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§ 1. Introduction

A Hadamard matrix of order n is an n by n matrix of l's and — Γs
such that HW = nl. In such a matrix n is necessarily 1, 2 or a multiple
of 4. Two Hadamard matrices H^ and H2 are called equivalent if there
exist monomial matrices P, Q with PHXQ = H2. An automorphism of a
Hadamard matrix H is an equivalence of the matrix to itself, i.e. a pair
(P, Q) of monomial matrices such that PHQ = H. In other words, an
automorphism of if is a permutation of its rows followed by multiplication
of some rows by — 1, which leads to reordering of its columns and mul-
tiplication of some columns by — 1. The set of all automorphisms form
a group under composition called the automorphism group (Autίf) of H.
For a detailed study of the basic properties and applications of Hadamard
matrices see, e.g. [1], [7, Chap. 14], [8].

The equivalence classes of Hadamard matrices of orders not exceeding
20 has been determined by Hall [5], [6], More recently, Ito et al. [11]
completed the classification of the Hadamard matrices of order 24. For
the next order 28, it is known that the only primes which can divide the
group order are 13, 7, 3 and 2, and the matrices possessing automorphisms
of order 13 or 7 are found [17], [18]. A rough but susceptible lower bound
for the number of equivalence classes of Hadamard matrices of order 32
can be obtained from a result of Norman [13], stating that there are at
least 1266891 non-isomorphic Hadamard 2-(31,15, 7) designs, and hence at
least 1266891/322 inequivalent Hadamard matrices of order 32.

Hadamard matrices of order 36 have been extensively studied [2], [10],
[20]. It was proved by Ito [9] that if a Hadamard matrix H of order n
possesses a "known" doubly-transitive automorphism group then either H
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is of quadratic-residue type, or n = 36. A Hadamard matrix of order 36
with a doubly-transitive group was recently constructed by Ito and Leon [10].

In this paper we begin a classification of Hadamard matrices of order
36 by means of "local" properties of their automorphism groups, namely,
by considering the possible primes dividing the group order. If p is an
odd prime dividing the group order of a Hadamard matrix of order n
(n >̂ 4), then either p divides n or n — 1, or p <L n/2 — 1; moreover, if p
does not divide n, then p must be an order of an automorphism of a
symmetric 2-(n — 1, n/2 — 1, njA — 1) design [17]. In particular, the largest
prime which can divide the group order of a Hadamard matrix of order
36 is 17. The Paley matrix [14], [7], which is undoubtedly the first Hada-
mard matrix of order 36 ever found, admits an automorphism of order 17.
It is perhaps worth noting that none of the 80 Hadamard matrices arising
from Steiner triple systems of order 15 [2] possesses automorphisms of
order 17.

It is our aim in this paper to show that up to equivalence there are
precisely 11 Hadamard matrices of order 36 with automorphisms of order
17. From these 11 matrices, only the Paley matrix has a transitive auto-
morphism group (of order 19584 = 27 32 17), while the remaining matrices
all have full automorphism groups of order 68. We use the same method
as in [17]. It is not difficult to see that if a Hadamard matrix H of order
36 admits an automorphism of order 17, then H is equivalent to a nor-
malized matrix of the form

r l l ,
1

M :

l

where M is a (— 1,1) incidence matrix of a Hadamard 2-(35,17, 8) design
with an automorphism of order 17. Further, a 2-(35,17, 8) design with an
automorphism of order 17 has a block, the derived design with respect to
which is a cyclic 2-(17, 8, 7) design. Hence one can obtain the Hadamard
2-(35,17, 8) designs with automorphisms of order 17 as embeddings of cyclic
2-(17, 8, 7) designs. The isomorphism classes of cyclic 2-(17, 8, 7) designs
are described in [19], A table with their representatives is given in Sec-
tion 2. In Section 3 we study the Hadamard 2-(35,17, 8) and 3-(36,18, 8)
designs with automorphisms of order 17. There are precisely 21 isomor-
phism classes of 2-(35,17, 8) designs, and 11 classes of 3-(36,18, 8) designs
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with automorphisms of order 17. In the last Section 4 we show that the

11 Hadamard matrices obtained from the non-isomorphic 3-(3δ, 18, 8) designs

are pairwise inequivalent.

§ 2. Cyclic 2-(17, 8, 7) designs

Let X = GF(11) = {0,1, 2, , 16} be the point set of a 2-(17, 8, 7)

design which is invariant under the cyclic group Z17, i.e. under the per-

mutation (0,1, 2, , 16). The set of all (I7) 8-element subsets of X is

partitioned into 1430 orbits under the action of ZlΊ. We checked by com-

puter that exactly 161 pairs of these orbits form a 2-(17, 8, 7) design. The

images of the blocks of a cyclic 2-design with point set GF(p) (p a prime)

under an affine transformation of GF(p) form again a cyclic design iso-

morphic to the initial design, and by a theorem of Bays-Lambossy (cf. [3,

p. 225]) the converse is also true: two cyclic designs on a prime number

of points are isomorphic if and only if they are affine equivalent. The

set of the 161 cyclic 2-(17, 8, 7) designs is thus divided into 11 isomorphism

classes: 10 classes consisting of 16 designs each, and one class of a single

design. Representatives for these designs are listed in Table 1.

Table 1. Cyclic 2-(17,8,7) designs

No. Representatives of block orbits Group order
Γ (1,2,3,4,5,7,11,14), (1,2,3,5,8,10,13,14) 17
2 (1,2,3,4,5,7,11,14), (1,2,3,7,8,11,13,16) 17
3 (1,2,3,4,5,8,9,13), (1,2,4,6,9,10,12,16) 17
4 (1,2,3,4,5,8,9,13), (1,2,4,8,10,11,14,16) 17
5 (1,2,3,4,5,8,10,14), (1,2,3,6,8,9,11,15) 17
6 (1,2,3,4,5,8,10,14), (1,2,3,6,10,12,13,15) 17
7 (1,2,3,4,6,7,11,13), (1,2,3,5,6,9,12,14) 17
8 (1,2,3,4,6,7,12,14), (1,2,4,5,8,9,11,13) 17
9 (1,2,3,4,6,9,11,15), (1,2,3,5,6,11,12,16) 17

10 (1,2,3,4,6,9,11,15), (1,2,3,5,9,10,15,16) 17
11 (1,2,3,5,11,13,14,15), (1,2,4,5,7,11,12,16) 24.17

The full automorphism groups of these designs can be found with the

help of Sims' table of primitive permutation groups of degree 17 [lδ], or

by computer using an algorithm of Gibbons [4]. The design 11 has the

affine group of GF(Π) as a full automorphism group, while the groups of

the remaining designs are all of order 17. For more details see [19].
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§ 3. Hadamard 2-(35,17,8) and 3-(36,18,8) designs with automorphisms
of order 17

Let D be a symmetric 2-(35,17, 8) design with point set {1, 2, , 35},

and an automorphism β of order 17. We can assume that /3 = (1, 2, , 17)

(18) (19, 20, , 35), and the blocks are labeled in such a way that the

block fixed by β is the last one and consists of the points 1, 2, , 17, and

the fixed point 18 occurs in the first 17 blocks. Then D has an incidence

matrix of the form

( 1 )

M N

1 . . . 1 o • •• 0

0
P Q :

όJ

where M, M, P, Q are circulant matrices,

( 2 ) (M,N)

is an incidence matrix of a cyclic 2-(17, 8, 7) design, and

( 3 ) . . . 1 0 01

P Q I
is an incidence matrix of a 2-(18, 9,8) design with an automorphism of

order 17. Similarly,

( 4 )
r i • l o • oi

is an incidence matrix of a 2-(18, 9, 8) design with an automorphism of

order 17, and

( 5 ) (AT, Pι)

is an incidence matrix of a cyclic 2-(17, 8, 7) design. Having a quadruple

of designs with incidence matrices (2)-(5), we can obtain a symmetric

design (if one exist) by fixing M, N, P and permuting the rows of Q

cyclically while the matrix (1) produces a design. Let us note that the

2-(18, 9,8) design with an automorphism of order 17 are easily derived

from the cyclic 2-(17, 8, 7) designs: if (2) is an incidence matrix of a cyclic

2-(17, 8, 7) design, then
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r o . . . o 1 . . . l i r i . - . l o . . . o i
[j-M N J> [ M J-N\>

where J is the all-one matrix, are both incidence matrices of 2-(18, 9, 8)

designs with an automorphism of order 17. Conversely, if (3) is an inci-

dence matrix of a 2-(18, 9, 8) design with an automorphism of order 17,

then (J — P, Q) is an incidence matrix of a cyclic 2-(17, 8, 7) design.

Another more general way to embed the cycilc 2-(17, 8, 7) designs into

symmetric 2-(35,17, 8) designs is to use the algorithm from [16], based on

the observation that if a part (i.e. several rows) of the incidence matrix

of a 2-(v, k, X) design is given, then any missing row lies in the orthogonal

complement of the vector space over GF(p) generated by the given rows,

where p is a prime dividing λ.

Let us remark that if (3) is an incidence matrix of a 2-(18, 9, 8) design

completing the design (2) to a symmetric design (1), then the comple-

mentary design of (3), i.e. the design with incidence matrix

r o . . . o l . . . l i
[J-P J-Q\

also completes the design (2) to a symmetric design. Therefore, if a

2-(17, 8, 7) design admits an embedding it admits at least two (not neces-

sarily nonisomorphic). It turns out that each of the 11 cyclic 2-(17, 8, 7)

designs is embeddable in exactly two symmetric designs. Since the design

11 admits an automorphism of order 2 interchanging the two cyclic block

orbits, the symmetric designs thus obtained are given in Table 2, where

in all cases a block JB35 = {1, 2, , 17} should be added.

Table 2. Hadamard 2-(35,17, 8) designs with automorphisms of 17

D e s i g n

D1A

D1B

D2A

D2B

DZA

D$B

B1 =
£i8=

Bι =
J5 1 8 =
Bx =
B18=
B1 =
B18=
Bι =
Bw=
Bx =
#18=

Base blocks

(1,2,3,4,5,7,11,14,18,20,22,23,24, 28,29,32,34)
(1,2,3,5,8,10,13,14,19,25,26,27,29,30,32,33, 34)
(1,2,3,4,5,7,11,14,19,21,25,26,27,30,31,33,35)
(1,2,3,5, 8,10,13,14,18,20,21,22,23,24,28,31,35)
(1,2,3,4,5,7,11,14,18,22,23,24,26,29,31,34,35)
(..2,3,7,8,11,13,16,19,25,26,27,29,30,32,33,34)
(1,2,3,4,5,7,11,14,19,20,21,25,27,28,30, 32,33)
(1,2,3,7,8,11,13,16,18,20,21,22,23,24,28,31, 35)
(1,2,3,4,5,8,9,13,18,19,21,23,24,26,30,32,33)
(..2,4,6,9,10,12,16,19,25,26,27,28,30,31,32,35)
(1,2,3,4,5,8,9,13,20,22,25,27,28,29,31,34, 35)
(1,2,4,6,9,10,12,16,18,20,21,22,23,24,29,33,34)
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Table 2. (Continued)

Design Base blocks

D4A B1 = (1,2,3,4,5,8,9,13,18,21,23,24,26,28,31,32,34)
#iβ= (1,2,4,8,10,11,14,16,19,25,26,27,28,30,31,32,35)

D,B # i = (1,2,3,4,5,8,9,13,19,20,22,25,27,29,30,33,35)
#iβ= (1,2,4,8,10,11,14,16,18,20,21,22,23,24,29,33,34)

D'θA BΎ = (1,2,3,4,5,8,10,14,18,19,22,23,24,27,31,33,34)
# i β = (1,2,3,6,8,9,11,15,19,25,26,27,29,30,31,33,35)

DbB B1 = (1,2,3,4,5,8,10,14,20,21,25,26,28,29,30,32,35)
£ i 8 = (1,2,3,6,8,9,11,15,18,20,21,22,23,24,28,32,34)

D6A # x = (1,2,3,4,5,8,10,14,18,19,22,23,24,27,29,30,32)
#18= (1,2,3,6,10,12,13,15,19,25,26,27,29,30,31,33,35)

DQB # I =(1,2,3,4,5,8,10,14,20,21,25,26,28,31,33,34,35)
J?i8= (1,2,3,6,10,12,13,15,18,20,21,22,23,24,28,32,34)

D7A Bι = (1,2,3,4,6,7,11,13,18,19,21,22,23,27,29,32,35)
#iβ= (1,2,3,5,6,9,12,14,19,24,25,26,27,29,31,32,33)

D7B # i = (1,2,3,4,6,7,11,13,20,24,25,26,28,30,31,33,34)
£i8= (1,2,3,5,6,9,12,14,18,20,21,22,23,28,30,34,35)

DSΛ Bx = (1,2,3,4,6,7,12,14,18,20,22,23,26,27,29,30,35)
#18= (1,2,4,5,8,9,11,13,20,21,22,23,26,31,32,33,35)

DBB # i =(1,2,3,4,6,7,12,14,19,21,24,25,28,31,32,33,34)
#18= (1,2,4,5,8,9,11,13,18,19,24,25,27,28,29,30,34)

D9A Bλ =(1,2,3,4,6,9,11,15,18,22,23,28,29,31,32,33,35)
#18= (1,2,3,5,6,11,12,16,20,21,22,24,26,27,29,34,35)

D9B # ! = (1,2,3,4,6,9,11,15,19,20,21,24,25,26,27,30,34)
#18= (1,2,3,5,6,11,12,16,18,19,23,25,28,30,31,32,33)

D10A # i = (1,2,3,4,6,9,11,15,18,19,24,25,29,31,32,33,35)

#18= (1,2,3,5,9,10,15,16,20,21,22,24,26,27,29,34,35)

DIOB #1 =(1,2,3,4,6,9,11,15,20,21,22,23,26,27,28,30,34)

#18=(1,2,3,5,9,10,15,16,18,19,23,25,28,30,31,32,33)

Dπi # i =(1,2,3,5,11,13,14,15,18,19,21,22,24,28,29,33,35)
#18=(1,2,4,5,7,11,12,16,19,23,24,28,30,31,32,33,34)

In order to establish the nonisomorphism of the designs from Table 2,

we count the number m* of pairs of points occuring together with a given

point in precisely ί blocks (0 <: i ^ 8). Of course, it is sufficient to do

this only for a triple of points belonging to different β-orbits. The results

are given in Table 3.

Table 3.

Design (m0, mlt , m6) o? joints D u a l d e s i ^ n

D1Λ 0 0 34 204 255 68 0 1 0 0 34 204 255 68 0
0 0 31 213 246 71 0 17 0 0 31 213 246 71 0
0 0 33 207 252 69 0 17 0 0 33 207 252 69 0
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Table 3. (Continued)

Design (m
0
,m

l9
 , m

6
) £ points

 D ΐ l a l d e s i
^

n

D
1B
 0 0 34 204 255 68 0 1 0 0 34 204 255 68 0

0 0 33 207 252 69 0 17 0 0 33 207 252 69 0

0 0 37 195 264 65 0 17 0 0 37 195 264 65 0

D
3A
 0 0 34 204 255 68 0 1 0 0 34 204 255 68 0

0 0 31 213 246 71 0 17 0 0 31 213 246 71 0

0 0 33 207 252 69 0 17 0 0 33 207 252 69 0

D
2B
 0 0 34 204 255 68 0 1 0 0 34 204 255 68 0

0 0 33 207 252 69 0 17 0 0 33 207 252 69 0

0 0 37 195 264 65 0 17 0 0 37 195 264 65 0

D
ZA
 0 17 17 153 340 34 0 1 0 0 34 204 255 68 0

0 1 24 223 248 60 5 17 0 0 28 218 249 62 4

0 1 26 218 251 61 4 17 0 0 30 214 249 66 2

D
3B
 0 17 17 153 340 34 0 1 0 0 34 204 255 68 0

0 2 35 185 286 49 4 17 0 2 34 192 271 62 0

0 3 36 178 291 51 2 17 0 4 30 192 275 60 0

D
iA
 0 0 34 204 255 68 0 1 0 17 17 153 340 34 6

0 0 28 218 249 62 4 17 0 1 24 223 248 60 5

0 0 30 214 249 66 2 17 0 1 26 218 251 61 4

D
iB
 0 0 34 204 255 68 0 1 0 17 17 153 340 34 0

0 2 34 192 271 62 0 17 0 2 35 185 286 49 4

0 4 30 192 275 60 0 17 0 3 36 178 291 51 2

D
5A
 0 0 34 204 255 68 0 1 0 0 17 238 255 34 17

0 0 34 201 264 59 3 17 0 0 37 191 276 53 4

0 0 39 189 270 63 0 17 0 0 40 185 276 59 1

D
5B
 0 0 34 204 255 68 0 1 0 0 17 238 255 34 17

0 0 30 213 252 63 3 17 0 0 32 209 252 67 1

0 0 37 195 264 65 0 17 0 3 24 215 252 66 1

D
6A
 0 0 17 238 255 34 17 1 0 0 34 204 255 68 0

0 0 37 191 276 53 4 17 0 0 34 201 264 59 3

0 0 40 185 276 59 1 17 0 0 39 189 270 63 0

D
6B
 0 0 17 238 255 34 17 1 0 0 34 204 255 68 0

0 0 32 209 252 67 1 17 0 0 30 213 252 63 3

0 3 24 215 252 66 1 17 0 0 37 195 264 65 0

D
7A
 0 0 34 187 306 17 17 1 0 0 34 187 306 17 17

0 0 32 206 261 58 4 17 0 0 30 212 255 60 4

0 0 32 209 252 67 1 17 0 0 34 203 258 65 1

D
7B
 0 0 34 187 306 17 17 1 0 0 34 187 306 17 17

0 0 30 212 255 60 4 17 0 0 32 206 261 58 4

0 0 34 203 258 65 1 17 0 0 32 209 252 67 1

D
8A
 0 0 17 238 255 34 17 1 0 0 17 238 255 34 17

0 0 22 230 249 50 10 17 0 0 23 233 234 67 4

0 0 31 209 258 59 4 17 0 3 15 236 243 57 7

D
8B
 0 0 17 238 255 34 17 1 0 0 17 238 255 34 17

0 0 23 233 234 67 4 17 0 0 22 230 249 50 10

0 3 15 236 243 57 7 17 0 0 31 209 258 59 4
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Table 3. (Continued)

Design

DQ

D10A

0

0

0

0

0

0

0

0

0

0

0

0

17

1

(m
0
,

0 34

0 34

0 39

0 34

0 42

0 43

17 0

2 25

3 23

17 0

2 33

3 27

0 0

0 48

wii,

204

200

187

204

176

175

204

218

217

204

194

205

136

152

• ,w

255

267

276

255

291

288

289

247

252

289

271

264

408

312

*β)

68

56

57

68

48

53

51

68

64

51

60

60

0

48

0

4

2

0

4

2

0

1

2

0

1

2

0

0

Number
of points

1

17

17

1

17

17

1

17

17

1

17

17

1

34

0

0

0

0

0

0

0

0

0

0

0

0

17

1

17

2

3

17

2

3

0

0

0

0

0

0

0

0

Dual design

0 204 289 51

25 218 247 68

23 217 252 64

0 204 289 51

33 194 271 60

27 205 264 60

34 204 255 68

34 200 267 56

39 187 276 57

34 204 255 68

42 176 291 48

43 175 288 53

0 136 408 0

48 152 312 48

0

1

2

0

1

2

0

4

2

0

4

2

0

0
DU

It follows from Table 3 that the designs from Table 2 are all pairwise

non-isomorphic with possible exceptions for the pairs (D1A, D2A) and

(D1B9 D2B). However, DίA and D2A (as well as DίB and D2B) can not be

isomorphic since an isomorphism must map the fixed block 35 of D1Λ

onto the block 35 of D2A, and consequently, the cyclic 2-(17, 8, 7) design 1

to the design 2, which is impossible.

The characteristics (mQ, , m6) of the dual designs (i.e. those having

as incidence matrix the transpose of the matrix of the initial design) show

that DnA is self-dual, and the pairs (DZA, D,A\ (DSB, DiB), (D5A, DβΛ), (D55,

D6B), (DΊA, DΊB), (DBA, D8B), (D9A, Dί0A), (DgB9 DWB) consist of designs which

are dual to each other. A comparison of the derived cyclic 2-(17, 8, 7)

designs in the duals of DίA, D2A, D1B, D2B shows that (DίA, D2A) and (D1B,

D2B) are dual pairs.

The data from Table 3 shows also that all designs but DnA have full

automorphism groups of order 17. Since each automorphism of DUA must

fix the block 35, the automorphism group of DnA must be isomorphic to

a subgroup of the group of the cyclic 2-(17, 8, 7) design 11. In fact, the

full group of DUA is of order 8-17, and is generated by β and the permu-

tation

c = (1)(2, 3, 5, 9, 17, 16,14, 10)(4, 7, 13, 8, 15, 12, 6, 11)

(18)(19, 25, 20, 27, 24, 35, 23, 33)(21, 29, 28, 26, 22, 31, 32, 34)(30).

Every Hadamard 2-(4t + 3, 2t + 1, t) design is extendable in exactly
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one (up to isomorphism) way to a Hadamard 3-(4t + 4, 2t + 2, t) design by

enlarging all blocks with a new point, and adding At + 3 new blocks

being the complements of the old blocks. Consequently, two 3-(4£ + 4,

2t + 2, ί) designs are isomorphic iff they possess a pair of isomorphic

derived 2-(4t + 3, 2t + 1, t) designs. Moreover, the stabilizer of a point in

the automorphism group of a 3-(4t + 4, 2t + 2, ί) design ίJ coincides with

the automorphism group of the derived 2-(4Z + 3, 2t + 1, ί) design with

respect to this point, and two points of E are in the same orbit iff the

derived designs with respect to these points are isomorphic.

If E is a 3-(3β, 18, 8) design being an extension of a 2-(35, 17, 8) design

with an automorphism β of order 17, then β acts on E by fixing the new

point. Thus at least two of the derived designs of E have automorphisms

of order 17. It is readily seen that a pair of designs (DiA, DιB) is extended

to isomorphic 3-(36,18, 8) designs, so we have at most 11 non-isomorphic

3-(36,18, 8) designs with automorphisms of order 17. We denote the ex-

tension of DίA by Et. The characteristics (τz0, nu , nΊ) for the extended

designs, where nt is the number of triples of points occuring together

with a given point in exactly i blocks, are listed in Table 4, and they

show that the 11 3-designs are non-isomorphic.

Table 4.

Design (wo, - ,nγ)

Eλ 0 0 374 2448 2907 816 0

0 0 408 2346 3009 782 0

0 10 362 2402 3017 372 22

0 14 376 2340 3079 718 18

E2 0 0 374 2448 2907 816 0

0 0 408 2346 3009 782 0

0 11 365 2388 3031 729 21

0 17 353 2394 3025 741 15

E3 0 17 289 2550 2941 697 51

0 34 408 2108 3383 578 34

0 11 351 2412 3041 695 33

0 18 336 2422 3031 710 26

E4 0 0 340 2516 2907 748 34

0 34 374 2244 3179 714 0

0 10 324 2496 2961 716 36

0 16 318 2484 2973 722 30

E5 0 0 391 2380 3009 748 17

0 0 425 2278 3111 714 17

0 7 360 2424 2993 737 24

0 9 352 2438 2979 745 22

0

0

0

0

0

0

0

0

0

0

2

2

0

0

2

2

0

0

0

0

N u m b e r of points

1

1

17

17

1

1

17

17

1

1

17

17

1

1

17

17

1

1

17

17
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Table 4. (Continued)

Design

# 6

E
Ί

E
8

E
9

-EΊo

E
n

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

17

1

(n
Of
 -—,n

7
]

0 442 2210 3213

17 323 2482 2941

3 385 2370 3045

8 382 2354 3061

0 374 2414 3009

4 366 2428 2975

4 378 2392 3011

0 306 2567 2958

17 221 2737 2788

15 327 2445 3046

16 314 2479 3012

0 425 2261 3162

0 493 2057 3366

5 350 2451 2990

7 376 2363 3078

34 272 2533 2924

34 340 2329 3128

11 343 2443 2996

13 353 2403 3036

0 544 1768 3672

0 352 2456 2984

)

646

765

715

718

714

752

740

629

714

662

675

663

595

714

688

765

697

724

714

544

736

34

17

27

22

34

20

20

85

68

48

47

34

34

33

31

17

17

26

24

0

0

0

0

0

0

0

0

0

0

0

2

2

0

0

2

2

0

0

2

2

0

16

Number of points

1

1

17

17

2

17

17

1

1

17

17

1

1

17

17

1

1

17

17

2

34

Since two points lying in the same orbit under the automorphism

group must have identical characteristics, it follows from Table 4 and the

preceding comments that the only designs which might have automorphism

groups larger than Zί7 are E7 and En. But the derived designs of E7 with

respect to the points having identical characteristics (0, 0, 374, 2414, 3009,

714,34,0) are isomorphic to D7A and DΊB respectively, which are non-

isomorphic. Hence the full group of EΊ is of order 17. In the case of En

the derived designs with respect to points 18 and 36 (with characteristics

(17, 0, 544, , 0)) are isomorphic, whence \AutEn\ = 2|AutDn Λ\ = 16-17.

§4. The Hadamard matrices

Let M be a (— 1,1) incidence matrix of a 2-(35, 17, 8) design with an

automorphism β of order 17. Then bordering M with a column and row

of Γs one obtains a Hadamard matrix on which β acts by fixing the all-

one row and column. Two Hadamard matrices obtained from symmetric

designs, which are extendable to isomorphic 3-designs are equivalent.

More precisely, given a Hadamard matrix H — (/ιi;) of order n — At + 4

and given k (1 £ k £ n\ we obtain a 3-(4* + 4, 2t + 2, t) design Ek = E\H)
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with point set P = {1, 2, , n} and block set {Bl9 , Bk_u Bk+U , Bn,

Bu ", Bk_u Bk+U •, Bn) where B, = {i: htJ = hίk] and B3 = P - B,. The

designs Ek(H) and Em(H) are isomorphic iff columns £ and m oΐ H lie in

the same orbit of Aut if more generally, Ek(H^) and Ek(H2) are isomorphic

iff i?Ί and iϋΓ2 are equivalent under a signed permutation mapping the

column k of Hx to column m of H2. Moreover, the automorphism group

of Ek(H) acting on points is permutation isomorphic to the stabilizer in

Aut H of column k, acting on signed rows. The automorphism group of any

Hadamard matrix contains a subgroup of order 2 generated by (— I, — I)

which fixes all rows and columns. Hence the order of the automorphism

group is Aut if = 2\AutEk(H)\lk, where lk is the length of the orbit of

column k under Aut if [12].

The Hadamard matrices obtained from the eleven 2-(35, 17, 8) designs

DiA, * i DUA can be distinguished by the characteristics (n0, - , n7) of the

related 3-designs Ek. Evidently in such a matrix the 3-designs obtained

with respect to the columns fixed by β are isomorphic. The matrix cor-

responding to D11A, which is easily seen to be equivalent to the Paley

matrix, has the property that its 3-designs Ek (1 <; k <£ 36) all have iden-

tical characteristic sets, and further analysis shows that all these 3-designs

are isomorphic to En. Hence the order of the group of the Paley matrix

is 2 36-272 = 19584.

In the remaining 10 matrices, the columns are divided into three

orbits; two of length 17, and one of length 2. Therefore, all these matri-

ces have groups of order 2-2-17 = 68.
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