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ASYMPTOTIC DISTRIBUTION OF EIGENVALUES

FOR SCHRODINGER OPERATORS

WITH MAGNETIC FIELDS

HIDEO TAMURA

§ 0. Introduction

The asymptotic distribution of eigenvalues has been studied by many
authors for the Schrodinger operators — Δ + V with scalar potential
growing unboundedly at infinity. Let N(X) be the number of eigenvalues
less than λ of — Δ + V on L\Rl). Under suitable assumptions on V(x),
N(λ) obeys the following asymptotic formula:

N(λ) = (2π)-» v o l [{(x, ξ): \ξf + V(x) < λ}](l + o ( l ) ) , λ -* oo .

This formula has been obtained by [10] for a wide class of potentials.
See the survey [2] for comprehensive references. In the present work, we
shall study the same problem for the Schrodinger operator

H=(ίF + A(x)/2)2 = ΣU (i3j + α/x)/2)2 , d3 = djdx, ,

with the magnetic vector potential A(x) — (α^x), a2(x), aΆ(x)).
The leading term of the asymptotic formula for the case of scalar

potentials can be determined by the phase space volume of the region
{(x, ξ): \ξ|2 + V(x) < X}. However, this is not the case for vector potentials,
because the corresponding quantity

vol {(x, ξ): ΣU (ξj + α/*)/2)2 < Q] = co

for any magnetic vector potential A(x). Nevertheless, we know that the
operator H has only discrete spectrum under suitable assumptions on A(x)
([4], [6]). In [13], Simon has called such problems non-classical eigenvalue
asymptotics. Thus the asymptotic distribution of eigenvalues for the case
of vector potentials is one of typical problems of non-classical eigenvalue
asymptotics.
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The Schrδdinger operators with magnetic vector potentials which we

here discuss are analogous to the hypoelliptic operators 23=1 X*Xk intro-

duced by Hδrmander [5], Xk being real vector fields. The problem of

spectral asymptotics has been studied by [8] for such operators defined on

bounded regions.

§1. Main theorems

We work exclusively in the 3-dimensional space R?x and consider the

operator

(1.1) H = (iV + A(x)l2f = ΣUi Φj + ctj(x)l2Y , 9, = d/dxj .

We begin by making several assumptions on the magnetic vector potential

A(x) = (αi(x), α2(x), α3(x)). First we assume that:

(A.I) a>j(x), 1 ^ i ^ 3, are real C2 -smooth functions .

By assumption (A.I), H is essentially self-adjoint in C^(Rl) (Schechter [11]).

We denote by the same notion H the unique self-adjoint realization in

L\Rl). The magnetic field B(x) is given by

B(x) = (&,(*), 62(x), bz(x)) = FX A(x) .

Set

The following the assumptions imply the compactness property of (H + ί)~\

so that H has only discrete spectrum:

(A.2) b(x) -> oo as |x| -> oo

(A.3) |djα/x)| = o(b(xr2) , |α | = 2 , as |x| -> oo .

Here we should refer to the results of [4] and [6] on the compactness

property of (H + ί)~\ Consider the condition

(B), \Fbj(x)\ - o(b(xY) , l £ j £ 3 , p > 0 , a s | x | ~ > o o .

The compactness of (H + i)"1 has been proved by [4] under (A.2) and (B),

with p == 3/2 and by [6] under (A.2) and (B), with p = 2. Furthermore,

it has been shown that the compactness property does not follow from

(A.2) only. In particular, Iwatsuka [6] has obtained that p = 2 is the

border line for the compactness, by constructing an example in which

b(x) satisfies \Vb,(x)\ = O(b{xf) but (H + i)~l is not compact.
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Let

(1.2) m(λ) = meas [{x: b(x) < λ}] .

Then the final assumption we make is that:

(A.4) m(2X) ̂  Cm(X) , C > 1 , for λ > Λo > 1 .

THEOREM 1. Let H be defined by (1.1). Assume (A.1)-(A.4) and denote

by N(λ) the number of eigenvalues less than λ of H. Then

(1.3) N(λ) = 2(2π)-2θ(

(1.4) θ(λ; b) = 2];-o ί
J (2,/ + l)δ(a7)<^

Next we shall discuss the problem on the semi-classical asymptotic

distribution of eigenvalues. Consider the operator

(1.5) Hh = (ihV + A(x)l2)2 , 0 < h ^ 1 .

The semi-classical asymptotic formula as /ι —> 0 can be obtained under a

little milder assumptions than the high energy asymptotic formula as λ —> oo

(Theorem 1). We assume (A.I), (A.2), (A.4) and

(A.30 |3;αX*)| = o(b(xY) , \a\ = 2 , as |x| -> oo ,

in place of (A.3). Under (A.2) and (A.3;), Hh has only discrete spectrum

by the above result due to Iwatsuka [6].

THEOREM 2. Let Hh be defined by (1.5). Assume (A.I), (A.2), (A.3')

and (A.4), and denote by NE(h), E > 0, the number of eigenvalues less than

E of Hh. Then

NE(h) = 2{2πY2θ(Eh-2; h'ιb){l + o(l)) , h -> 0 ,

w /iβre 0(Λ; 6) is defined by (1.4).

We shall explain briefly why the asymptotic formula for NE{h) can be

obtained under a little milder assumptions. As is easily seen, NE(h)

coincides with the number of eigenvalues less than Eh~2 of the operator

(1.6) H(h) = (W + h-xA(x)l2f .

From Theorem 1 we can guess that eigenfunctions associated with eigen-
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values less than Eh~2 of H(h) are almost supported in the region {x: b(x)

< Eh'1}, In this region, we have

\d'x(h->a}{x))\ £ e(x)(h->b(x)r> , \a\ = 2 ,

by assumption (A.37), where ε(x) -> 0 as |x |-»oo. This corresponds just

to assumption (A.3) in Theorem 1. Thus (A.3) can be weakened slightly

in the case of semi-classical eigenvalue asymptotics.

In [3], the asymptotic formula for NE(h) has been derived for operators

of the form (iF + A(x))2 + V(x) with scalar potential V(x) growing un-

boundedly at infinity. By making use of the min-max principle combined

with the Dirichlet-Neumann bracketing and by assuming only the con-

tinuity of A(x) and V(x), NE(h) has been proved to obey the following

asymptotic formula:

NE(h) = (2ττ/ι)-3 vol [{(x, ξ): ΣU (£, + <*))2 + V(x) < E}](1 + o(l)) .

Thus the leading term is determined by the classical quantity. Roughly

speaking, in the presence of growing potential V(x), the eigenstates with

eigenvalues less than E are confined in the bounded region {x: V(x) < E]

uniformly in h. This makes the situation slightly easy to deal with. The

min-max principle as in [3] does not seem to apply directly to the present

case without growing potentials.

The proof of both Theorems 1 and 2 is based on the same method.

We study the asymptotic behavior as ί->0 of the trace Tr [exp( — tH)] or

Tr [exp (—tH(h))] by use of the Feynman-Kac-Itό formula and apply the

tauberian arguments due to Karamata [7] to the asymptotic formula

obtained for the above trace. We give the detailed proof to Theorem 2

and only a sketch to Theorem 1.

§2. Reduction to main lemmas

Throughout the entire discussion, the assumptions of Theorem 2 are

assumed to be satisfied and, for brevity, we fix E = 1 in Theorem 2. Let

Ao be as in (A.4). Without loss of generality, we further assume that

0 < h < Λo\
Let H(h) be defined by (1.6). We denote by {^(Λ)};=1, 0 < λ, ^ λ2 ^

a sequence of eigenvalues of H(h) and by {uj(x; h)}J^ an orthonormal sys-

tem of the corresponding eigenfunctions. We further denote by Xd(x; h),

d > 0, the characteristic function of the set {x: 6(x) < dh~1} and by Xd(h)

the multiplication by Xd(x; h). For M > 1 large enough, we define
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(2.1) NM(λ;h) = Σ>jί»<Λ\XM(h)uj\\2

(2.2) NM(λ; h) = Σ 2 y ( Λ ) < a | | (1 - lM{h))uό\f ,

where || || denotes the U norm. By definition, it follows that

NE(h) = NM(h~2; h) + NM(h~2; h)

for E — 1. The proof of Theorem 2 is reduced to proving the following

two main lemmas.

LEMMA 2.1. Let θ(λ\ b) be defined by (1.4). Then

NM{h'ι\ h) = 2(2π)-1θ(h-2; /r^Xl + o(l)) , Λ -> 0 ,

where the order estimate may depend on M.

LEMMA 2.2. There exists h0 = ho(M) such that if 0 < h < h09 then

NM{h~ι) h) < CM^Θ(h~2; h-ιb)

for C independent of M > 1.

It is easy to see that Theorem 2 follows immediately from Lemmas 2.1

and 2.2.

Now, we define φM(λ\ h), λ > 0, by

(2.3) φM(λ; h) = /r 3 / 2 Σ7=o f b(x)(λh - (2/
J GjM

where

GjM = {x: b(x) < min (Mh~\ (2j +

By definition, φM(h~2;h) = θ(h~2; h'^). Lemma 2.1 is proved by applying

the tauberian arguments to the following trace formula.

LEMMA 2.3. For any δ, 0 < δ < 1, small enough, there exists hx —

hλ(δ, M) such that if 0<t< δ~'h2 for 0 < h < hu then

Tr [XM(h) exp (-tH(h))] = 2(2τr)"2 f exp(-tλ)dφM(λ; Λ)(l + O(δ)) ,
Jo

where the order estimate may depend on M.

We shall prove Lemma 2.1 in Section 3, accepting Lemma 2.3 as proved,

and Lemma 2.2 in Section 4. The proof of Lemma 2.3 will be given in

Sections 5-7.
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§ 3. Proof of Lemma 2.1

3.1. First we prepare two lemmas.

LEMMA 3.1. Let m(X) be defined by (1.2). Then

Tr [XM(h) exp (-tH(h))] £ Cm(Mh~1)t-'/2.

Proof. We denote by [exp (—tH(h))](x, y) the integral kernel of

exp (—tH(h)). By the Feynmna-Kac-Itό formula ([1], Theorem 2.3), we have

(3.1) I [exp (~tH(h))](x, y)\ ^ [exp (tJ)](x, y) = O(Γ^) ,

which proves the lemma at once.

It follows from Lemma 3.1 that for λ > 0

(3.2) NM(λ; h) £ C, Tr [XM(h) exp (-λ'ιH(h))] £ CMMh'W* .

LEMMA 3.2. Let

(3.3) σM(λ; h) = m(min (Mh~\ λh)) .

Then there exists C > 1 independent of λ > 0 and h such that

C-ισM{λ\ h)λ3/2 £ φM(λ; h) £ CσM(λ; h)λ3/2 .

Proof Let

Σ*M = {x: b(x) < Mh-\ (2k + 3)"UΛ ^ b(x) < (2k + lY'λh]

for k ^ 0 non-negative integer, and define φjkM(Z), k ^ j ^ 0, by

ΦJKMΨ; h) = h-*<2 ί b(x)(λh ~ (2; + l)b(x))1/2dx .
J ΣkM

By the definition (2.3) of φM(λ; h),

φM(λ\ h) — Σl7=o Σ * y

On the set ΣkM, k ^ j , we have

~ (2/2

and hence

ΦJ*M(*; h) ^ C(k + l)-U3

for j ^ [̂ /2], [ ] being the Gauss notation. This yields the lower bound

for φM(λ; h). The upper bound is obtained in a similar way. •
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Since σM(λ; h) ^ m{Mh~i), it follows from Lemma 3,2 that

(3.4) φM(λ; h) ^ Cm(Mh-%3/2 , λ > 0 .

3.2. We shall prove Lemma 2.1, accepting Lemma 2.3 as proved. The

proof is essentially the tauberian argument due to Karamata [7]. We

follow the arguments in [14], paying a little attention to the Λ-dependence.

Proof of Lemma 2.1. (1) We set

F(t) == Tr [XM(h) exp (~tH(h))] = Π exp (~tλ)dNM(λ; h) ,
Jo

G(i) = 2(2;r)-2 Γ exp (-ttjd^tf; A) .
Jo

For any 3, 0 < δ < 1, let ^(r) e C°°[(0, oo)), 0 ^ /?, ̂  1, be a function such

that ρδ = 1 for 0 ^ τ ^ 1 and pδ — 0 for τ > 1 + <5. The space of all finite

linear combinations of functions t—>e~tτ, τ > 0, is dense in the Schwartz

space ^([0, oo)). Hence we can find a function /cδ(t) e C °̂((0, oo)) such that

(3.5) |*a(τ) - Pδ(τ)\ ^ 3(1 + τ)~2 , r ^ 0 ,

where ίtd(τ) is the Laplace transform of κδ(i). We may assume that *cδ(i) is

supported in {t: Tj1 <t<Tδ} for some Tδ > 1. We have the identities

(3.6) f" φ)F(h2t) dt = Γ £δ(h2λ)dNM(λ Λ)
Jo Jo

(3.7) Γ φ)GQιH)dt = 2(2TΓ)-2 Γ /tδ(h2X)dφM(λ; h) .
Jo Jo

(2) We take and fix ε = ε(δ), 0 < ε < δ, so small that eTδ < 1/2 and

εΓ\κδ(t)\Γ*/2dt<δ .
Jo

We now use Lemma 2.3 with δ — ε(δ). By Lemma 3.1 and by the above

choice of ε, there exists h2 = h2(δ, M) such that

(3.8) Γ φ)(F(hH) - G(hH))dt\ £ Cδh-zm(M-'h)
J o I

for 0 < h < h2.

(3) By (3.2) and (3.5), we have

(3.9) Γ \ίtδ(h2λ) - pδ(h2X)\ dNM{λ; h) £ Cδh-zm(M-ιh)
Jo
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and similarly by (3.4),

(3.10) Γ \kδ(h2λ) - Pδ(h2λ)\dφM; h) ^ Cδh-3m(M-ιh) .
Jo

We combine (3.6)-(3.10) to obtain

Γ Pδ(h2λ)dNM(λ; h) - 2(2ττ)-2 Γ Pδ(h2λ)dφM(λ; h) ^ Cδh~*n
Jo Jo

Since φM(h~2; h) = θ(h~2; h'xb) and σM(h~2; h) = mQi'1), it follows from (A.4)

and Lemma 3.2 that

(3.11) C-'θih-2; h-'b) ^ h^miMh-1) ^ Cθ(h~2; h-'b) .

Thus, we have

NM(h~2; h) £ 2(2π)-2β((l + δ)h'2; h-'b) + Cδθ(h~2; h~xb)

and

NM(h~2; h) ^ 2(2;r)-20((l - δ)h~2; h~ιb) - Cδθ(h~2; h'xb) .

(4) The proof is completed by the following

LEMMA 3.3.

( i ) limlimsup0((1 + δ)h~2; h-χb)lθ{h-2\ h~ιb) - 1
3 1 0 h-^0

(ii) limliminf 0((1 - S)/r2; Λ-'6)^(/ι-2; Λ"'6) = 1 .
δ I 0 ft-0

Proof. We prove (i) only, (ii) is proved similarly. We set

Yu = {x: (2; +

Y2J = {x: (1 -

and write

<?((1 + δ)/r2; Λ '6) = h-^θ^

where

ΘJih) = ΣΓ=o f δ(*X(l + ί)A-' - (27 + ΐ)b(xψ2dx , 1 ^ Λ ^ 2 .

If x € Y ,̂ then

(1 + 3JΛ-1 - (2/

and hence
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(3.12) h-3/%s(h) £(1 + V l ^ W r 2 ; h~ιb).

lΐ xe Y2j, then

(1 + δ)h-1 - (2; + l)b(x) ^ 2V δh'1

and hence

(3.13) h-a/%s(h) £ Cδι/ih-%(h),

where

θo(h) = Σ ; = o f b(x)dx , Gj = {x: (27 + ΐ)b(x) < 2ft"1} .

By the same arguments as in the proof of Lemma 3.2, we can show that

C-'h-'mih-1) ^ θo(h) £ Ch~ιm(h-1) ,

which, together with (3.11)-(3.13), proves the lemma. •

§ 4. Proof of Lemma 2.2

The proof of Lemma 2.2 is divided into several steps.

4.1. We begin by introducing new notations. Let A(x) = (a^x), a2(x),

aΆ(x)) be the given magnetic potential. We set Πj(h) = ίdj + (2h)~ιajy 1 ^

^ 3, so that Π*(h) = Πj(h) and

We define bJk(x), 1 ^ , k ^ 3, by

bjk(x) = dμk{x) - dkaj(x) .

Then, Σis j .w bjk(x)2 = 2b(x)2 and

[77//0, Πk(h)] = Πlh)Πk(h) - Πk{h)Π5{h) = i(2hyιbJk .

LEMMA 4.1. Write Πό for Πj(h) and denote by ( , ) the U scalar product.

Let ajk(x), 1 ^ j , fe ̂  3, be a real C1-smooth function. Then

2Im(ajkΠjφ, Πkφ) = -{2h)-\aJkbjkφ, φ) + (77^, (dkajk)φ) - (77

/or φ e Co(Rl).

Proof. We write

2 Im (α,fc77^, 77^) = i{{ΠfljkΠk - ΠkaJkΠj)φ9 φ) .

A simple commutator calculus proves the lemma. •
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The identity above has been used in [6] to prove the compactness
property of resolvents.

4.2. We introduce another new notation

Xd(h) = {x: b(x) > d h - 1 } , d > 0 .

By assumption (A.37), we can choose h3 = hz(M) so small that

(4.1) I Fbjk(x) I ̂  M-6(x) 2 , x e XM/2(h) ,

for 0 < h < h3. We now take

αjfc(x) = h-'Mbjk(x)lb(xf , x € XM/2(h) ,

in the identity of Lemma 4.1. First we note that \ajk(x)\ ^ 2 and \Vajk(x)\
^ CΛ"1, C being independent of M, and that

Thus it follows from Lemma 4.1 that

(4.2) (H(h)φ, φ) ̂  Ch~2M(φ, φ)

for φ supported in XM/2(h).

4.3. Let ψM(x; h) e C\Rl\ 0 £ ψM ^ 1, be such that ψM = 1 on X^Λ)

and ψ* = 0 in Rl\XM/2(h). By (4.1), we may assume that \FψM(x; h)\ ̂  Ch~\

As is easily seen, (4.2) is still valid for ψMu, u e @(H(h)) (=domain of H(h)).

Hence, by a simple commutator calculus, we have

(H(h)u, ψ2

Mu) ^Ch 2M(ψMu, ψMu) — CJτ 2(u, u) .

Thus we have proved the following

LEMMA 4.2. Let Uj(x; h) be the normalized eigenfunction associated to

the eigenvalue λj(h) < h~2 of H(h). There exists h± = h4(M) such that if

0<h<h4, then

| | ( 1 - XxiKftujW* £ CM'1

for C independent of M > 1.

4.4. By the same arguments as above, we can construct a real func-

tion V(x; h) with the following properties:

( i ) (H(h)φ, φ) > 2-\H(h)φ, φ) + (Vφ,φ), φeC

( i i ) V(x; h) = O(h~2)
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(iii) V(x; h) = 2/r2 , x e Xd£h) , for some d0 > 0

for Λ, small enough. We define

W(x; h) = max (0, h~2 - V(x; h)) .

By properties (ii) and (iii), W(x; h) = O(h~2) and is supported in {x: b(x) <

dji'1}. By property (i), NE(h) with E = 1 is majorized by the number of

negative eigenvalues of the operator H(h) — 2W. By the Rosenbljum-Cwikel-

Lieb bound ([1], Theorem 2.15), we have

£ C ί W(x; h)3/2dx ^
J i?3

which, together with Lemma 4.2 and (3.11), completes the proof of Lemma

2.2.

§5. Bounds on the traces

The aim here is to prove the following

LEMMA 5.1. Let φM(λ; h) be defined by (2.3). For any δ, 0 < d < 1,

there exists Co = C0(δ, M) such that if 0<t< δ-'h2, then

Tr [X2M(h) exp (-tH(h))] ^ Co Γ exp (-2tX)dφM(λ; h) .
Jo

Proof. By Lemmas 3.1 and 3.2 and by assumption (A.4), we have only

to show that there exists C = C(δ, M) such that

exp (-2tX)d(σM(λ; h)λ*/2)

for 0 < t < δ-'h2. By the definition (3.3) of σM(λ; h), σM(λ\ h) = miMh-1) for

λ >̂ Mh~2

y and hence

(5.1) Γ exp (-2tλ)d(σM(λ; h)λz'2) ^ miMh'1)^2 Γ exp (-2τ)dτzβ .
Jo J Mh-n

If 0 < t < cΓ1/!2, then the existence of such a constant C follows at

once. Π

For later reference, we here state the following

LEMMA 5.2. For any δ, 0 < δ < 1, there exists h5 = Λ5(<5, M) such that

if 0 < t < δ~'h2 for 0<h< Λ5,
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( i ) Γ exp (-tλ)dλ3'2 = O(t~3β) ^ <5 Γ exp (~2tλ)dφM(λ; h)
Jo Jo

(ii) Γ exp ( - tλ)d(σM{λ h)λ3'2) £ C Γ exp (-2tX)dφM(λ h).
Jo Jo

Proof. Since m{h~ι) -> oo as h -> 0, (i) follows from (5.1) and Lemma

3.2. (ii) is similarly proved if we note that

σM(2λ; h)λ3/2 ^ CφM(λ; h) , λ > AJ%~1 ,

which follows from (A.4) and Lemma 3.2. •

§ 6. Proof of Lemma 2.3

The proof is divided into several steps.

(1) Let C0(δ, M) be as in Lemma 5.1. We take and fix e = e(5, M),

0 < ε < δ, so small that

(6.1) ε2CQ(δ, M) < δ2 .

By assumption (A.30, we can take Rε so large that

(6.2) | 6 (x) |>ε" 2 , \Fb(x)\<ε2b(x)2

for \x\ > Rε — 1. If h6 = Jι6(δ, M) is chosen small enough, then the region

(6.3) Ωm(h) = {x: |* | > Rt, b(x) < Mh~1}

is not empty for 0 < h < /ι6.

LEMMA 6.1. Let Rε be as above. There exists hΊ = hΊ(δ, M) such that

if 0<t< δ~'h2 for 0<h< h» then

[ [exp (-2tH(h))](x, x)dx £δΓ exp (~2tλ)dφM(λ; h) .
J\x\^Rε Jo

The above lemma is an immediate consequence of Lemma 5.2 — (i),

because the integral on the left side is of order O(t~V2) by (3.1). Our next

task is to evaluate the integration of [exp (—2tH(h))](x, x) over Ωm(h).

(2) Let A(x) — (αi(x), a2{x), az(x)) be the given magnetic potential. We

fix z e ΩMδ(h). By the Taylor expansion,

α/*) = a3{z) + <(Fα,)(z), x - z) + rjz(x) , 1 < j £ 3 ,

where < , ) denotes the scalar product in R\ and

(6.4) rjz(x) - (2 ! )" 1 Σ M = 2 [|^ (βla&z + s(x -
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Set Rz(x) = (ru(x), r2z(x), r3z(x)). By definition, B(x) = V X A(x) and hence

we can find a real function gz{x) such that

A(x) = B(z) χx + R2(x) + Fgz(x) .

We now define

H0B(h) = (iV + (2h)-1B(z) x xY

H,(h) = {iV + (2h)-XB(z) xx + Rz(x)))2 .

Let UJJτ) be the multiplication by exp(i(2/ι)-^2(x)), so that U2(h): U(Rl)

—> L2(Rl) is unitary and

H(Λ) - Uz(h)Hz(h)Uf(h) .

(3) Let ψ(x) e Cs°(i2|), 0 ^ if ^ 1, be a function such that ψ(x) is sup-

ported in \x\ < 1 and ψ = 1 on |x| ^ 1/2. For z e ΩMδ(h), we set

ψδ3(x; Λ) - ψ(eΛ-^6(e)^(a: - z)) ,

where ε = ε( ,̂ M) is fixed in step (1). Then the following relation can be

easily established:

ψδ2 exp ( — tHz(h)) = exp ( — tH0z(h))ψδz

+ Γ exp (~(t - s)Hoz(h))Lδz(h) exp (sHz(h))ds ,
Jo

where

Lδz(h) = [fl-0,(Λ), ψ β J + ψβ,(flo,(Λ)

We now let the above relation operate on the normalized eigenfunction

Uj(x; h) associated with the eigenvalue λά(h). Then we obtain

exp ( — aj(h))uj(z; h) = £]Lo vkJδ(t, z; h) ,

where

v Q j δ =
rt/2

υίjδ = exp (-sλj(h))(Tδz(t - s; h)uj)(x; h)\x^z ds
Jo

v2jδ = exp (-sλj{h))(Tδz(t - s; h)u3){x\ h)\x=z ds
Jί/2

Tδι(t;h) = U,(h)exp(-tH0.(h))L,,(h)U*(h) .

(4) The next lemma, together with Lemma 6.1, proves Lemma 2.3.



62 HIDEO TAMURA

LEMMA 6.2. Let ΩMδ(h) be defined by (6.3). Define

Ut; h) = Σ ; = 1 f vkjδ(t, z;h)\*dz, o^k^z.
J ΩMδ{h)

There exists h& = h8(δ, M) such that if 0 < t < δ'^h2 for 0 < h < /ι8, then

(6.5) Joί(ί; h) = 2(2τr)"2 Γ exp (-2tλ)dφM(λ; Λ)(l + 0(3))
Jo

(6.6) JM(ί; Λ) = ίTO exp (-2tλ)dφM(λ; h)O(δ2) , 1 rg A ^ 2 ,
Jo

where the order relations may depend on M.

We will prove this lemma in Section 7.

§ 7. Completion of proof of Lemma 2.3

In this section we shall complete the proof of Lemma 2.3 by proving

Lemma 6.2.

7.1. We write B(z) = B(z)jb(z\ so that \B(z)\ = 1 if b(z) Φ 0. The

integral kernel of exp( — tHOz(h)), zeΩMδ(h), can be explicitly calculated

([i], [12]);

[exp(-tH0.h))](.x,y)
= (iπty^F^bizy) exp (-Fu(x - y, t; h) - iFu(x, y; A)) ,

where F0(s) = s (sinh s)~\ s > 0,

), x-y)f + (h-'b(z)t) coth (h->b(z)t)\B(z) X (x - y)f}

Let

(7.1) P,(A) = (P,,(A), P.ΛA), P,,(A)) = iF, + (2A)"1JB(2) X y .

Then P*(A) = P,,(A), 1 £ j ^ 3, and also fl,,(A) = Σ5_, Pjz(hf, if we regard

H0!,(h) as a differential operator acting on functions of y-variables.

LEMMA 7.1.

( i ) I [exp (-tHΰz(h))](z, y)\ £ Ct^ exp (-fA- '^ί) exp (-CH^ \y - zf) .

(i i) \Pu(h)exp(-tHΰι(h))](z,y)\

£ Ct'1 exp ( - f A"'6(β)ί) exp (-C" 1*- 1 |y - z|2) , 1 <, j ^ 3 .

The above lemma follows immediately from the representation for

[exp(-tHt,(h))](.x,y).
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LEMMA 7.2.

^\[exV(-tHΰz(h))](z,y)\2dy

= {2πY2h-ib{z) Σ7=o Γ exp (-2<(ί
J — co

where the integration with no domain attached is taken over the whole

space R3.

Proof. If we write

Cl I<β(z\ y}|2 + c2 \B(z) χyf = {Ay, y) , c, > 0 ,

for some 3 x 3 positive matrix A, then

J exp (-(Ay, y})dy = (det

We denote by JQ(t, z; h) the integral under consideration and use the above

formula with

c, - (2t)'1 , c2 = (2h)-1b(z) coth (h^bizjt) .

Then we have

(7.2) J0(t, z; h) = 2-7/2π-3/2r1/2h-1b(z) (sinh (2h~λb{z)t)Yι .

The proof is completed by making use of the following two identities:

Γi/2 = 2v2π-i/2 Γ e χ p (-2tξ2)dξ
J — oo

(sinh s)-1 = 2 Σ ; = o exp (-(2/ + l)s) s > 0 Π

For later reference, we here make a brief comment on the integral

J0(t, z; h).

Remark 7.1. If we note that limsiOs(sinhs)~1 = 1, the function J0(t9 z; h)

is well-defined for all zeR\ In particular, J0(t, z; h) can be defined for

z with b(z) = 0 and also we can easily see that JQ(t, z; h) = O(Γ3/2), ze R\

uniformly in h.

7.2. First we prove (6.5).

Proof of (6.5). By the Parseval relation, we have
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We write the above integral as J0(t, z; h) + Jδ(t, z; h), where Jo is denned

by (7.2) and

Jδ(t, z;h) = ^ (ψδz(y; hγ - 1) |[exp (-tH0,(h))](z, y)\* dy .

By Remark 7.1, J0(t, z; h) is well-defined over the whole space R\. We

recall the definition (2.3) of φM(λ',h). Then, by Lemma 7.2, we can write

f J0(t, z; h)dz = 2(2τr)-2 Γ exp (~2tλ)dφM(λ; h) .
J &(z)<ΛίΛ-i J 0

By Remark 7.1, the integral of J0(t, z; h) over \z\ £ Rε is of order O(rm).

Hence, by Lemma 5.2-(i), we can choose h9 = h9(δ, M) so small that if 0 <

t < δ-'h2 for 0 < h < K then

f J0(ί, z\ h)dz - 2(2τr)-2 Γ exp (~2tλ)dφM(λ; Λ)(l + O(δ)) .
JΩMδ{h) Jθ

We evaluate the integral of Jδ(t, z; h). By the definition of ψίβ(y; h),

\y-z\^ (2e)-1hί/2b(z)-1/2

on the support of ψδz(y; h)2 — 1. Hence it follows from Lemma 7.1-(i) that

\[exp(-tH0z(h))](z,y)\2 = \y - z\-*\y - z

-C- 1 Γ 1 | j ' - z\2) .

Therefore, we have

Ji(ί, z; h) ^ Cε3Λ-3/26(^)3/2 exp ( - A ^ f t ^ ί ) .

We here recall the definition (3.3) of σM(λ; h). Then we have

ί Jδ(t, z; h)dz ^ Cε3 Γ exp (-tλ)d(σM(λ; h)λz/2) .
JΩMδ(h) JO

This, together with Lemma 5.2-(ii), completes the proof of (6.5). •

7.3. We regard Lδz(h) as a differential operator acting on functions

of y-variables. To prove (6.6), we have to evaluate the function

(7.3) Kδ(z, y, t; h) = L*(/ι)[exp (-tHoz(h))](z, y) .

LEMMA 7.3. Let f(x) > 0, xe Rs

x, be a function with the property \Ff(x)\

£ βf(x)1+p, p>Q. Ifr = pβ\y- x\f(xY < 1, then

(l + ryl/pf(χ) ^ f(y) £ (l - ry
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Proof. Set g(s) = f(x + s(y - x)j\y - x\), so that g(0) = f(x) and

g(\y — *|) = /(y). By assumption,

-βg(s)1+>^ g'(s) £ βg(s)1 + o .

The lemma is verified by solving these differential inequalities. •

Now, assume that \y - z\ < ε-'h^biz)'112 for zeΩMδ(h). Then, by the

choice of R£) it follows from (6.2) that \y\ > Rε - 1 and \y - z\ £ ε-'Mλ/2b(z)-\

because b(z)1/2 ^ M1/2h~ί/2 for zeΩMδ(h). Furthermore, \Vb{y)\ < ε2b(yf by

(6.2) again. Thus, we have by Lemma 7.3 with p = 1 that

(7.4) 2~1b(z) £ b(y) £ 2b(z) ,

if ε is chosen so small that εM1/2 < 1/2.

Let rJt(y), 1 <Lj ^ 3, be defined by (6.4). If \y - z\ ^ ε-ιhlf2b{z)-ι/2 for

2 e βjfiCΛ), then it follows from (7.4) and (A.37) that

(7.5) h-^\

(7.6) h-ψrJa(y)\ £ Cε2h^2b{z)^2 \y - z\

for C dependning on M. Let P;2(Λ), 1 ^ ^ 3, be defined by (7.1). The

operator Lfz(h) takes the form

Lΐz(h) = Σ5=i [c^,(y; h)Pjz(h) + ^ . ( y ; A)] .

The coefficients cjδz and dJδ2 are supported in {y: \y — z\ < ε"^17^^)"172} and

satisfy the estimates;

(7.7) Ic^ίy ^ I ^ C e A - ^ J I y - ^ l

(7.8) \djδz(y; h)\ £ Ceh-wbizy*\y-z\,

which follow from (7.5), (7.6) and

172]lαl+1|y -z\

Thus we combine (7.7) and (7.8) with Lemma 7.1 to obtain the following

LEMMA 7.4. Let Kδ(z,y,t;h), zeΩMδ(h), be defined by (7.3). Then, Kδ

is supported in {y: \y — z\ < ε~W/2&Oε)~1/2} as a function of y-variables and

\Kδ\ £ Cεh-'b(z)t-\exV(-lh-'b(z)t)[\y - z\ exp(-C" 1 r 1 | y - ^|2)] .

7.4. We shall prove (6.6).

Proof of (6.6). ( i ) First we deal with the case k = 1. By the Schwarz
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inequality and by the Parseval relation, it follows from Lemma 7.4 that

Σ ; β l K,(ί, z; h)\2 £ t^^\[Kδ(z,y, t - s; h)\2dyds

^ Cε2h-2b(z)Hlβ exvi-^h-'b&t) .

Furthermore, by Lemma 5.2-(ii), we have

Ilδ(t; h) ^ Cε2 Γ λ1/2t^2 exp (-\tλ)d{σM{λ\ h)λz/2)
Jo

= Γ exp (-2tλ)dφM(λ; h)O(δ2) .

This proves (6.6) with k = 1.

(ii) Next we deal with the case £ = 2. We start with the estimate

^ exp (-i«/Λ)) J J llf^, y, s; Λ)| |u/y)| dycfe .

We make a change of variables: (y, s) —• (y, r), where

y = z + h1/2b(z)-ί/2τ1/2v , s = hb(z)~ιτ .

The Jacobian d(y, s)/3(ι;, τ) can be easily calculated:

and also by Lemma 7.4, we have

in the (ϋ, τ)-coordinates, where

Fδ(v, τ) = exp (-*τ) |y| exp ( - C " 1 |u|%(εr1/2ι;)

and Xo is the characteristic function of the set {x: \x\ <I 1}. Thus we have

\v2jδ(t, z; h)\

where

iϋ/21, υ, τ; h) = M/Z + hι'2b{z)-^τ1/2υ\ h) .

Set ζ = ^ + h1/2b(z)-1/2τ1/2v. If zeΩMδ(h) and |r1/2y| ^ ε"1, then it follows

from (6.2) that |ζ| > i?ε - 1 and |ζ - z\ £ ε-ιMι/2b(z)-\ Furthermore, by

(6.2) again, \Vb(ζ)\ < e2b(ζ)2. Hence by Lemma 7.3 with p = 1, we have 6(ζ)

^ 26(e) ^ 2M/1"1. The Jacobian d(ζ)/d(z) satisfies
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I = 1 + 0(ε) = 1 + 0(5) .

Thus we have

\Wj(z, v,τ;h)\2dz£C\ \us(ζ;h)fdζ

for C independent of (vy τ), \τι/2v\ < ε~\ and hence

I2δ(t; h) ^ Cε2 Tr [X2M(h) exp(-tH(h))] .

By the choice of ε ((6.1)) and by Lemma 5.1, we have

Ut; h) = Γ exp (-2tλ)dφM(λ; h)O(δ2) .
Jo

This proves (6.6) with k = 2.

§ 8. Sketch of proof of Theorem 1

In the present section we assume (A.1)-(A.4), and give a sketch for

the proof of Theorem 1. This theorem can be more easily proved than

Theorem 2, because we do not need to consider the localized trace as in

the proof of Theorem 2.

8.1. We first establish the bound on the trace Tr [exp(— tH)]. We

start with Lemma 4.1 with h — 1. We fix Ro so that b(x) I> 1 for \x\> Ro

and take

ajk(x) - - bjk(x)lb(x) , 1 £ j , k ^ 3 ,

for \x\ > RQ. As is easily seen, |αifc(x)| - 0(1) and \Vaj1c(x)\ - o(b(x)1/2), \x\

-> co, by (A.3). Hence it follows from Lemma 4.1 that (Hφ, φ) ̂ > C(bφ, φ)

for 0 e C^(\x\ > Ro) and therefore we have

(8.1) (Hφ, φ) ̂  2-\Hφ, φ) + C((b - l)φ, φ ) , φe C»(Rl) ,

with another constant O 0. With this constant C, we define the operator

Jff0 by ΉQ = —2~1Δ + Cb. By (A.4), m(X) is of algebraic growth as λ~> oo;

m(λ) — 0(λκ) for some K > 0, and by the Rosenbljum-Cwikel-Lieb bound

([9], Theorem XIII.12), the number of eigenvalues less than λ of HQ is

majorized by Cm(X)λV2. This implies that exp( — tH0), t>0, is of trace

class and that

Tr [exp(-*#0)] ^ C Γ exp(-tλ)d(m(λ)λ3/2) .
Jo
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Hence, by the Feynman-Kac-Itό formula, it follows from (8.1) that exp( — tH),

t > 0, is of trace class and

Tr [exp(-tH)] £ C Tr [exp ( - *#0)] , 0 < t < 1 .

By the same arguments as in the proof of Lemma 3.2, we can prove that

(8.2) C-ιm{λ)Fβ < θ(λ) £ Cm(λ)λ3/2 , λ > 0 .

Thus we obtain the following bound on the trace:

Tr [exp ( - tH)] £ C Γ exp(-tλ)dθ(λ) , 0 < t < 1.
Jo

8.2. Let ψ(x) e CQ(RI) be as in step (3) of Section 6. Making use of

the bound above and of the cut-off function

\x - z)) ,

we can obtain the following asymptotic formula:

Tr [exp(-tH)] = 2(2τr)"2 Γ exp(-«)d»(^χi + o(l)) , t -• 0 .
Jo

The same arguments as in the proof of Lemma 3.3 prove that θ(λ) satisfies

the conditions of Karamata's tauberian theorem. Thus the proof of Theo-

rem 1 is completed by applying this tauberian theorem to the asymptotic

trace formula.

Added in proof. During the submission to the journal, the author

knew that Colin de Verdiere obtained a similar result, including the n-

dimensional case, by a different method based on the min-max principle.

Y. Colin de Verdiere; L'asymptotique de Weyl pour les bouteilles

magnetiques, Commun. Math. Phys., 105 (1986), 327-335.
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