THE RING OF INVARIANTS OF MATRICES

YASUO TERANISHI

§ 1. Introduction

We denote by M(n) the space of all $n \times n$ -matrices with their coefficients in the complex number field C and by G the group of invertible matrices GL(n,C). Let $W=M(n)^l$ be the vector space of l-tuples of $n \times n$ -matrices. We denote by $\rho \colon G \to GL(W)$ a rational representation of G defined as follows:

$$ho(S)(A(1),\,A(2),\,\cdots,\,A(l))=(SA(1)S^{-1},\,\,SA(2)S^{-1},\,\cdots,\,SA(l)S^{-1})$$
 if $S\in G,\,\,A(i)\in M(n)\,\,(i=1,\,2,\,\cdots,\,l).$

This action of G defines an action of G on an algebra $C[W] = C[x_{ij}(1), \dots, x_{ij}(l)]$ of all polynomial functions on W. We denote by $C[W]^g$ the subalgebra of G invariant polynomials. This is a finitely generated subalgebra of C[W].

If l=1 it is a classical result that this ring of invariants is a polynomial ring in n variables. In fact the coefficients of characteristic polynomial of the matrix $X(1)=(x_{i,j}(1))$ are algebraically independent invariants and the ring of invariants is generated by them. By the Newton's formula all coefficients of characteristic polynomial of X(1) are expressed by n traces

$$Tr(X(1)), Tr(X^{2}(1)), \dots, Tr(X(1)^{n}),$$

and hence $C[x_{i,j}(1)]^G$ is the polynomial ring generated by these traces.

Procesi [5] has shown the following important

THEOREM 1.1. The ring of invariants $C[W]^G$ is generated by all traces $Tr(X(i_1) \cdots X(i_j))$ $(j = 1, 2, \cdots)$, where $X(i_1) \cdots X(i_j)$ runs all possible noncommutative monomials.

The object of this paper is to determine the Poincaré series of $C[W]^{a}$ and to determine generators of $C[W]^{a}$ for some cases.

Received June 13, 1985.

The following notations are fixed throughout:

C the field of complex numbers

N additive semigroup of nonnegative integers

Q the field of rational numbers

For a complex number z, we denote by \bar{z} its complex conjugate and set $e(z) = \exp 2\pi \sqrt{-1} z$.

The author expresses his hearty thanks to Dr. Daniele Montanari who pointed out a mistake in the earlier version of this paper.

§2. Poincaré series

We give C[W] the structure of N^i -graded algebra by defining deg $x_{ij}(k)$ to be the k-th unit coordinate vector ε_k in N^i . Let

$$C[W] = \bigoplus_{d \in N^l} C[W]_d$$
,

where $C[W]_d$ is a vector space spanned over C by the monomials in C[W] of degree $d \in N^l$. Then $C[W]^d$ has the structure

$$C[W]^{\scriptscriptstyle G} = \bigoplus_{\scriptscriptstyle d \in N^l} C[W]^{\scriptscriptstyle G}_{\scriptscriptstyle d}$$
,

of an N^{l} -graded algebra given by

$$C[W]_d^G = C[W]^G \cap C[W]_d$$
.

The Poincaré series of $C[W]^c$ is the formal power series $P(z_1, \dots, z_l)$ in l-variables z_1, \dots, z_l defined by

$$P(\boldsymbol{z}_{\scriptscriptstyle 1},\,\cdots,\,\boldsymbol{z}_{\scriptscriptstyle l}) = \sum\limits_{\scriptscriptstyle d\,\in\,N^{\scriptscriptstyle l}} \dim_{\boldsymbol{C}} \boldsymbol{C}[\boldsymbol{W}]_{\scriptscriptstyle d}^{\scriptscriptstyle G} \boldsymbol{z}^{\scriptscriptstyle d}$$

where $z^d = z_1^{d_1} \cdots z_l^{d_l}$ with $d = (d_1, \cdots, d_l)$.

A theorem of Hilbert-Serre implies that $P(z_1, \dots, z_l)$ is a rational function in l variables z_1, \dots, z_l . By using a classical method of Molien-Weyl, we shall calculate this rational function.

For each diagonal unitary matrix ε with diagonal entries

$$\varepsilon_1, \ \varepsilon_2, \ \cdots, \ \varepsilon_n$$

since $|\varepsilon_i|=1$ $(i=1,2,\,\cdots,\,n)$, we can put $\varepsilon_i=e(\varphi_i)$ $(0\leq \varphi_i\leq 1)$. We set

$$\Delta = \prod_{i < j} (e(\varphi_i) - e(\varphi_j))$$
.

Then the normalized volume element on the group consisting of diagonal unitary matrices is given by

$$\frac{1}{n!} \Delta \bar{\Delta} d\varphi_1 \cdots d\varphi_n$$
, [8].

We define polynomials in one variable z by

$$\Delta(z) = \prod_{i < j} (e(\varphi_i) - ze(\varphi_j))$$

and

$$\bar{\Delta}(z) = \prod_{i < j} (e(\varphi_i) - ze(\varphi_j))$$
.

Theorem 2.1. The Poincaré series $P(z_1, \dots, z_l)$ is

$$rac{1}{n!\prod_{i=1}^l(1-z_i)^n}\int_0^1\cdots\int_0^1rac{Aar{ec{ec{ert}}}}{\prod_{i=1}^lA(z_i)ar{ec{ert}}(z_i)}\;darphi_1\cdots darphi_n\,, \ |z_i|<1,\,\cdots,\,|z_t|<1\,.$$

Proof. Let f(z) be a polynomial in one variable z defined as

$$egin{aligned} f(z) &= \det{(I_n -
ho(arepsilon)z)}, \quad I_n = ext{the } n imes n\text{-identity matrix}, \ &= \prod\limits_{1 \leq i < j \leq n} (1 - z_{arepsilon_i} arepsilon_j^{-1}) \ &= (1 - z)^n \varDelta(z) ar{\varDelta}(z) \ . \end{aligned}$$

Then by the Molien-Weyl formula [8], the Poincaré series $P(z_1, \dots, z_l)$ equals

$$rac{1}{n!}\int_{\scriptscriptstyle 0}^{\scriptscriptstyle 1}\cdots\int_{\scriptscriptstyle 0}^{\scriptscriptstyle 1}rac{arDeltaar{arDelta}}{f(z_{\scriptscriptstyle 1})\cdots f(z_{\scriptscriptstyle l})}\,darphi_{\scriptscriptstyle 1}\cdots darphi_{\scriptscriptstyle n}\,,\;\;|z_{\scriptscriptstyle l}|<1\,.$$

By changing variables from $\varphi_1, \dots, \varphi_n$ to $\varepsilon_1, \dots, \varepsilon_n$, we have

$$P(\pmb{z}_1,\,\cdots,\,\pmb{z}_l) \ = \Big(rac{1}{2\pi\,\sqrt{-1}}\Big)^nrac{1}{n!\,\prod_{i=1}^l\,(1-\pmb{z}_i)^n}\int_{c_1}\cdots\int_{c_n}rac{oldsymbol{ec{J}}}{\prod_{i=1}^l\,oldsymbol{ec{J}}(\pmb{z}_i)\,ar{oldsymbol{J}}(\pmb{z}_i)}\,d\pmb{arepsilon}_1\cdots d\pmb{arepsilon}_n\,,$$

where C_k denotes the unit circle $|\varepsilon_k| = 1$ in the complex ε_k -plane. Thus the Poincaré series $P(z_1, \dots, z_l)$ can be calculated in principle by means of residues. Since

$$\Delta(z)\bar{\Delta}(z)=(-z)^{(n(n-1))/2}(arepsilon_1\,\cdots\,arepsilon_n)^{1-n}\prod_{i< j}(arepsilon_i\,-\,zarepsilon_j)\!\Big(arepsilon_i\,-\,rac{1}{z}arepsilon_j\Big),$$

we have

$$\frac{\Delta \overline{\Delta}}{\prod_{i=1}^{l} \Delta(z_i) \overline{\Delta}(z_i)} = (-1)^{(n(n-1)(l-1))/2} (z_1 \cdots z_l)^{(n(1-n))/2} (\varepsilon_1 \cdots \varepsilon_n)^{(n-1)(l-1)} \times \frac{D(\varepsilon_1, \cdots, \varepsilon_n)}{\prod_{j=1}^{l} \prod_{i < j} (\varepsilon_i - z_j \varepsilon_j) (\varepsilon_i - (1/z_j) \varepsilon_j)},$$

where $D(\varepsilon_1, \dots, \varepsilon_n) = \prod_{i < j} (\varepsilon_i - \varepsilon_j)^2$. And so we can rewrite Theorem 2.1 as

$$(2.2) P(z_1, \dots, z_l)$$

$$= (-1)^{(n(n-1)(l-1))/2} \frac{1}{n! \prod_{i=1}^{l} (1-z_i)^n (z_1 \dots z_l)^{(n(n-1))/2}} \left(\frac{1}{2\pi \sqrt{-1}}\right)^n$$

$$\times \int \dots \int \frac{(\varepsilon_1 \dots \varepsilon_n)^{(n-1)(l-1)-1} D(\varepsilon_1, \dots, \varepsilon_n)}{\prod_{p=1}^{l} \prod_{i < l} (\varepsilon_i - z_p \varepsilon_l) (\varepsilon_i - (1/z_p \varepsilon_l)} d\varepsilon_1 \dots d\varepsilon_n.$$

Proposition 2.3. The Poincaré series $P(z_1, \dots, z_l)$ $(l \ge 2)$ satisfies the following functional equation

$$P(z_1^{-1}, \dots, z_l^{-1}) = (-1)^{n(l-1)+1}(z_1, \dots, z_l)^{n^2} P(z_1, \dots, z_l)$$

Proof. Consider a rational function $I(z_1, \dots, z_l)$ defined in $|z_1| < 1, \dots, |z_l| < 1$ as follows

$$I(z_{\scriptscriptstyle 1},\,\cdots,\,z_{\scriptscriptstyle l})=\int_{\scriptscriptstyle c_{\scriptscriptstyle 1}}\cdots\int_{\scriptscriptstyle c_{\scriptscriptstyle n}}F_{\scriptscriptstyle z_{\scriptscriptstyle 1},\,\ldots,\,z_{\scriptscriptstyle l}}(arepsilon_{\scriptscriptstyle 1},\,\cdots,\,arepsilon_{\scriptscriptstyle n})\,darepsilon_{\scriptscriptstyle 1}\,\cdots\,darepsilon_{\scriptscriptstyle n}\,,$$

where

$$F_{z_1,...,z_l}(arepsilon_i,\,\,\cdots,\,arepsilon_n) = rac{(arepsilon_1\,\,\cdots\,\,arepsilon_n)^{(n-1)\,(l-1)\,-1}D(arepsilon_1,\,\,\cdots,\,arepsilon_n)}{\prod_{p=1}^l\prod_{i< j}{(arepsilon_i\,\,-\,\,oldsymbol{z}_parepsilon_j)(arepsilon_i\,\,-\,\,(1/z_p)arepsilon_j)}} \;.$$

Set inductively

$$egin{aligned} I_{\scriptscriptstyle 1}(arepsilon_{\scriptscriptstyle 1},\,\cdots,\,arepsilon_{\scriptscriptstyle n}) &= F_{arepsilon_{\scriptscriptstyle 1},\,\ldots,\,arepsilon_{\scriptscriptstyle l}}(arepsilon_{\scriptscriptstyle 1},\,\cdots,\,arepsilon_{\scriptscriptstyle n})\,,\ I_{\scriptscriptstyle l+1}(arepsilon_{\scriptscriptstyle l+1},\,\cdots,\,arepsilon_{\scriptscriptstyle n}) &= \int_{\,ert_{\scriptscriptstyle l+1}} I_{\scriptscriptstyle l}(arepsilon_{\scriptscriptstyle l},\,arepsilon_{\scriptscriptstyle l+1},\,\cdots,\,arepsilon_{\scriptscriptstyle n}) d\,arepsilon_{\scriptscriptstyle l}\,,\ &= 1,\,\cdots,\,n-1)\,. \end{aligned}$$

Then we find that $I_i(\varepsilon_i, \dots, \varepsilon_n)$ is, as a function of ε_i , holomorphic at $\varepsilon_i = \infty$. If $|z_1| > 1, \dots, |z_l| > 1$, we have

$$egin{aligned} I(oldsymbol{z}_1^{-1},\, \cdots,\, oldsymbol{z}_l^{-1}) &= \int_{c_1} \cdots \int_{c_n} F_{z_1, \ldots, z_l}(arepsilon_1,\, \cdots,\, arepsilon_n) darepsilon_1 \, \cdots \, darepsilon_n \ &= (-1)^{n-1} \int_{c_1}^{-1} \cdots \int_{c_n}^{-1} \int_{c_n} F_{z_1, \ldots, z_l}(arepsilon_1,\, \cdots,\, arepsilon_n) darepsilon_1 \, \cdots \, darepsilon_n \,. \end{aligned}$$

By the Cauchy integral formula we have

$$I(z_1^{-1}, \dots, z_l^{-1}) = (-1)^{n-1} I(z_1, \dots, z_l)$$

and hence we obtain the result by 2.2.

We consider C[W] as a N-graded algebra

$$C[W] = \bigoplus_{d \in N} C[W]_d$$

by defining deg $x_{ij}(k) = 1$ and define the Poincaré series P(z) in one variable z by

$$P(z) = P(z, \, \cdots, \, z) = \sum_{d \in N} \dim_{\mathbb{C}} C[W]_d^G z^d$$

Then it follows from (2.2) that the Poincaré series P(z) equals

$$(2.4) \qquad (-1)^{(n(n-1)(l-1))/2} \frac{1}{n!(1-z)^{nl}z^{(n(n-1)l)/2}} \left(\frac{1}{2\pi\sqrt{-1}}\right)^{n} \\ \times \int \cdots \int \frac{(\varepsilon_{1}\cdots\varepsilon_{n})^{(n-1)(l-1)-1}D(\varepsilon_{1},\cdots,\varepsilon_{n})}{(\prod_{i< j}(\varepsilon_{i}-z\varepsilon_{j})(\varepsilon_{i}-(1/z)\varepsilon_{j}))^{l}} d\varepsilon_{1}\cdots d\varepsilon_{n}.$$

Let f_1, \dots, f_m be a homogeneous system of parameters of the *N*-graded algebra $C[W]^g$. By a theorem of Hochster and Roberts [4], $C[W]^g$ is a free module over the polynomial ring $C[f_1, \dots, f_m]$. Let $\varphi_1, \dots, \varphi_r$ be a homogeneous system of generators of this module,

$$C[W]^G = \bigoplus_{i=1}^r \varphi_i C[f_i, \cdots, f_m].$$

We claim that $m = (l-1)n^2 + 1$. For $w \in W$, we denote by G_w the isotropy subgroup of $GL(n, \mathbb{C})$ at w. If $l \geq 2$, there exists a dense open subset U of w such that $G_w = \{e\}$. Then it follows from a theorem of Rosenlicht [6] that the transcendence degree of $C[W]^g$ is equals dim $W - \dim G + 1$. This shows that $m = (l-1)n^2 + 1$. Formanek [1] has shown that the field of rational invariants $C(W)^g$ is unirational of transcendence degree $(l-1)n^2 + 1$.

We set

$$\deg f_i = d_i\,, \qquad d_1 \leqq \cdots \leqq d_m \ \deg arphi_j = e_j\,, \qquad 0 = e_1 \leqq \cdots \leqq e_r\,.$$

By Proposition 2.3, P(z) satisfies the following functional equation

$$P(z^{-1}) = (-1)^{(l-1)n^2+1} z^{n^2l} P(z).$$

This equation is equivalent to

$$d_1 + \cdots + d_m - e_{r-i+1} = n^2 l + e_i, \qquad i = 1, \cdots, r.$$

In particular we have

$$e_i + e_{r-i+1} = e_r , \qquad i = 1, \dots, l , \ e_r = d_1 + \dots + d_m - n^2 l$$

and

(2.5)
$$n^2 l = \sum_{j=1}^m d_j - \frac{2}{r} \sum_{i=1}^r e_i.$$

Let α and β be the first and second Laurant coefficients of P(z) respectively. Then the Laurant expansion of the Poincaré series P(z) begins with

$$P(z) = \frac{\alpha}{(1-z)^m} + \frac{\beta}{(1-z)^{m-1}} + \cdots$$

By 2.5.9 Lemma (7), it follows that

$$\alpha = \frac{r}{d_1 \cdots d_m}$$

and

$$eta = rac{r \sum_{i=1}^m (d_i - 1) - 2 \sum_{i=1}^r e_i}{2d_1 \cdots d_m}$$
 .

Then it follows from (2.5) that

$$\frac{\beta}{\alpha} = \frac{n^2 - 1}{2} .$$

We shall need the following important theorem due to Hilbert [3].

Theorem 2.8. Assume that some invariants I_1, \dots, I_{μ} have a property that their vanishing implies the vanishing of all invariants. Then the ring of invariants is integral over the subring generated by I_1, \dots, I_{μ} .

\S 3. The ring of invariants of 2×2 matrices

In this section we shall be concerned with the ring of invariants of 2×2 matrices. Throughout this section we assume that $l \ge 2$.

Proposition 3.1. (1) The Poincaré series $P_2(z)$ is given by

$$P_{\scriptscriptstyle 2}\!(z) = (-1)^{l_{\scriptscriptstyle -1}} rac{1}{2(l-1)!(1-z)^{2l}} \Big(rac{d}{d\,arepsilon}\Big)^{l_{\scriptscriptstyle -1}} rac{arepsilon^{l_{\scriptscriptstyle -2}}(arepsilon-1)^2}{(zarepsilon-1)^l}igg|_{arepsilon=z}.$$

(2) The Laurant expansion of $P_2(z)$ at a = 1 begins with

$$P_{\scriptscriptstyle 2}\!(z) = rac{[l-1]_{\scriptscriptstyle l-2}}{(l-1)!\, 2^{2l-1} (1-z)^{4l-3}} + rac{3[l-1]_{\scriptscriptstyle l-2}}{(l-1)!\, 2^{2l} (1-z)^{4l-4}} + \cdots,$$

where
$$[l-1]_{l-2} = (l-1)l(l+1)\cdots(2l-4)$$
.

(3) If $C[X(1), \dots, X(l)]^{GL(2)} = \bigoplus_{i=1}^r \varphi_i C[f_1, \dots, f_{4l-3}]$, where f_1, \dots, f_{4l-3} is a system of parameters of $C[X(1), \dots, X(l)]^{GL(2)}$, we have

$$r = rac{[l-1]_{l-2}}{(l-1)!} \prod_{i=1}^{4l-3} rac{\deg{(f_i)}}{2^{2l-1}} \ .$$

Proof. (1) follows from (2.4). By a direct computation, we see that the first Laurant coefficient at z=1 equals

$$\frac{[l-1]_{l-2}}{(l-1)!\,2^{2l-1}}$$
.

Then (2) follows from (2.7). (3) is an immediate consequence from (2) and (2.6).

We denote by C_l a subring of $C[X(1), \dots, X(l)]^{GL(2)}$ generated by traces $\operatorname{Tr}(X(i)X(j)), \ 1 \leq i, \ j \leq l, \ \operatorname{Tr}(X(i)), \ 1 \leq i \leq l.$

Proposition 3.2. The ring of invariants $C[X(1), \dots, X(l)]^{GL(2)}$ is integral over C_l .

Proof. By Theorem 1.1, it is enough to show

(*) if
$$\operatorname{Tr}(A_i A_j) = \operatorname{Tr}(A_i) = 0 \ (A_i, A_j \in M(2, C), \ 1 \le i, j \le l)$$
, $\operatorname{Tr}(A_{i1} A_{i2} \cdots A_{ik}) = 0$ for any $k, \ 1 \le i_1, \cdots, \ i_k \le l$.

We shall prove (*) by induction on l. By making the substitution $A_i \to BA_iB^{-1}$ $(B \in GL(2, C))$, we can assume $A_1 = 0$ or $A_1 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$.

If $A_1=0$, by the inductive hypothesis (*) is true. If $A_1=\begin{pmatrix} 0 & 1 \ 0 & 0 \end{pmatrix}$, we have $A_i=\begin{pmatrix} 0 & \alpha_i \ 0 & 0 \end{pmatrix}$, $a_i\in C$ $(1\leq i\leq l)$. Because $\mathrm{Tr}(A_1A_i)=0$ and $A_i^2=0$. $1\leq i\leq l$. This shows that $\mathrm{Tr}(A_{i1}A_{i2}\cdots A_{ik})=0$. This completes the proof.

If l=2 or 3, $\operatorname{Tr}(X(i)X(j))$ $(1 \leq i, j \leq l)$, $\operatorname{Tr}(X(i))$ $(1 \leq i \leq l)$ is a homogeneous system of parameters of $C[X(1), \dots, X(l)]^{GL(2)}$.

Proposition 3.3. (E. Formanek, P. Halpin and W.C.W. Li [2])

$$C[X(1), X(2)]^{GL(2)}$$

= $C[\text{Tr}(X(1)), \text{Tr}(X(2)), \text{Tr}(X(1)^2), \text{Tr}(X(2)^2), \text{Tr}(X(1)X(2))]$

Proof. By (3) Proposition 3.1, we have r = 1 and we obtain the result.

§ 4. The ring of invariants $C[X(1), X(2)]^{GL(3)}$

In this section we treat the case: n = 3 and l = 2. Set

$$egin{aligned} f_1 &= \mathrm{Tr}\left(X(1)
ight), \quad f_2 &= \mathrm{Tr}\left(X(1)^2
ight), \quad f_3 &= \mathrm{Tr}\left(X(1)^3
ight), \\ f_4 &= \mathrm{Tr}\left(X(2)
ight), \quad f_5 &= \mathrm{Tr}\left(X(2)^2
ight), \quad f_6 &= \mathrm{Tr}\left(X(2)^3
ight), \\ f_7 &= \mathrm{Tr}\left(X(1)X(2)
ight), \quad f_8 &= \mathrm{Tr}\left(X(1)X(2)^2
ight), \quad f_9 &= \mathrm{Tr}\left(X(1)^2X(2)
ight), \\ f_{10} &= \mathrm{Tr}\left(X(1)^2X(2)^2
ight), \quad f_{11} &= \mathrm{Tr}\left(X(1)X(2)X(1)^2X(2)^2
ight). \end{aligned}$$

We denote by C the subring of $C[X(1), X(2)]^{GL(3)}$ generated by ten invariants f_1, \dots, f_{10} which are algebraically independent.

THEOREM 4.1. f_1, \dots, f_{10} is a system of parameters of the ring $C[X(1), X(2)]^{GL(3)}$ and

$$C[X(1), X(2)]^{GL(3)} = C \oplus f_{11}C.$$

Proof. Let A_1 and A_2 be 3×3 -matrices which satisfy the following condition: $f_1(A_1, A_2) = \cdots = f_{10}(A_1, A_2) = 0$.

Since $\operatorname{Tr}(A_i)=\operatorname{Tr}(A_i^2)=\operatorname{Tr}(A_i^3)=0, \quad i=1, 2,$ we have $A_1^3=A_2^3=0.$ If $A_1^2=A_2^2=0,$ it follows from the Cayley-Hamilton theorem that $A_1A_2A_1=A_2A_1A_2=0$ and hence we have, for any k, $\operatorname{Tr}(A_{i_1}A_{i_2}\cdots A_{i_k})=0,$ $1\leq i_1,\cdots,i_k\leq 2.$ Assume now that $A_1^2\neq 0.$ Then, by making the substitution

$$A_i \longrightarrow BA_iB^{-1}$$
, $i = 1, 2$,

we can assume that A_1 and A_2 are of the form

$$A_1 = egin{pmatrix} 0 & 1 \ 0 & 1 \ 0 \end{pmatrix}, \qquad A_2 = egin{pmatrix} a_{11} & a_{12} & a_{13} \ a_{21} & a_{22} & a_{23} \ a_{31} & a_{32} & a_{33} \end{pmatrix}.$$

The equations $\operatorname{Tr}(A_1A_2)=\operatorname{Tr}(A_1^2A_2)=\operatorname{Tr}(A_2)=0$ imply $a_{11}+a_{22}+a_{33}=a_{21}+a_{32}=a_{31}=0$ and $\operatorname{Tr}(A_1^2A_2^2)=0$ implies $a_{21}a_{32}=0$. Hence we have $a_{31}=a_{21}=a_{32}=0$. This shows that A_2 is an upper triangular matrix with zero diagonal entries. Consequently $\operatorname{Tr}(A_{i1}A_{i2}\cdots A_{ik})=0,\ i_1,i_2,\cdots,i_k=1,2$ for any k.

If A_1 or A_2 is the zero matrix, all traces are zero by our assumption. Therefore $C[X(1), X(2)]^{GL(3)}$ is integral over C. Since the transcendence degree of the ring $C[X(1), X(2)]^{GL(3)}$ is ten, f_1, \dots, f_{10} is a homogeneous system of parameters.

Consider the Poincaré series $P(z_1, z_2)$. By the theorem of Hochster and Roberts $C[X(1), X(2)]^{GL(3)}$ is a free module over the subring C. Therefore

there is a polynomial $F(z_1, z_2)$ in two variables such that

 $P(z_1, z_2)$

$$=\frac{F(z_{\scriptscriptstyle 1},\,z_{\scriptscriptstyle 2})}{(1-z_{\scriptscriptstyle 1})(1-z_{\scriptscriptstyle 1}^2)(1-z_{\scriptscriptstyle 1}^3)(1-z_{\scriptscriptstyle 2})(1-z_{\scriptscriptstyle 2}^2)(1-z_{\scriptscriptstyle 2}^3)(1-z_{\scriptscriptstyle 1}z_{\scriptscriptstyle 2})(1-z_{\scriptscriptstyle 1}^2z_{\scriptscriptstyle 2})(1-z_{\scriptscriptstyle 1}z_{\scriptscriptstyle 2}^2)(1-z_{\scriptscriptstyle 1}^2z_{\scriptscriptstyle 2}^2)}\;.$$

It follows from the functional equation of $P(z_1, z_2)$ that $F(z_1, z_2)$ satisfies the following relation

$$F(z_1, z_2) = (z_1 z_2)^3 F(z_1^{-1}, z_2^{-1})$$
.

And it is easily shown that $F(z_1, z_2) = 1 + z_1^3 z_2^3$. Therefore $C[X(1), X(2)]^{GL(3)}$ is generated by f_1, \dots, f_{10} and an invariant φ of degree (3, 3).

Invariants ${\rm Tr}\,(X(1)X(2)X(1)^2X(2)^2)$, ${\rm Tr}\,(X(2)X(1)X(2)^2X(1)^2)$ and ${\rm Tr}\,(X(1)\cdot X(2)X(1)X(2)X(1)X(2))$ span the vector space $C[X(1),X(2)]_{(3,3)}^{cL(3)}$ consisting of invariants of degree (3,3). By the Cayley-Hamilton theorem, we find that ${\rm Tr}\,(X(1)X(2)X(1)X(2)X(1)X(2))\in C$ and ${\rm Tr}\,(X(1)X(2)X(1)X(2)^2)+{\rm Tr}\,(X(2)\cdot X(1)X(2)^2X(1)^2)\in C$. Therefore the ring of invariants $C[X(1),X(2)]^{GL(3)}$ is generated by f_1,\cdots,f_{11} and $C[X(1),X(2)]^{GL(3)}=C\oplus f_{11}C$. This completes the proof.

§5. The ring of invariants $C[X(1), X(2)]^{GL(4)}$

We denote by Sym (n) the symmetric group of n letters and recall the multi-linearlized Cayley-Hamilton theorem for $n \times n$ -matrices Y_1, \dots, Y_n :

$$\begin{split} &\sum_{\pi \in \mathrm{Sym}\;(n)} Y_{\pi(1)} \; \cdots \; Y_{\pi(n)} \\ &+ \sum_{k=1}^n \sum_{u} \sum_{\pi \in \mathrm{Sym}\;(n)} q_u \, \mathrm{Tr} \, (Y_{\pi(1)} \; \cdots \; Y_{\pi(u_1)}) \; \cdots \; Y_{\pi(n-k+1)} Y_{\pi(n-k+2)} \; \cdots \; Y_{\pi(n)} = 0 \; \text{,} \end{split}$$

for suitable $q_u \in \mathbf{Q}$ and suitable j-tuples $u = (u_1, \dots, u_j)$ such that $1 \leq u_1 \leq u_2 \leq \dots \leq u_j$ and $u_1 + \dots + u_i = k$.

Proposition 5.1. The ring of invariants $C[X(1), X(2)]^{GL(4)}$ is generated by invariants of the form

$$\begin{split} &\operatorname{Tr}\left(X(1)^{\alpha_1}X(2)^{\alpha_2}X(1)^{\alpha_3}X(2)^{\alpha_4}\right), \quad 0 \leqq \alpha_1, \ \alpha_2, \ \alpha_3 \leqq 3 \ , \\ &\operatorname{Tr}\left(X(1)X(2)X(1)^2X(2)^2X(1)^3X(2)^3\right), \quad \operatorname{Tr}\left(X(1)X(2)X(1)X(2)^2X(1)X(2)^3\right), \\ &\operatorname{Tr}\left(X(2)X(1)X(2)X(1)^2X(2)X(1)^3\right). \end{split}$$

Proof. We claim that any invariant $\operatorname{Tr}(X(1)^{\alpha_1}X(2)^{\alpha_2}\cdots X(1)^{\alpha_{2r-1}}X(2)^{\alpha_2r})$, $0\leq \alpha_1, \cdots, \alpha_{2r}\leq 3 \ (r>6)$, can be written as a polynomial in $T(X(1)^{\beta_1}X(2)^{\beta_2}\cdots X(1)^{\beta_5}X(2)^{\beta_6},\ 0\leq \beta_1,\cdots,\beta_6\leq 3$. We work by induction on r. We assume

that, for any r' < r, this assertion is true. Apply the multi-linearlized Cayley-Hamilton theorem for 4×4 -matrices X_1 , X_2 , X_3 , X_4 to the case $X_1 = X(1)^{a_1}$, $X_2 = X(2)^{a_2}$, $X(1)^{a_3}$, $X_3 = X(2)^{a_4}$, $X_4 = X(1)^{a_5}X(2)^{a_6}$. Then by the inductive hypothesis we conclude the assertion. A similar argument shows that any invariant of the form

$$\operatorname{Tr}(X(1)^{\alpha_1}X(2)^{\alpha_2}X(1)^{\alpha_3}X(2)^{\alpha_4}X(1)^{\alpha_5}X(2)^{\alpha_6}), \quad 1 \leq \alpha_1, \alpha_2, \cdots, \alpha_6 \leq 3,$$

is written as a polynomial in $T_r(X(1)^{\alpha_1}X(2)^{\alpha_2}X(1)^{\alpha_3}X(2)^{\alpha_4})$, $0 \le \alpha_1, \dots, \alpha_4 \le 3$, $\operatorname{Tr}(X(1)X(2)X(1)^2X(2)^2X(1)^3X(2)^3)$, $\operatorname{Tr}(X(1)X(2)X(1)X(2)^2X(1)X(2)^3)$, $\operatorname{Tr}(X(2)X(1)X(2)X(1)^2X(2)X(1)^3)$. The proposition is proved.

Set

$$egin{aligned} f_1 &= \operatorname{Tr}\left(X(1)
ight), \quad f_2 &= \operatorname{Tr}\left(X(1)^2
ight), \quad f_3 &= \operatorname{Tr}\left(X(1)^3
ight), \quad f_4 &= \operatorname{Tr}\left(X(1)^4
ight), \\ f_5 &= \operatorname{Tr}\left(X(2)
ight), \quad f_6 &= \operatorname{Tr}\left(X(2)^2
ight), \quad f_7 &= \operatorname{Tr}\left(X(2)^3
ight), \quad f_8 &= \operatorname{Tr}\left(X(2)^4
ight), \\ f_9 &= \operatorname{Tr}\left(X(1)X(2)
ight), \quad f_{10} &= \operatorname{Tr}\left(X(1)^2X(2)^2
ight), \quad f_{11} &= \operatorname{Tr}\left(X(1)X(2)^2
ight), \\ f_{12} &= \operatorname{Tr}\left(X(1)^2X(2)
ight), \quad f_{13} &= \operatorname{Tr}\left(X(1)X(2)^3
ight), \quad f_{14} &= \operatorname{Tr}\left(X(1)^3X(2)
ight), \\ f_{15} &= \operatorname{Tr}\left(X(1)X(2)X(1)X(2)
ight), \quad f_{16} &= \operatorname{Tr}\left(X(1)X(2)^2X(1)X(2)^2
ight), \\ f_{17} &= \operatorname{Tr}\left(X(2)X(1)^2X(2)X(1)^2
ight). \end{aligned}$$

We denote by C a subring of $C[X(1), X(2)]^{GL(4)}$ generated by f_1, \dots, f_{17} .

Proposition 5.2. f_1, \dots, f_{17} is a homogeneous system of parameters of the ring of invariants $C[X(1), X(2)]^{GL(4)}$.

Proof. Since the transcendence degree of the ring $C[X(1),X(2)]^{GL(4)}$ is 17, it is enough to show that, for 4×4 -matrices A_1 and A_2 , $f_1(A_1,A_2)=\cdots=f_{17}(A_1,A_2)=0$ imply $\mathrm{Tr}\,(A_{i_1},A_{i_2}\cdots A_{i_k})=0,\ i_1,\cdots,i_k=1,\ 2$ for any k. Notice that $A_1^4=A_2^4=0$, since $f_1(A_1,A_2)=\cdots=f_8(A_1,A_2)=0$. Assume that $A_1^3\neq 0$. Then, by the substitution $A_i\to BA_iB^{-1},\ B\in GL(4)$ and i=1,2, we can assume that

It follows from the equations $\operatorname{Tr}(A_1^2A_2)=\operatorname{Tr}(A_1^3A_2)=0$ that $a_{41}=a_{31}+a_{42}=0$ and the Cayley-Hamilton theorem shows that the equation $\operatorname{Tr}(A_1^2A_2A_1^2A_2)=0$ implies $\operatorname{Tr}(A_1^2A_1A_2A_1A_2)=0$.

Since

$$A_1A_2=egin{bmatrix} a_{21} & a_{22} & a_{23} & a_{24}\ a_{31} & a_{32} & a_{33} & a_{34}\ 0 & a_{42} & a_{43} & a_{44}\ 0 & 0 & 0 & 0 \end{pmatrix}$$

it follows from the equation $\text{Tr}(A_1^2A_1A_2A_1A_2)=0$ that $a_{31}a_{42}=0$ and hence we have $a_{31}=a_{42}=0$. Then it follows from the relation $\text{Tr}(A_1A_2)=a_{21}+a_{22}+a_{43}=0$ that $\text{Tr}(A_1^2A_2^2)=a_{21}a_{32}+a_{32}a_{43}=-a_{32}^2$ and we obtain $a_{32}=0$. Since

$$ext{Tr}\left(A_{1}A_{2}A_{1}A_{2}
ight) = ext{Tr}\left(egin{pmatrix} a_{21} & a_{22} & a_{23} & a_{24} \ 0 & 0 & a_{33} & a_{34} \ 0 & 0 & a_{43} & a_{44} \ 0 & 0 & 0 & 0 \end{pmatrix}^{2}
ight) \ = a_{21}^{2} + a_{43}^{2} \, ,$$

 $a_{21}=a_{43}=a_{32}=0$ and hence A_2 is a 4×4 upper triangular matrix with zero diagonal entries. Consequently we can conclude that $\mathrm{Tr}(A_{i_1},A_{i_2}\cdots A_{i_k})=0,\ 1\leq i_1,\,i_2,\,\cdots,\,i_k\leq 2$ for any k. By the same argument, we obtain the same conclution if $A_2^3\neq 0$.

We next assume that $A_1^3 = A_2^3 = 0$ and either A_1^2 or A_2^2 is not zero. Then we can take A_1 as

and divide into two cases:

Case 1.

In this case, it follows from the equations $\text{Tr}(A_1^2A_2) = 0$, $\text{Tr}(A_1A_2A_1A_2) = 0$ and $\text{Tr}(A_1A_2) = 0$ that $a_{21} = a_{31} = a_{32} = 0$.

Therefore A_1A_2 and $A_1^2A_2$ are upper triangular matrices with zero diagonal entries. Similarly, replacing A_2 by A_2^2 , we see that $A_1A_2^2$ and $A_1^2A_2^2$ are also upper triangular matrices with zero diagonal entries. This shows that $\operatorname{Tr}(A_{i_1}A_{i_2}\cdots A_{i_l})=0,\ 1\leq i_1,\ i_2,\cdots,\ i_k\leq 2$ for any k.

Case 2.

In this case, by the equation $Tr(A_1^2A_2)=0$, we have $a_{42}=0$.

Since

$$A_{\scriptscriptstyle 1}A_{\scriptscriptstyle 2} = egin{bmatrix} 0 & 0 & 0 & 0 \ a_{\scriptscriptstyle 31} & a_{\scriptscriptstyle 32} & a_{\scriptscriptstyle 33} & a_{\scriptscriptstyle 34} \ a_{\scriptscriptstyle 41} & a_{\scriptscriptstyle 42} & a_{\scriptscriptstyle 43} & a_{\scriptscriptstyle 44} \ 0 & 0 & 0 & 0 \end{pmatrix}$$

and $\operatorname{Tr}(A_1A_2A_1A_2)=0$, we have $a_{32}=a_{43}=0$. Then we find that $A_1A_2A_1=a_{33}A_1^2$ and, replacing A_2 by A_2^2 , $A_1A_2^2A_1=bA_1^2$. Here b denotes the (3,3)-entry of the matrix A_2^2 .

Notice that, for any 4×4 -matrix $X = (x_{ij})$,

Therefore we can conclude that $\operatorname{Tr}(A_{i_1}A_{i_2}\cdots A_{i_k})=0$ for any k.

If $A_1^2 = A_2^2 = 0$, we have evidently $\text{Tr}(A_{i_1}A_{i_2}\cdots A_{i_k}) = 0$. This completes the proof.

Proposition 5.2 shows that C is a polynomial ring in 17 variables and $C[X(1), X(2)]^{GL(4)}$ is a free module over C.

REFERENCES

- [1] E. Formanek, The center of the ring 3×3 generic matrices, Linear and Multilinear Algebra, 7 (1979), 203-212.
- [2] —, P. Halpin and W.-C. W. Li, The Poincaré series of the ring of 2 × 2 generic matrices, J. Algebra, 69 (1981), 105-112.

- [3] D. Hilbert, Über die vollen Invariantensysteme, Ges. Abh., II, 287-344, Springer-Verlag, 1970.
- [4] M. Hochster and J. Roberts, Rings of invariants of reductive groups acting on regular rings are Cohen-Macaulay, Adv. in Math., 13 (1974), 115-175.
- [5] C. Procesi, The invariant theory of $n \times n$ matrices, Adv. in Math., 19 (1976), 306-381.
- [6] M. Rosenlict, A remark on quotient spaces, An. Acad. Brasil Ciênc., 35, (1963), 487-489.
- [7] T. A. Springer, Invariant theory Springer Lecture note 585, 1977.
- [8] H. Weyl, The classical groups, Princeton Univ. Press, Princeton, N. J., 1946.
- [9] —, Zur Darstellungstheorie und Invariantenabzählun gder projection, der Komplex und Drehungsgroppe, Ges. Abh., III, 1-25, Springer-Verlag, 1968.

Department of Mathematics Faculty of Science Nagoya University Chikusa-ku, Nagoya, 464 Japan