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ASYMPTOTIC DISTRIBUTION OF EIGENVALUES
FOR SCHRODINGER OPERATORS
WITH MAGNETIC FIELDS
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§0. Introduction

The asymptotic distribution of eigenvalues has been studied by many
authors for the Schrodinger operators —4 4+ V' with scalar potential
growing unboundedly at infinity. Let N(2) be the number of eigenvalues
less than 2 of —4 + V on L*R;). Under suitable assumptions on W(x),
N(2) obeys the following asymptotic formula:

N = (2z) " vol [{(x, &): &} + V(x) < 2T + o)), A— oo,

This formula has been obtained by [10] for a wide class of potentials.
See the survey [2] for comprehensive references. In the present work, we
shall study the same problem for the Schrdédinger operator

H= @ + A®)2F = 5. (0, + 0,28, 9, = afox, ,

with the magnetic vector potential A(x) = (a.(x), a,(x), a,(x)).

The leading term of the asymptotic formula for the case of scalar
potentials can be determined by the phase space volume of the region
{(x, &):16F + V(x) < 2}. However, this is not the case for vector potentials,
because the corresponding quantity

vol {(x, £): 2351 (§; + a,(0)[2)° < 4] = oo

for any magnetic vector potential A(x). Nevertheless, we know that the
operator H has only discrete spectrum under suitable assumptions on A(x)
([41, [6]). In [13], Simon has called such problems non-classical eigenvalue
asymptotics. Thus the asymptotic distribution of eigenvalues for the case
of vector potentials is one of typical problems of non-classical eigenvalue
asymptotics.
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The Schrodinger operators with magnetic vector potentials which we
here discuss are analogous to the hypoelliptic operators > 2_, X#X, intro-
duced by Hormander [5], X, being real vector fields. The problem of
spectral asymptotics has been studied by [8] for such operators defined on
bounded regions.

§1. Main theorems

We work exclusively in the 3-dimensional space R and consider the
operator

(1.1) H=@G + A®)/2)* = 3., (i0; + a)x)/2)*, 9; = dfox; .
We begin by making several assumptions on the magnetic vector potential
A(x) = (a,(x), ay(x), as(x)). First we assume that:

(AD) afx), 1 <j <3, are real C* -smooth functions .

By assumption (A.1), H is essentially self-adjoint in C§(R3) (Schechter [11]).
We denote by the same notion H the unique self-adjoint realization in
L*(R%). The magnetic field B(x) is given by
B(x) = (by(x), by(x), by(x)) =V X A(x) .
Set
b(x) = |B(x)| = (251 b)) .

The following the assumptions imply the compactness property of (H + i),
so that H has only discrete spectrum:

(A.2) b(x) — oo as |x| — oo ;
(A.3) |0za ,(x)| = o(b(x)*?) , |a|=2, as |x|— oo .

Here we should refer to the results of [4] and [6] on the compactness
property of (H + i)~'. Consider the condition

®B), Vo (x)] =o(b(x)), 1=j<3, p>0, as|a—>o.

The compactness of (H + i)' has been proved by [4] under (A.2) and (B),
with p = 3/2 and by [6] under (A.2) and (B), with p = 2. Furthermore,
it has been shown that the compactness property does not follow from
(A.2) only. In particular, Iwatsuka [6] has obtained that p = 2 is the
border line for the compactness, by constructing an example in which
b(x) satisfies [V'b,(x)| = O(b(x)*) but (H + i)~' is not compact.
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Let
(1.2) m(2) = meas [{x: b(x) < 2}] .
Then the final assumption we make is that:
(A.9) m2) < Cm(), C>1, for 2> 4,>1.

THEOREM 1. Let H be defined by (1.1). Assume (A.1)-(A.4) and denote
by N(2) the number of eigenvalues less than A of H. Then

1.3) N = 22r)~*0(2; b)(1 + o(1)) , A— 00,
where
(1.4) 00 0) = 5o [ b — (2 + Do) dx .

Next we shall discuss the problem on the semi-classical asymptotic
distribution of eigenvalues. Consider the operator

(1.5) H, = bV + A(x)/2)*, 0<h=1.

The semi-classical asymptotic formula as A — 0 can be obtained under a
little milder assumptions than the high energy asymptotic formula as 1— oo
(Theorem 1). We assume (A.1), (A.2), (A.4) and

(A.3) |0sa (%) = o(b(x))) , |a] =2, as |x| — o,

in place of (A.3). Under (A.2) and (A.3'), H, has only discrete spectrum
by the above result due to Iwatsuka [6].

THEOREM 2. Let H, be defined by (1.5). Assume (A.1l), (A.2), (A.3)
and (A.4), and denote by Ny(h), E > 0, the number of eigenvalues less than
E of H,. Then

Nz(h) = 227)0(Eh~*; h~'b)(1 + o(1)) , h—0,
where 6(2; b) is defined by (1.4).

We shall explain briefly why the asymptotic formula for Ny(h) can be
obtained under a little milder assumptions. As is easily seen, Ng(h)
coincides with the number of eigenvalues less than EA~ of the operator

(1.6) Hh) = (iV + hA(x)/2) .

From Theorem 1 we can guess that eigenfunctions associated with eigen-
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values less than Eh~? of H(h) are almost supported in the region {x: b(x)
< Eh7'}. In this region, we have

[05(h'a(x)] < e(x)h D), o] =2,

by assumption (A.3), where &(x) — 0 as |x| — oo. This corresponds just
to assumption (A.3) in Theorem 1. Thus (A.3) can be weakened slightly
in the case of semi-classical eigenvalue asymptotics.

In [3], the asymptotic formula for N.(%) has been derived for operators
of the form (iIF + A(x))* + V(x) with scalar potential V(x) growing un-
boundedly at infinity. By making use of the min-max principle combined
with the Dirichlet-Neumann bracketing and by assuming only the con-
tinuity of A(x) and V(x), Nz(h) has been proved to obey the following
asymptotic formula:

Ny(h) = (2ah)~* vol [{(x, §): 2051 (§; + a,(x))* + V(x) < E}(1 + o(1)) .

Thus the leading term is determined by the classical quantity. Roughly
speaking, in the presence of growing potential V(x), the eigenstates with
eigenvalues less than E are confined in the bounded region {x: V(x) < E}
uniformly in 4. This makes the situation slightly easy to deal with. The
min-max principle as in [3] does not seem to apply directly to the present
case without growing potentials.

The proof of both Theorems 1 and 2 is based on the same method.
We study the asymptotic behavior as t—> 0 of the trace Tr [exp (—tH)] or
Tr [exp (—tH(h))] by use of the Feynman-Kac-It6 formula and apply the
tauberian arguments due to Karamata [7] to the asymptotic formula
obtained for the above trace. We give the detailed proof to Theorem 2
and only a sketch to Theorem 1.

§2. Reduction to main lemmas

Throughout the entire discussion, the assumptions of Theorem 2 are
assumed to be satisfied and, for brevity, we fix £ = 1 in Theorem 2. Let
A, be as in (A.4). Without loss of generality, we further assume that
0 < h <A

Let H(h) be defined by (1.6). We denote by {2(h)}5., 0< 4, <4, < - -,
a sequence of eigenvalues of H(h) and by {u,x; h)}7., an orthonormal sys-
tem of the corresponding eigenfunctions. We further denote by X,(x; h),
d > 0, the characteristic function of the set {x: b(x) < dh™'} and by %,(h)
the multiplication by X4(x; A). For M > 1 large enough, we define
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2.1) Ny(4; h) = 20l Xu(P)u,lf
@2 Nus 1) = Tiymaill(t — Zuhu|F
where || || denotes the L* norm. By definition, it follows that

Nu(h) = Ny(h™*; h) 4+ Ny(h2; h)

for E = 1. The proof of Theorem 2 is reduced to proving the following
two main lemmas.

Lemma 2.1. Let 6(2; b) be defined by (1.4). Then
Ny(h~'; b) = 22x)7'0(h™*; R'B)(L + o(1)) ,  h—0,
where the order estimate may depend on M.
LEMMA 2.2. There exists h, = hy(M) such that if 0 <h < h,, then
Nu(h~'; B) < CM~6(h~?*; h~'b)
for C independent of M > 1.

It is easy to see that Theorem 2 follows immediately from Lemmas 2.1
and 2.2,
Now, we define ¢,(1; h), 2> 0, by

2.3) $(2; h) = h*" Z‘;-:oj . bk = @ + Db(x)*dx,

where
G,y = {x: b(x) <min (Mh™', (2j + 1)7'2h)} .

By definition, ¢,(h~%; h) = 6(h~*; h='b). Lemma 2.1 is proved by applying
the tauberian arguments to the following trace formula.

Lemma 2.3. For any 6, 0<46 <1, small enough, there exists h, =
h(6, M) such that if 0 <t <3'h* for 0 < h < h,, then
T [L(8) exp (—tH(] = 220)* [ exp (—tAdga(2; AL + O0) ,

where the order estimate may depend on M.

We shall prove Lemma 2.1 in Section 3, accepting Lemma 2.3 as proved,
and Lemma 2.2 in Section 4. The proof of Lemma 2.3 will be given in
Sections 5-7.
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§3. Proof of Lemma 2.1
3.1. First we prepare two lemmas.
LEmmA 3.1. Let m(2) be defined by (1.2). Then
Tr [X,(h) exp (—tH(h))] < Cm(Mh~")t=" .

Proof. We denote by [exp (—tH(h))l(x, y) the integral kernel of
exp (—tH(h)). By the Feynmna-Kac-It6 formula ([1], Theorem 2.3), we have

CRY) |lexp (—tH(R))(x, y)| = [exp (tD)(x, y) = O@™*") ,

which proves the lemma at once.
It follows from Lemma 3.1 that for 2 >0

(3.2) Ny(2; ) < C, Tr [Xy(h) exp (— A H(h))] £ Com(Mh=")2" .
LemmA 3.2, Let
(3.3) ox(2; h) = m(min (Mh™', 2h)) .
Then there exists C > 1 independent of 2> 0 and h such that
Cloy(2; W2 < ¢u(2; h) < Coy(2; R)2P .
Proof. Let
Dew = {x:0(x) < Mh7', (2k + 3)7'2h < b(x) < (2k + 1)7'2h}

for £ = 0 non-negative integer, and define ¢,,,(2), £ =j = 0, by
B2 1) = b= [ b(x)(ah — (2] + Do) adx .
Zra

By the definition (2.3) of ¢,(4; h),

du(2; h) = D50 2ie=g PR3 h) = 2050 D350 Pua(Z; B)
On the set > .x, £ =j, we have

A =Dz - 21— )
G g DS M= @ Db = K

and hence

Bu(A; h) = C(k + 1)7'2** meas [ ,x]

for j < [k/2], [ ] being the Gauss notation. This yields the lower bound
for ¢4(2; h). The upper bound is obtained in a similar way. O
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Since o¢,(2; h) < m(Mh™), it follows from Lemma 3,2 that
(3.4) éu(2; h) < Cm(Mh~H1"* A>0.

3.2. We shall prove Lemma 2.1, accepting Lemma 2.3 as proved. The
proof is essentially the tauberian argument due to Karamata [7]. We
follow the arguments in [14], paying a little attention to the A-dependence.

Proof of Lemma 2.1. (1) We set
F(t) = Tr [1udh) exp (—tH(W)] = [ exp (~0dNu(; 1)
GO = 207 [ exp (—t)dga(2; B) .

For any 4, 0 <4 <1, let pi(r) € C~[(0, o0)), 0 < p; < 1, be a function such
that p, = 1for0 <z < 1and p, =0 for  >1+ 3. The space of all finite
linear combinations of functions ¢ — e~ %, £ > 0, is dense in the Schwartz
space ([0, »)). Hence we can find a function «;(¢) € C5((0, «)) such that

(3.5) [£:(t) — ps(0)| £ (1L + )%, =0,

where #,(r) is the Laplace transform of x,(f). We may assume that «,(f) is
supported in {t: T;* <t < T;} for some T, > 1. We have the identities

(3.6) j °° r()F (Rt dt = r B(RDAN (A B

(3.7) j " 6 (OGR)dt = 2(2n)-2r R PR ) -
0 0
(2) We take and fix ¢ = ¢(8), 0 <e¢ <9d, so small that 75 <1/2 and
. r )| t-dt < 5 .
0

We now use Lemma 2.3 with § = ¢(§). By Lemma 3.1 and by the above
choice of ¢, there exists h, = hy(6, M) such that

(3.8) }r ks(O(F(htt) — G(h%))dti < Coh~*m(M~'h)

for 0 < h < h,
(3) By (8.2) and (3.5), we have

(3.9) j: \eh22) — o)) dNy(2; B) < Coh~*m(M"'h)
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and similarly by (3.4),
(3.10) j:’ #(B2) — pu(B) | du(R; B) < CoR—"m(M~'R) .
We combine (3.6)-(3.10) to obtain
U: 0(WDAN (25 B) — 22x)" j: 0s(hDdd(2; h)| < CoR~*m(MR"") .

Since ¢,(h=?; h) = 6(h~%; h"'b) and o,(h~%; h) = m(h™"), it follows from (A.4)
and Lemma 3.2 that

(3.11) C'9(h % h7'b) < hm(Mh~") < CO(h™%; h'b) .
Thus, we have
N, (h™%; h) £ 2(27)0((1 + 9)h~*; h™'b) + Co6(h~*; h™'b)
and
Ny (h7%; h) = 2(27)~0((1 — 6)h~*; h='b) — CoO(h™*; h™'b) .
(4) The proof is completed by the following
LeEMmma 3.3
(i) lalll'gl lin;fbup (L + dh7 h'b)O(h % b)) =1
(ii) 15111? lin}:ﬁionfﬁ((l — OhE AB)O(R T hTD) =1 .

Proof. We prove (i) only, (ii) is proved similarly. We set

Yy, = {x:(2j + Dbx) <A — v/ 0)h7'}
YV, ={x: (1 — v/ 3)h ' < (2 + Db(x) < (1 + o)A}

and write
01 + 9)h™*; h ') = h™(6:(h) + 6:(h)) ,
where
0u(h) = S [ B + DR — @) + Db()"dx,  1=RZ2.
If xeY,,, then

L+ Oh™ — @j + Db(x) = (1 + v 3)(h™ — (2 + 1b(x))

and hence
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(3.12) h=0,(h) < (1 + +/ 3)"0(h~%; h™'b) .
If xeY,,, then

(L4 0h™ — (2] + Db(x) < 2V iR
and hence
(3.13) h%0,,(h) < C3"h-*6,(h) ,

where
6 (k) = 35, j Cb@dx, G, ={x:(2j + Db(x) <247}

By the same arguments as in the proof of Lemma 3.2, we can show that
C'h'm(h™) < 04(h) < Ch™'m(h™) ,
which, together with (3.11)-(3.13), proves the lemma. |

§4. Proof of Lemma 2.2

The proof of Lemma 2.2 is divided into several steps.

4.1. We begin by introducing new notations. Let A(x) = (a,(x), a,(x),
a;(x)) be the given magnetic potential. We set I1(h) = id, + (2h)'a,, 1 <
Jj < 3, so that IIF(h) = II(h) and

H(h) = 5 X (h) .
We define b,(x), 1 <j, k<3, by
bu(%) = 0,a,(x) — 3,a,() .
Then, Sz, s by(x)? = 2b(x) and
LT (), T(R)] = IT(R)IT (k) — IT(R)I (R) = i(2k)"'b,, .

Lemma 4.1. Write 11, for II (h) and denote by (, ) the L? scalar product.
Let a,(x), 1L £j, k <3, be a real C'-smooth function. Then

2Im (aull 9, [1:9) = —Q2h) " (a,ubud, §) + (4, B.0;08) — (i, (3,0,1)6)
for ¢ € C7(R3).
Proof. We write
21Im (e, 01,9, I1,0) = (10,01, — I1,a,ll )¢, ¢) .

A simple commutator calculus proves the lemma. O
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The identity above has been used in [6] to prove the compactness
property of resolvents.

4.2, We introduce another new notation
X (h) = {x: b(x) > dh"}, d>0.
By assumption (A.3"), we can choose h; = hy(M) so small that
4.1) Pbu(®)] < Mob(xF,  xeXuuh),
for 0 < h < h,, We now take
a (%) = h7'Mb,;(x)]b(x)" xe Xy(h),

in the identity of Lemma 4.1. First we note that |e¢,(x)| < 2 and |Fa,(x)|
< Ch™', C being independent of M, and that

(2R)™ 3751 201 (%) () = hPM .
Thus it follows from Lemma 4.1 that

(4.2) (H(h)¢, $) = Ch™*M(4, $)
for ¢ supported in X, ,.(h).

4.3. Let ¥u(x; h)e C(R%), 0 < +y < 1, be such that 4, = 1 on X,(h)
and ¥y = 0in R\ X, .(h). By (4.1), we may assume that |/ ,(x; h)| < Ch".
As is easily seen, (4.2) is still valid for yu, u € 2(H(h)) (=domain of H(h)).
Hence, by a simple commutator calculus, we have

(H(h)u, ¥iuw) = Ch M yu, yryw) — Ch™(u, u) .

Thus we have proved the following

LEMMA 4.2. Let u/x; h) be the normalized eigenfunction associated to
the eigenvalue A,(h) < h™* of H(h). There exists h, = h(M) such that if
0 <<h<h,, then

11— 2Ry, < CM™
for C independent of M > 1.

4.4. By the same arguments as above, we can construct a real func-
tion W(x; h) with the following properties:

(1) HMWg, ¢) > 27 HM, ¢) + (Vo 9),  $eCo(R);
(ii) V(x;h) = O™ ;
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i) V(x; h) =2h7%, xe X, (h), for some d, >0
for h small enough. We define
W(x; h) = max (0, h=* — V(x; h)) .

By properties (ii) and (iii), W(x; A) = O(h™?) and is supported in {x: b(x) <
d,h7'}. By property (i), Ng(h) with E = 1 is majorized by the number of
negative eigenvalues of the operator H(h) — 2W. By the Rosenbljum-Cwikel-
Lieb bound ([1], Theorem 2.15), we have

N(h) < CJ W(x; h)*dx < Ch~*m(d,h"") ,
R3

which, together with Lemma 4.2 and (3.11), completes the proof of Lemma
2.2.

§5. Bounds on the traces

The aim here is to prove the following
LemmA 5.1. Let ¢,(2; h) be defined by (2.3). For any 4, 0<d < 1,
there exists C, = Cy0, M) such that if 0 <t <3 'h%, then
T [ou(h) exp (—tHW)] £ G, [ " exp (—2t0d g2 1) .

Proof. By Lemmas 3.1 and 3.2 and by assumption (A.4), we have only
to show that there exists C = C(§, M) such that

m(Mh-)t-" < cr exp (—20)d(o,(2; B)A*)
0

for 0 <t <§'h’. By the definition (8.3) of ¢,(1; h), 0,(2; h) = m(Mh™") for
A= Mh% and hence

G.1) r exp (— 20 d(0,(1; A = m(Mh-1)¢- r exp (—20)de™™ .

0 Mh—2t
If 0<<t<d'h, then the existence of such a constant C follows at
once, U

For later reference, we here state the following

Lemma 5.2. For any 8,0 <3 < 1, there exists h, = hy(6, M) such that
if 0<<t<é'h® for 0 < h < hs, then:
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(i) f exp (—t)d2"2 = O < § f: exp (—2t0)déu(2; h)
(ii) J " exp (—tAd(ou(3; A7) < CI: exp (—26)d (2 h) .
Proof. Since m(h™") — o as h— 0, (i) follows from (5.1) and Lemma
3.2. (ii) is similarly proved if we note that

0x(22; WA < Cou(A; h), 2> Ah77,
which follows from (A.4) and Lemma 3.2. O

§6. Proof of Lemma 2.3

The proof is divided into several steps.
(1) Let Cy0, M) be as in Lemma 5.1. We take and fix ¢ = &5, M),
0 <{e <94, so small that

(6.1) EC,5, M) < & .

By assumption (A.3"), we can take R, so large that

(6.2) [b(x)| >, [Fb(x)] < eb(x)

for |x| > R. — 1. If hy = hy6, M) is chosen small enough, then the region
(6.3) Qys(h) = {x:|x| > R,, b(x) < Mh™'}

is not empty for 0 < h < h,.
Lemma 6.1. Let R. be as above. There exists h, = h,(8, M) such that
if 0<<t<é'h* for 0 < h <h,, then
[, lexp (—2tHGr ®)dx < 3 [ exp (~20dg.2; B)
171 S R, 0

The above lemma is an immediate consequence of Lemma 5.2 —(i),
because the integral on the left side is of order O((*%) by (3.1). Our next
task is to evaluate the integration of [exp (—2tH(h)}](x, x) over 2,,(h).

(2) Let A(x) = (a)(x), a)(x), a;(x)) be the given magnetic potential. We
fix ze Q4:(h). By the Taylor expansion,

a(x) = a2) + (Va)@), x —2) + r(x), 1=j=3,

where ¢, > denotes the scalar product in R’, and

64) @ =@)" T [j (3:0)(@ + s(x — 2)ds|(x — 2.
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Set R,(x) = (r,(x), r;,(x), ri,(x)). By definition, B(x) =V X A(x) and hence
we can find a real function g,(x) such that

A(x) = B(2) X x + R,(x) + PV g,(x) .
We now define

H,.(h) = (W + (2h)"'B(2) X %)’
H,(h) = (V + (2h)(B(2) X x + R.(x)))* .

Let U,(h) be the multiplication by exp (i(2h) 'g.(x)), so that U,(h): L*(R?)
— L*(R?) is unitary and

H(h) = U.(WH(WU(h) .

(3) Let y(x)e C3(R3), 0 < 4 < 1, be a function such that (x) is sup-
ported in |x| <1 and 4 =1 on |x| £ 1/2. For ze Q,,(h), we set

Waa(25 B) = P(eh ™ 0(2) " (x — 2)) ,

where ¢ = &0, M) is fixed in step (1). Then the following relation can be
easily established:

Vi oxp (—tH() = exp (= tHou (W),
+ [ exp (=t = Hu(W)Liu(h) exp (—sH.(h)ds ,

where
L&z(h) = [Hoz(h)7 1;,/'Bz] + ‘I’BZ(HOZ(h) - Hz(h)) .

We now let the above relation operate on the normalized eigenfunction
u(x; h) associated with the eigenvalue 2,(h). Then we obtain

exp (— ()25 h) = Tk vists 23 1),
where
tus = (U) exp (— tHo () s, U () )5 P
v = [ exp (—SLBNTlt = 55 )3 ). ds

s = | exp (=sWN(Tolt — 53 D )(x; .. ds
Tiu(ts B) = UL(h) exp (—tHu (W)L HYUE(B)

(4) The next lemma, together with Lemma 6.1, proves Lemma 2.3.
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LEMMA 6.2. Let Q,(h) be defined by (6.3). Define

Lit; ) = S5 [, vealt, WPz, 0Zk=2.

MS

There exists hy = hy(d, M) such that if 0 <<t <<d"'h* for 0 < h < hg, then
(6.5) Lt 1) = 220 | " exp (— 26025 BX1 + OG)
6.6) L(t; B) = j " exp (=20 dg.(2; OE), 1=k<2,

0

where the order relations may depend on M.

We will prove this lemma in Section 7.

§7. Completion of proof of Lemma 2.3

In this section we shall complete the proof of Lemma 2.3 by proving
Lemma 6.2.

7.1. We write B(z) = B(2)/b(2), so that |B(z)| =1 if b(z) #0. The
integral kernel of exp (—tH,(h)), ze 2,{(h), can be explicitly calculated
(111, [12]);

lexp (—tH,.h))(x, ¥)
= (4at)""F(h"'b(2)t) exp (— F.(x — y,t; h) — iF.(x, y; b)),

where F(s) = s(sinh s)™*, s >0,
F,. = (4)"{(B(@), x — y)[ + (h"'b(2)t) coth (A~'b(2)t) | B(2) X (x — »)[}
F,, =2"C(h'B(2) X x,y) .

Let

(1.1) P.(h) = (Pi.(R), P,.(R), P.(h)) = iV, + (2R)"'B(2) X y .

Then Pj(h) = P, (h), 1 <j < 3, and also H,,(h) = >, P;,(h)}, if we regard

H,.(h) as a differential operator acting on functions of y-variables.

LemMma 7.1
(1) |lexp (—tH,.(M)(z, y)| < Ct™** exp (—3h"'b(2)t) exp (— C7't7 |y — 2[).

(i) | Py.(h) exp (—tH. (W), )|
< Ct~*exp (—3h~'b(2)t) exp (—Ct" |y — 2), 1=<j=3.

The above lemma follows immediately from the representation for
[exp (—tH,,(h))(x, ¥).
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LEMmMmaA 7.2.

[ ltexp (— BNz, )P dy
— @0 7b(E) X7 | exp (<26 + (24 + DA b@)ds
where the integration with no domain attached is taken over the whole
space R°.
Proof. If we write

¢ [KB), )F + .| B() X yF = (Ay,y),  ¢,>0,
for some 3 X 3 positive matrix A, then

[ exp (—<Ay, y)dy = (@et A)m e = ez
We denote by J(t, z; ) the integral under consideration and use the above
formula with

¢ =21, ¢, = (2h)7'b(2) coth (h'b(2)1) .

Then we have
(7.2) Jyt, z; h) = 2772z~ 2h~'b(2) (sinh (2h'b(2)t)) " .

The proof is completed by making use of the following two identities:

T VR Jm exp (—2t&H)d¢ ;

(sinhs)™' =237 ,exp(—(2j + 1)s), s>0 O

For later reference, we here make a brief comment on the integral
Jo(t, 2z ; h’)'

Remark 7.1. If we note that lim,,,s(sinh s)' = 1, the function J(t, z; h)
is well-defined for all ze R®. In particular, Ji(¢, z; h) can be defined for
2z with b(z) = 0 and also we can easily see that J(¢, z; h) = O(t~*?), z e R?,
uniformly in A.

7.2. First we prove (6.5).

Proof of (6.5). By the Parseval relation, we have

35 [volt, 23 B = j Wrox(ys 1Y |exp (— tHo ()2, ) dy -
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We write the above integral as J(t, z; h) + Jy(¢, z; h), where J, is defined
by (7.2) and

Tt 23 1) = [ (hanly; B = D)l lexp (—tHL ()N I dy

By Remark 7.1, Ji(t, z; h) is well-defined over the whole space R:. We
recall the definition (2.3) of ¢,(1; h). Then, by Lemma 7.2, we can write

j J(t, z; Bydz = 2(27)" jm exp (—2t0déy(2; ) .
b(z)<Mh—1 0

By Remark 7.1, the integral of Ji(t, z; h) over |z| < R, is of order O(t™*?).
Hence, by Lemma 5.2-(1), we can choose h, = hy(d, M) so small that if 0 <
t < é'h* for 0 < h < h,, then

[, e zndz =200 [ exp (—20dg.ld; DL+ 06)) .
2 45(R) 0
We evaluate the integral of Ji(t, z; h). By the definition of ., (y; h),
ly — 2| = (2e)'h'b(2)™"?
on the support of ,,(y; h)) — 1. Hence it follows from Lemma 7.1-(i) that

lexp (—tHy.(M))(z NI =y — 2|7’ |y — 2[ |[exp (—tH,.(M)](z, y)I
< Ch"b(2)"* " exp (—h'b(2)t) exp (— C 't |y — 2[) .

Therefore, we have
Ji(t, z; h) < CEeh™**b(2)** exp (—h™'b(2)1) .
We here recall the definition (3.3) of ¢,(1; h). Then we have

j J(t 2 hydz < C& J " exp (— ) d(ay(A; ) .
24500 0

This, together with Lemma 5.2-(ii), completes the proof of (6.5). O

7.3. We regard L;,(h) as a differential operator acting on functions
of y-variables. To prove (6.6), we have to evaluate the function

(7.3) Ki(z,,t; h) = Li(h)exp (—tH,.(W)(z, y) .

Lemma 7.3. Let f(x) > 0, xe R, be a function with the property |V f(x))
< ()7, 0> 0. IF T = pgly — x|f(x) <1, then

A +07fx) < fy) = A — )7 f(x) .
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Proof. Set g(s) = f(x + s(y — x)/|y — x|), so that g(0) = f(x) and
g(ly — x) = f(y). By assumption,
—pg(s)r < g'(s) < pg(s)r.

The lemma is verified by solving these differential inequalities. O

Now, assume that |y — z| < e 'h'?b(2)"' for ze Q4(h). Then, by the
choice of R., it follows from (6.2) that |y| > R, — land |y — z| < e M"*b(2) 7,
because b(2)* < M'*h'2 for ze 2,,(h). Furthermore, [Fb(y)| < b(y)* by
(6.2) again. Thus, we have by Lemma 7.3 with p = 1 that

(7.4 277b(2) = b(y) = 2b(2) ,

if ¢ i1s chosen so small that eM'* <1/2.
Let r.(»), 1 £j <38, be defined by (6.4). If |y — z| < e7'h'?b(2)""”* for
z e Qy(h), then it follows from (7.4) and (A.3) that

(7.5) R rp(9)] = Ceh™'b(2) |y — 2|
(7.6) hAr (y)| < CERb(2) |y — 2|

for C dependning on M. Let P,,(h), 1 <j <3, be defined by (7.1). The
operator L¥(h) takes the form

L(h) = 235 [esn(ys MP(R) + dyo(y; B)] .

The coefficients c;;, and d;, are supported in {y: |y — 2| < e 'AV*b(2)'*} and
satisfy the estimates;

(7.7 lc,e:(y; B)| = Ceh™'b(2) |y — 2]
(7.8) |d;o:(y; B)| = Ceh™b(2)" |y — 2],
which follow from (7.5), (7.6) and
00| < Coleh™0(2) "]y — 2], laf = 1.
Thus we combine (7.7) and (7.8) with Lemma 7.1 to obtain the following

Lemma 7.4. Let Ky(z,v,t; h), z€ 2,(h), be defined by (1.3). Then, K,
is supported in {y:|y — z| <& 'h'?b(2)"'*} as a function of y-variables and

|K;| < Ceh'b(2)t* exp (—1h7'0(2)9)]|ly — z|exp (—C7't7' |y — 2[)] .
7.4. We shall prove (6.6).

Proof of (6.6). (i) First we deal with the case k = 1. By the Schwarz
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inequality and by the Parseval relation, it follows from Lemma 7.4 that

Sralvat z M <[ (1K vt = 55 )P dyds
0
< CEh~2b(2) 't exp (—+h™'b(2)0) .

Furthermore, by Lemma 5.2-(ii), we have
Lit; b) < C || 27" exp (— 40)d(ou(t; W)
0
- r exp (—2t)déu(1; YOG .
0

This proves (6.6) with & = 1.
(ii) Next we deal with the case £ = 2. We start with the estimate

vt 23 W] < exp (—3a00) [ [ 1Kz, 9, 53 W lu(9)] dyds
We make a change of variables: (y, s) — (v, ©), where
y = 2z + h'*b(2) 'y, s = hb(2)'z.
The Jacobian a(y, s)/o(v, ) can be easily calculated:
19(y, 9)I3(v, 7)| = h**b(2)~*/*c**
and also by Lemma 7.4, we have
|K;| < Ceh™2b(2)*c **Fy(v, t)
in the (v, r)-coordinates, where
Fyv, 7) = exp (—¥7) [v] exp (— C™* [v[Po(er"*v)
and X, is the characteristic function of the set {x:|x| < 1}. Thus we have
vt 23 1) = Cexp (—34) [ [ v, ) wite, v, 75 )| dvd
where
wiz, v, 7; h) = ufz + h'*b(z)""*<"*v; h) .

Set { =z + A'b(2)"*cv. If ze Qy(h) and |[7'v] < ¢, then it follows
from (6.2) that || >R, — 1 and | ~ 2| < ¢7'M'*b(z)~'. Furthermore, by
(6.2) again, [Fb(&)| < eb(f)’. Hence by Lemma 7.3 with p = 1, we have b({)
< 2b(2) £ 2Mh~'. The Jacobian 3({)/d(z) satisfies
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10@/(@)| =1+ O@) =1 + 00) .

Thus we have

J lwy(z, v, v; ) dz < cf lu (G hPdE
b(z)<Mh—1

b()<2Mh—Y

for C independent of (v, 7), |z'*v] < &', and hence
Lit; h) < Cé* Tr [Xou(h) exp (—tH(h))] .
By the choice of ¢ ((6.1)) and by Lemma 5.1, we have

Lit; h) = f " exp (—2)dg.(2; HO@)

This proves (6.6) with k = 2.

§8. Sketch of proof of Theorem 1

In the present section we assume (A.1)-(A.4), and give a sketch for
the proof of Theorem 1. This theorem can be more easily proved than
Theorem 2, because we do not need to consider the localized trace as in
the proof of Theorem 2.

8.1. We first establish the bound on the trace Tr[exp(—tH)]. We
start with Lemma 4.1 with A =1. We fix R, so that b(x) = 1 for |x| > R,
and take

a;(x) = — b(x)[b(x) , 1<), k<3,

for |x| > R,. As is easily seen, |a;(x)| = O(1) and |[Fa,(x)| = o(b(x)"?), |x|
— oo, by (A.3). Hence it follows from Lemma 4.1 that (H¢, ¢) = C(bg, ¢)
for ¢ € Cy(|x| > R,) and therefore we have

8.1 (H¢, ¢) =z 27'(H¢, 9) + C((b — D¢, 9), e CP(RL),

with another constant C >> 0. With this constant C, we define the operator
H, by H= —27'4+ Cb. By (A.4), m(2) is of algebraic growth as 1— co;
m(2) = O(¥) for some K > 0, and by the Rosenbljum-Cwikel-Lieb bound
([9], Theorem XIIL.12), the number of eigenvalues less than 2 of H, is
majorized by Cm(2)4*®. This implies that exp(—tH,), ¢t > 0, is of trace
clags and that

Tr [exp (—tH)] < C j : exp (— ) d(m)I™) .
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Hence, by the Feynman-Kac-Ité formula, it follows from (8.1) that exp(—tH),
t > 0, is of trace class and

Tr [exp(—tH)] £ CTr[exp(—tH,)], 0<t<1.
By the same arguments as in the proof of Lemma 3.2, we can prove that
8.2) C'mAX"* L 0 £ Cm()A¥* 1>0.

Thus we obtain the following bound on the trace:
Tr [exp (— tH)] < cr exp(—t)doQ), 0<t<1.
0

8.2. Let y(x)e Cy(R:) be as in step (3) of Section 6. Making use of
the bound above and of the cut-off function

Va(x) = W(0b(2)(x — 2)) ,

we can obtain the following asymptotic formula:
Tr fexp (—¢H)] = 220)* | exp(—t)doA(L + o), 0.
0

The same arguments as in the proof of Lemma 3.3 prove that 6(1) satisfies
the conditions of Karamata’s tauberian theorem. Thus the proof of Theo-
rem 1 is completed by applying this tauberian theorem to the asymptotic
trace formula.

Added in proof. During the submission to the journal, the author
knew that Colin de Verdiere obtained a similar result, including the n-
dimensional case, by a different method based on the min-max principle.

Y. Colin de Verdiere; L’asymptotique de Weyl pour les bouteilles
magnétiques, Commun. Math. Phys., 105 (1986), 327-335.
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