(4^|m|L')e(m^)

meλ-zo

is automorphic under ΓQ with X.

Proof. First if σ = L, -. , we evidently obtain θ(σ(w)) — θ(w). Sec-

ondly if σ = α>! then we have θ(σ(w)) = (̂w;) using Patterson's method by

Theorem 1 and Lemma 4.

We now prove the case σ e Γ(9). We put

F*(s, λ\ Γ(N), α, t) = &sά(λ4)F(s, λ\ Γ(N), a, S),

^ ( s , ωλ\ Γ(N), α, ^) - ζ34β 0 ( ^ - ^ ) 1 ^ , ω^2, Γ(iV), α, ̂ ) ,

F*(s, ω2λ\ Γ(N), a, £) = ζ-13isa(λ4)ωeά(ω)F(s, ω2λ\ Γ(N), a, 6),

Us, &, t) =
"" ), α, £) + F*{s9 ω

Δλ\ Γ(N), α,

), α, )̂ + (1 + α(-l)(-1)0^(5,1, Γ(N), a, £).

, α,

If α( —1)( —iy = 1, the calculation by using Theorem 2 and Corollary 5.2

in (3) gives

- s, α, -

where G/7(α) = Σ α(x)e(x2x/r). We note that we use (—) = (ϋΛ = 1
^modr \ Γ /3 \ Γ/3

for obtaining (5.1) and in the case that α( —1)( —1)' = — 1 (5.1) is trivial.
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Therefore if we put

Σ (
eλ30 \\m

and

f,(β, α, £) = |7fs(2τr)-2sΓ(s + K|/2 - l/3)Γ(β + KI/2 - 2/3)L(s, α, £),

then by (5.1) we obtain

f,(s, α, ^) = a(-l)(-iy(-^-Yά(λΊU''(a')U'Ί α l — ) )|r|

(5.2)
X ξ.1 ( 2 - S , α ( _ ) , / ) .

We now consider the Gauss sum in Q by putting rr — p. If we de-

fine τ(ά) — X] a(x) exp (2πix/p) for a prime number p (e Z), then we
x mod p

have

(5.3) G(a) = α(r)r(α).

By (5.3) we see

Here we recall Davenport-Hasse's formula (in (1))

(5.5) r(α)r(α (y)Jτ(o ( - ) J = α3(3)r(α3)p .

By using (5.5), we obtain from (5.4)

(5.6) α(

Hence from (5.2) and (5.6) we finally have

(5.7) £(*, α, 4) = (-iy(-L)MCef1(2 - s, δ ( y ) , -

Therefore by applying Theorem 3 to (5.7) we have θ(σ(w)) — X(σ)θ(w), for

σ e Γ(9) putting σ0 = πA. This completes the proof of the theorem.
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Remarks 1. Theorem 4 is proved in [3] for Γ(S) instead of Γ(9), but

in this paper we investigated the latter simplifying the calculation by

(A) = (ϋΛ = l.using

2. If we apply the argument in the present paper to the biquadratic

Gauss sum in Q(i), then roughly speaking the number corresponding to

Cα in Lemma 6 is G(α4)G(α) |r|"2. Hence by using Davenport-Hasse's formula

we see that we can't obtain an automorphic function whose coefficients

are biquadratic Gauss sums in a simple analogue of the cubic theta

function.
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