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ON THE MODULAR VERSION OF ITO'S THEOREM

ON CHARACTER DEGREES FOR GROUPS

OF ODD ORDER*

OLAF MANZ

§ 1. Introduction

One of the most useful theorems in classical representation theory is

a result due to N. Ito, which can be stated using the classification of

the finite simple groups in the following way.

THEOREM (N. Ito, G. Michler). Let Irr (G) be the set of all irreducible

complex characters of the finite group G and q be a prime number. Then

q Jf X(ΐ) for X e Irr (G) if and only if G has a normal, abelίan Sylow-q-sub-

group.

Ito himself proved the "if-part" in [7] and the "only-if-part" for p-

solvable groups in [6]. To prove the last one in general, it is sufficient

to investigate simple groups G (cf. Issacs [5] 12.33). For those, G. Michler

[8] was able to prove that for q ψ 2 they all have g-blocks of non-maximal

defect, which implies the result. For q = 2 he could show that each non-

cyclic simple group has at least one character the degree of which is

even.

Now replace the field C of complex numbers by any algebraically

closed field K of characteristic p > 0 and denote by IBr (G) the Brauer

characters of G with respect to p. The question which arises is, whether

there is an analogue to the theorem above for IBr (G) instead of Irr (G).

But now there are two different cases to consider, namely q = p and

q Φ p. The answer to the first one is quite satisfactory.

THEOREM. We have p \ β(l) for all β e IBr (G) if and only if G has a

normal Sylow-p-subgroup.
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We sketch the proof here. Clearly, the "if-part" is trivial, as the
normal Sylow-p-subgroup is contained in the kernel of all irreducible KG-
modules. Considering the "only-if-part", we first mention that by Michler
[8] for p odd and Okuyama [9] for p = 2 one can assume that G is p-
solvable. In this case, however, the proof is rather easy, namely take a
minimal normal subgroup V of G. By induction, G/V has a normal
Sylow-p-subgroup NjV. If V is a p-group, we are done. Therefore V is
a p'-group. But now P e Sylp (N) has to centralize V, because otherwise
N would have an irreducible Brauer character the degree of which would
be divisible by p.

Unfortunately, a similar result does definitely not hold for q Φ p. To
see this consider the permutation group S4 on 4 letters, take p — 3 and
q = 2. It's easy to see that the degrees of the Brauer characters of S4

are 1 and 3, but SA has no normal Sylow-2-subgroup. Hence the best one
could expect to prove is that G has g-length lq{G) at most 2, provided
that q }{β(l) for all β e IBr (G). The purpose of this paper is to establish
this assertion in the odd order case.

THEOREM. Let \G\ be odd and q a prime number different from p

such that q \ β(ϊ) for all β e IBr (G). Then the q-length lq(G) is at most 2.

Furthermore, the q-factors in the ascending and descending q-series of G

are abelίan.

I would like to thank Prof. Dr. M. Isaacs for several helpful dis-
cussions, which I had with him during his stay at Mainz.

§ 2. The main results

We'll prove a somewhat stronger result than stated in the introduc-
tion. For this purpose, we fix a set of primes π such that p £ π. Fur-
thermore we remark that the assertion "Γ(l) e πf for all ΓeIBr(G)"is
inherited by factor groups and normal subgroups of G. We start with a
certainly well-known lemma.

LEMMA 1. Let N <\ G and M an irreducible KN-module for an arbitr-

ary field K. We put T = T(M) the inertia subgroup of M. If W is an

irreducible KT-module lying over M, then WG is an irreducible KG-module.

Proof Let G = U?=i TgtN = U?=i Tgt be the double-coset-decomposition

of (T, N) in G (w.l.o.g. gλ = 1). Hence, by Mackey's lemma (cf. Huppert

[3] V, 16.9),
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(WG)N s
ί=l i=i

As VΓ̂v = β M for some positive integer e, we conclude dim^ WG — e n-

dirn^ M. Now let X be an irreducible submodule of WG. Then Nakayama-

reciprocity (cf. Huppert-Blackburn [4] VII, 4.10) yields

0 Φ Hom^ (X, WG) = H o m ^ (Xτ, W)

in particular, there exists an ifiV-epimorphism from XN onto WN = e M.

By Clifford's theorem, we at once get e (M <g) gx φ φ M ® £ J < XN and

X > e n- dim^M. This finally yields that X = VΓG is irreducible. •

From Lemma 1 we get informations about the orbit sizes of the action

of G/N on the characters of N.

LEMMA 2. Let N < G and suppose that for all β e IBr (G) the degrees

β(ϊ) are π'-numbers. Then we have \G: T(a)\ eπ' for all a eϊBτ(N).

Proof. We choose ϊ e IBr (T(a)) lying over a. By Lemma 1, ΪG e

IBr(G) and the hypothesis forces ΪG(1) = ϊ(ΐ)\G: T(a)\ to be a π'-number. Π

We premise two further lemmas.

LEMMA 3. Let V be an irreducible G-module over GF(q) for q Φ p.

If G acts primitively on IBr(V), then also on V.

Proof. Suppose we have an imprimitivity decomposition V = U1 φ

• Θ Un. With the notation U\ = {β e IBr (V)\β = 1 on ®jΦί U,) we cer-

tainly obtain IBr(V) = i7ί Φ Φ Ό'n. To get a contradiction we'll show

that this is an imprimitivity decomposition of IBr (V) as a G-module. Now

let a e U[ and g e G. By our assumption, we have that Uf = U3 for some

j . Hence, if 1 Φ uk e Uk (k φ j), we have u\Γx eUt (I Φ ί) and ag(uk) =

αOΓ1) = 1. This means (ty)8 = C7<. As V and also IBr(V) are irreduci-

ble G-modules, the action of G on the U( is transitive and we have got

the desired assertion. •

LEMMA 4. Let V be an irreducible G-module. Suppose that each ele-

ment of V is stabilized by a π-Hall-subgroup of G and that G = Oπ'(G).

Suppose furthermore that \G\ is odd and let S eSylπ, (G). Then

a) V is a primitive G-module.

b) V also is an irreducible and primitive S-module.

Proof, a) Suppose there exists an imprimitivity decomposition V =
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ί/i ® Θ Un (n>2). Let Y 5g G be the kernel of the permutation re-
presentation of G on the indices {1, , n}. Let {1, , k} c {1, , n) and
0 Φ Ut e Ut (ί = 1, , k). By our hypothesis, there is H e Sylff (G) such
that H < Cofa + + uk). As G = Oπ\G), GjY is not a 7τ'-group. Hence
Y S HY and for hy e HY we have

uiv + + ufr = (MJ + + a*)** = M? + + u\ e Ut Θ Θ Uk

and hy fixes the set {1, , h). We have just proved that each subset of
{1, , n} has a nontrivial stabilizer in G/Y, which contradicts Gluck [1],
Corollary 1, as \G/Y\ is odd.

b) To prove the irreducibility of V as an S-module, we choose an
arbitrary 0 Φ veV and He Sylff(G) such that vH = υ. Hence vG = vHS =
υs and v generates V as an S-module. Secondly, we suppose that V =
Wj © Θ Wm is an imprimitivity decomposition of V as an S-module;
in particular, S acts transitively on the Wt. If Wj e W3 and g e G, we
choose fl"eSylff(G) such that H<CG(Wj). Hence we can write g = hs
(heH,seS) and wg

3 = z#5 e VFfc (for some /?, depending only on j , namely
consider the sum of two Wj). Consequently, V = Wt Θ Θ Wm is an
imprimitivity decomposition of V as a G-module, contradicting a). •

Now we turn towards the proof of our main theorem.

THEOREM 5. Let \G\ be odd (hence G is solvable). Suppose that β(l) e
7r7 for all β e IBr (G). Then the π-length lπ(G) is at most 2. Furthermore,
the π-factors in the ascending and descending π-series of G are abelian.

Proof. Let G be a minimal counterexample.

(1) G has the following descending π-series:

π

π

qeπ: (q, •••,<?)

= O*'{G)

M=O*'(L)

V=O*'(N)

abelian

abelian

minimal normal subgroup

To see that G/L and M/N are abelian we remind the reader that p g π.
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Hence all a e Irr (G/L) and a e Irr (M/N) have ^-degree and consequently

are linear. This also proves the supplement in the assertion of the theorem.

( 2 ) We may assume that N/V acts faithfully on V: Define C/V =

CN/V(V). Hence C = V X S, where S e Syl*, (C). By factoring out S, as-

sertion (2) follows.

( 3 ) We may assume that O^Af/V) = 1: Put Q/V = O,(MIV). As

Q is a TΓ-group and p <£ π, the argument used in (1) forces Q to be abelian.

Hence we get the G-invariant decomposition Q = CQ(N/V) X [Q, JV/V],

where [Q, iV/V] = V. By factoring out CQ(iV/V), the claim (3) holds.

( 4) M/V acts faithfully on V: By (2), N/V acts faithfully on V. If

CW(V) =£ 1, we certainly had Oπ(M/V) Φ 1, a contradiction to (3).

( 5 ) In addition to (1), we fix some more notations: Let XjN —

Soc (M/N) be the socle of M/N. Then X/N is the direct product of some

elementary abelian groups for some primes in π. Furthermore, put Z\ V =

Oπ'(X/V) and R/V = OK,(Z\V). As X, Z, JR are normal in G, we get the

following normal series of G.

O*'(G) = G
π

qeπ: (g, irreducible G-module

By construction, we have Oπ'{Z) = Z, and by (4), Z/V acts faithfully on

V.

( 6) Vz = e - W for some natural number e and some irreducible and

faithful Z\V — module W: By Lemmas 2 and 4a), IBr(\O is a primitive

G-module. By Lemma 3, also V is a primitive G-module, hence Clifford's

theorem yields Vz — e- W, where W certainly is a faithful Z/V-module.

( 7 ) W is a primitive Z-module and also irreducible and primitive as

an i?-module: The primitivity of W as a Z-module follows at once from

Lemma 2 and Lemma 4a). The second assertion is a consequence of
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Lemma 4b).

( 8 ) R/V is not a nilpotent group: Suppose RjV is nilpotent. By

(6) and (7), RjV acts faithfully, irreducibly and primitively on W. As

\R/V\ is odd, a result of Roquette [10] forces RjV to be cyclic. Note

that R/VΦl (by (3)) and that the automorphism group of a cyclic group

is abelian. Consequently (GIV)lCa/r(RIV) is abelian and a τr-group (as

O*\G) = G). This finally means L\ V = Oπ(GjV) < CG/V(RIV) and therefore

Z/V < CG/F(i?/V), contradicting Z = 0*'(Z).

( 9 ) Conclusion: Let in (9) Z = Z/V and choose i ϊ e Sylx(Z), hence

iJ" = <(̂ j) X X (xn} for some groups <^> of prime order. Let x = xx

and o(x) = r e π. Then obviously R <x> <3 Z. If we furthermore put

F = Oπ'(R-(x}) and S = 0"(F), we have F < Z and F/S s <*>. By (7),

V̂ P = fU for some natural number / and some irreducible, faithful Y-

module U. Now, by Lemma 2, each element of IBr(C7) is fixed by a

Sylow-r-subgroup of Y, and as \Y\ is odd, the action of Y on IBr(ϊ7) satis-

fies the hypothesis of Wolf [11] Theorem 3.3, which forces S to be cyclic.

Replacing x1 by xu we see that the corresponding normal subgroups St< Z

all are cyclic. By the construction of the Si9 we have [R, xt] < S* and

consequently [R, H] < Si Sn. As OK\Z) — Z, we can conclude that

Λ = Si Sn is a product of cyclic normal subgroups, hence nilpotent.

We extract two results from Theorem 5 corresponding to two different

choices of the set π. The first one, namely π = {q} where q Φ p, is the

modular version of Ito's theorem, already stated in the introduction.

COROLLARY 6. Let \G\ be odd and q be a prime number different from

p such that q J( β(ϊ) for all β e IBr (G). Then the q-length lq(G) is at most

2. Furthermore, the q-factors in the ascending and descending q-series of

G are abelian.

We continue looking in quite the other direction, namely where π

equals the whole set of prime divisors of \G\ except of p.

COROLLARY 7. Let \G\ be odd and suppose that all β(ϊ) are powers of

p, where β e IBr (G). Then the p-length lp(G) is at most 3.

Now the question arises, whether the bounds given in the Corollaries

above are best possible even in the odd order case. The following example

shows that this is indeed true.

EXAMPLE 8. Let R = GF(33)+ the additive group of the field with 27
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elements. Let furthermore θ be an element of order 13 in GF(33)X and

<σ> =Gal(GF(33)/GF(3)). Hence σ has order 3 and H = R <<?> <» is a

subgroup of the semilinear mappings Γ(33) of order 34 13.

3

13

(3,3,3)
" R

Let p = 13, then it's not hard to check that all β e IBr (H) have degree 1

or 13 (cf. Huppert [2] even for more examples of this type). Now take a

faithful GF(13) if-module V and consider the semidirect product V H.

As the normal 13-subgroup V is contained in the kernel of every 13-

modular irreducible representation of V H, certainly all β e IBr (V H) also

have degree 1 or 13. If finally Z denotes the cyclic group of order 13,

the regular wreath product G = (V H) % Z has only irreducible Brauer

characters the degrees of which are powers of 13. On the other hand,

13(G) = 2 and 1U(G) = 3.

Remark 9. Under the hypotheses of Corollary 6, a Sylow-g-subgroup

Q of G clearly is metabelian. But it is not true in general that even the

class of Q is at most 2. This can be seen considering the group H of

example 8, where i? <σ> e Syl3(iί) and R (σ} ^ Z3 ^ Z3 has class 3 (Z3

denotes the cyclic group of order 3). If it's possible to construct groups

of this type for arbitrarily large q (which finally reduces to a question

about the existence of a special relation between the primes p and q; cf.

Huppert [2]), the class of a Sylow-g-subgroup Q would be unbounded, be-

cause Q s Z β 1 Zq and cl(Q) = q (cf. Huppert [3] III, 15.3).
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