GALOIS GROUPS OF NUMBER FIELDS GENERATED BY TORSION POINTS OF ELLIPTIC CURVES

KAY WINGBERG

Coates and Wiles [1] and B. Perrin-Riou (see [2]) study the arithmetic of an elliptic curve E defined over a number field F with complex multiplication by an imaginary quadratic field K by using p-adic techniques, which combine the classical descent of Mordell and Weil with ideas of Iwasawa's theory of Z_{p}-extensions of number fields. In a special case they consider a non-cyclotomic Z_{p}-extension F_{\circ} defined via torsion points of E and a certain Iwasawa module attached to E / F, which can be interpreted as an abelian Galois group of an extension of F_{∞}. We are interested in the corresponding non-abelian Galois group and we want to show that the whole situation is quite analogous to the case of the cyclotomic $Z_{p^{-}}$ extension (which is generated by torsion points of \boldsymbol{G}_{m}).

To make this precise: The odd prime number p satisfies the following two conditions:
(i) p splits in K into two distinct primes: $(p)=\mathfrak{p p}^{*}$,
(ii) E has good (ordinary) reduction at every prime of F above p. Then F_{∞} is the unique Z_{p}-extension in $F\left(E_{\mathrm{p} \infty}\right)$, where $E_{p \infty}=\bigcup_{n \geq 1} E_{\mathrm{p} n}$ is the group all torsion points of $E(\bar{F})$ annihilated by a power of \mathfrak{p}.

Now, let $S_{\mathfrak{p}}=S_{p}(F)$ be the set of primes above \mathfrak{p} in F and let F_{S} be the maximal p-extension of F unramified outside the set of primes $S=S(F)$. Assuming the weak \mathfrak{p}-adic Leopoldt conjecture, the abelian Galois group $G\left(F_{S_{\mathrm{p}}} / F_{\infty}\right)^{\text {alb }}$ is a $\left.\Lambda=Z_{p} \llbracket \Gamma\right]$-torsion module where $\Gamma=G\left(F_{\infty} / F\right)$. This module gives an alternative description of the Selmer group of E / F_{∞}, [2] Theorem 12, and its characteristic power series defines the Iwasawa L-function of E / F for which an p-adic analogue of the conjecture of Birch and Swinnerton-Dyer is stated. In the following we will call this situation ($p \neq 2$ with i) and ii), $F_{\infty} \subseteq F\left(E_{p^{\infty}}\right), F_{s_{\mathrm{p}}}$) the elliptic case.

In general, nothing is known about the (non-abelian) Galois groups
$G\left(F_{S_{\natural}} / F_{\infty}\right)$ or $G\left(F_{T} / F_{S_{\mathfrak{p}}}\right)$ for $T \supseteq S_{\mathfrak{p}}$ not even their cohomological dimension. On the other hand, let F_{∞} be the cyclotomic Z_{p}-extension, i.e. the unique Z_{p}-extension in $F\left(\mu_{p^{\infty}}\right)$, where $\mu_{p^{\infty}}$ is the group of all torsion points of \boldsymbol{G}_{m} of p-power order, and let S contain the set S_{p} of all primes above p. Then $G\left(F_{S} / F_{\infty}\right)$ is a free pro-p-group, if the μ-invariant of $G\left(F_{S} / F_{\infty}\right)^{\mathrm{ab}}$ is zero (hence this holds for abelian extensions F / Q). Furthermore, the Galois group $G\left(F_{T} / F_{S}\right), T \supseteq S$, is the free pro-p-product of all inertia groups $T_{v}\left(F(p) / F_{\infty}\right)$ with $v \in T \backslash S\left(F_{S}\right)$, where $F(p)$ denotes the maximal p-extension of F. This is a result of Neukirch [6] for $F=\boldsymbol{Q}$ and in general of O. Neumann, [7] or [9] for a short proof. If in addition we assume F to be totally real, then $G\left(F_{s_{p}} / F_{\infty}\right)$ is finitely generated, and we will call this situation $\left(p \neq 2, F_{\infty} \subseteq F\left(\mu_{p^{\infty}}\right), F_{S_{p}}\right)$ the \boldsymbol{G}_{m}-case.

We prove the more general
Theorem. Let S be a finite set of primes of F such that the following degree condition holds

$$
\begin{equation*}
\sum_{v \in S \cap S_{p}}\left[F_{v}: \boldsymbol{Q}_{p}\right]=r_{1}(F)+r_{2}(F) \tag{*}
\end{equation*}
$$

where $r_{1}(F)$ resp. $r_{2}(F)$ is the number of real resp. complex places of F. Let F_{∞} be a Z_{p}-extension in F_{s} for which $S_{p} \backslash S\left(F_{\infty}\right)$ is a finite set and the "weak Leopoldt conjecture"

$$
\operatorname{rank}_{1} G\left(F_{S \cap s_{p}} / F_{\infty}\right)^{\mathrm{ab}}=0
$$

is satisfied.
(i) Assume $\mu\left(G\left(F_{S_{\cap} S_{p}} / F_{\infty}\right)^{\mathrm{ab}}\right)$ is zero. Then the Galois groups $G\left(F_{s_{p}} / F_{\infty}\right)$ and $G\left(F_{S \cap s_{p}} \mid F_{\infty}\right)$ are free pro-p-groups and the same is true for $G\left(F_{S} / F_{\infty}\right)$ and $G\left(F_{\text {SUS }}^{p} \mid ~\left(F_{\infty}\right)\right.$ if and only if the set of primes $\left\{v \in S \backslash S_{p}\left(F_{\infty}\right): \cup \mid \mathfrak{q}, N(\mathfrak{q}) \equiv\right.$ $1 \bmod p\}$ is finite.
(ii) If $H^{3}\left(G\left(F_{s \cap s_{p}} \mid F_{\infty}\right), \boldsymbol{Q}_{p} \mid Z_{p}\right)$ is zero, then the Galois group $G\left(F_{T} \mid F_{S}\right)$ for $T \supseteq S$ is a free pro-p-product of inertia groups:

$$
\underset{v \in \mathcal{F}_{T / S}\left(F_{S}\right)}{*} T_{v}\left(F(p) / F_{\infty}\right) \xrightarrow{\sim} G\left(F_{T} / F_{S}\right),
$$

where the isomorphism is induced by the maps

$$
T_{v}\left(F(p) / F_{\infty}\right)=T_{v}\left(F(p) / F_{S}\right) \hookrightarrow G\left(F(p) / F_{S}\right) \longrightarrow G\left(F_{T} / F_{S}\right), \quad v \in T \backslash S\left(F_{S}\right)
$$

Remark. a) $\mathscr{P}_{T \backslash S}\left(F_{S}\right)$ is the projective limit of the sets $\mathscr{P}_{T \backslash S}(L)=$ $\left\{v_{L} \mid v: v \in T \backslash S\right\}$ provided with the cofinal topology, where L / F runs through
all finite Galois subextensions of F_{S} / F, see [9] Section 2.
b) In the \boldsymbol{G}_{m}-case the assertion ii) is the result of Neumann (there is no condition in that case, since Iwasawa proved in [4] that the weak Leopoldt conjecture is true, see also [8] Proposition 5.1).

Corollary (The elliptic case for $F=K$). Let E be an elliptic curve defined over the imaginary quadratic field K with complex multiplication by the ring of integers of K. Let $p \neq 2$ be a prime, which satisfies the conditions i) and ii), and let F_{∞} be the unique Z_{p}-extension in $F\left(E_{p \infty}\right)$. Then the Galois group $G\left(F_{S} \mid F_{\infty}\right), S \supseteq S_{\mathfrak{p}}$, is a free pro-p-group and $G\left(F_{T} \mid F_{s}\right)$ for $T \supseteq S \supseteq S_{\mathfrak{p}}$ is a free pro-p-product of inertia groups:

$$
\underset{v \in \mathscr{F}_{T} \backslash\left(F_{S}\right)}{*} T_{v}\left(F(p) / F_{\infty}\right) \xrightarrow{\sim} G\left(F_{T} / F_{S}\right) .
$$

This follows immediately from the theorem. Indeed, the (weak) Leopoldt conjecture is valid for K and recently L. Schneps and independently R. Gillard proved $\mu=0$ for $F=K$. The second assertion is quite remarkable, since the inertia groups $T_{v}\left(F(p) / F_{\infty}\right)$ are not finitely generated for primes v above \mathfrak{p}^{*} / p (recall: $T_{v}\left(F(p) / F_{\infty}\right) \cong Z_{p}$ or 1 for $\cup \nmid p$).

We need the following notations: Let M^{r} resp. M_{r} be the Γ invariants resp. Γ-coinvariants of a compact noetherian Λ-module M. According to the general structure theory we have

$$
\operatorname{rank}_{\Lambda} M=\operatorname{rank}_{Z_{p}} M_{\Gamma}-\operatorname{rank}_{Z_{p}} M^{\Gamma}
$$

Furthermore, $A^{*}=\operatorname{Hom}\left(A, \boldsymbol{Q}_{p} \mid \boldsymbol{Z}_{p}\right)$ denotes the Pontrjagin dual of a $\boldsymbol{Z}_{p^{-}}$ module A and $A_{p^{m}}$ and ${ }_{p^{m}} A$ are defined by the exact sequence

$$
0 \longrightarrow p_{p^{m}} A \longrightarrow A \xrightarrow{p^{m}} \longrightarrow A \longrightarrow A_{p^{m}} \longrightarrow 0,
$$

where the middle map is the multiplication by p^{m}.
Now we start with a purely algebraic
Lemma. Let

$$
1 \longrightarrow H \longrightarrow G \longrightarrow \Gamma \longrightarrow 1
$$

be an exact sequence of pro-p-groups, where G is finitely generated and Γ is isomorphic to Z_{p}. Then we have the following assertions for the compact noetherian 1-module $H^{\text {ab }}$:
(i) $\operatorname{rank}_{A} H^{\mathrm{ab}}=-\chi_{2}(G)+\operatorname{dim}_{F_{p}} H^{2}\left(G, \boldsymbol{Q}_{p} \mid Z_{p}\right)_{p}+\operatorname{rank}_{Z_{p}}\left(H^{2}\left(H, \boldsymbol{Q}_{p} \mid \mathcal{Z}_{p}\right)^{r}\right)^{*}$ with the partial Euler-Poincaré characteristic

$$
\chi_{2}(G)=\sum_{i=0}^{2} \operatorname{dim}_{F_{p}} H^{i}\left(G, \boldsymbol{F}_{p}\right)
$$

(ii) Let $H^{2}\left(H, \boldsymbol{Q}_{p} \mid Z_{p}\right)$ be zero and let $H^{2}\left(G, \boldsymbol{Q}_{p} \mid \boldsymbol{Z}_{p}\right)$ be divisible; then $H^{\text {ab }}$ does not contain any non-trivial finite 1 -submodule.

Proof. Let $1 \rightarrow R \rightarrow F \rightarrow G \rightarrow 1$ be a minimal representation of G by a free pro-p-group F of rank $n=\operatorname{dim}_{F_{p}} H^{1}\left(G, F_{p}\right)$ and a closed normal subgroup R and let the free pro-p-group E be defined by the commutative and exact diagram

Dualizing the corresponding Hochschild-Serre spectral sequences we get the exact sequences

$$
\begin{aligned}
& 0 \longrightarrow H^{2}\left(G, \boldsymbol{Q}_{p} / \boldsymbol{Z}_{p}\right)^{*} \longrightarrow R /[R, F] \longrightarrow F^{\mathrm{ab}} \longrightarrow G^{\mathrm{ab}} \longrightarrow 0 \\
& 0 \longrightarrow H^{2}\left(H, \boldsymbol{Q}_{p} / \boldsymbol{Z}_{p}\right)^{*} \longrightarrow R /[R, E] \longrightarrow E^{\mathrm{ab}} \longrightarrow H^{\mathrm{ab}} \longrightarrow 0
\end{aligned}
$$

Since $E^{\text {ab }}$ is a free A-module of rank $n-1$ ([5] Satz 3.4 a), we get

$$
\begin{aligned}
\operatorname{rank}_{1} H^{\mathrm{ab}}= & n-1-\operatorname{rank}_{A} R /[R, E]+\operatorname{rank}_{A} H^{2}\left(H, \boldsymbol{Q}_{p} / \boldsymbol{Z}_{p}\right)^{*} \\
= & n-1-\left(\operatorname{rank}_{Z_{p}} R /[R, F]-\operatorname{rank}_{Z_{p}} R /[R, E]^{r}\right) \\
& +\left(\operatorname{rank}_{\boldsymbol{Z}_{p}} H^{2}\left(H, \boldsymbol{Q}_{p} / \boldsymbol{Z}_{p}\right)_{\Gamma}^{*}-\operatorname{rank}_{\boldsymbol{Z}_{p}} H^{2}\left(H, \boldsymbol{Q}_{p} / \boldsymbol{Z}_{p}\right)^{* I}\right) \\
= & n-1-\left(\operatorname{rank}_{Z_{p}} H^{2}\left(G, \boldsymbol{Q}_{p} / \boldsymbol{Z}_{p}\right)^{*}+\operatorname{dim}_{\boldsymbol{F}_{p} p} G^{a \mathrm{ab}}\right) \\
& +\left(\operatorname{rank}_{\boldsymbol{Z}_{p}} R /[R, E]^{r}-\operatorname{rank}_{\boldsymbol{Z}_{p}} H^{2}\left(H, \boldsymbol{Q}_{p} / \boldsymbol{Z}_{p}\right)^{* r}\right) \\
& +\operatorname{rank}_{\boldsymbol{Z}_{p}} H^{2}\left(H, \boldsymbol{Q}_{p} / \boldsymbol{Z}_{p}\right)^{\Gamma *} \\
= & n-1-\left(\operatorname{rank}_{\boldsymbol{Z}_{p}} H^{2}\left(G, \boldsymbol{Q}_{p} \mid \boldsymbol{Z}_{p}\right)^{*}+\operatorname{dim}_{\boldsymbol{F}_{p} p} G^{a b}\right) \\
& +\operatorname{rank}_{\boldsymbol{Z}_{p}} H^{2}\left(H, \boldsymbol{Q}_{p} / \boldsymbol{Z}_{p}\right)^{\Gamma *} .
\end{aligned}
$$

The exact cohomology sequence

$$
0 \longrightarrow\left({ }_{p} G^{\mathrm{ab}}\right)^{*} \longrightarrow H^{2}\left(G, \boldsymbol{F}_{p}\right) \longrightarrow{ }_{p} H^{2}\left(G, \boldsymbol{Q}_{p} / \boldsymbol{Z}_{p}\right) \longrightarrow 0
$$

induced by the sequence $0 \rightarrow \boldsymbol{Z}\left|p \rightarrow \boldsymbol{Q}_{p}\right| \boldsymbol{Z}_{p} \xrightarrow{p} \boldsymbol{Q}_{p} / \boldsymbol{Z}_{p} \rightarrow 0$ now gives the first assertion. The second follows by the exact sequence

$$
0 \longrightarrow H^{1}\left(H, \boldsymbol{Q}_{p} / \boldsymbol{Z}_{p}\right)_{\Gamma} \longrightarrow H^{2}\left(G, \boldsymbol{Q}_{p} / \boldsymbol{Z}_{p}\right) \longrightarrow H^{2}\left(H, \boldsymbol{Q} / \boldsymbol{Z}_{p}\right)^{r} \longrightarrow 0,
$$

since $H^{\text {ab }}$ does not contain any non-trivial A-submodule if and only if $H^{\mathrm{ab} \Gamma}=\left(H^{1}\left(H, \boldsymbol{Q}_{p} / \boldsymbol{Z}_{p}\right)_{\Gamma}\right)^{*}$ is a free \boldsymbol{Z}_{p}-module.

In the following we deal with the commutative and exact diagram obtained by class field theory:

Here we have used the following notations: S and T are sets of primes with $T \supseteq S$. If F_{n} is the n-th layer of F_{∞}, let $U_{v}\left(F_{n}\right)$ be the p-primary part of the unit group of the v-completion of F_{n} and let $\bar{U}_{S}\left(F_{n}\right)$ be the topological closure of the image of the global unit group of F_{n} diagonal embedded in the local groups. Then $U_{v}\left(F_{\infty}\right)$ resp. $\bar{U}_{S}\left(F_{\infty}\right)$ is the projective limit of $U_{v}\left(F_{n}\right)$ resp. $\bar{U}_{s}\left(F_{n}\right)$ relative to the norm map. A denotes the Galois group of the maximal abelian unramified p-extension of F_{∞} and for shortness we set $G\left(F_{T} / F_{S}\right)_{c}$ for $G\left(F_{T} \mid F_{S}\right) /\left[G\left(F_{T} / F_{S}\right), G\left(F_{T} / F_{c o}\right)\right]$.

In the diagram the vertical sequence is obtained from the HochschildSerre spectral sequence and the horizontal maps in the middle are induced by the reciprocity homomorphism. The map φ is surjective, since F_{S} has no unramified p-extension.

Proposition 1. Let T be a finite set of primes of F containing S_{p}. Then

$$
H^{2}\left(G\left(F_{T} \mid F_{\infty}\right), \boldsymbol{Q}_{p} \mid \boldsymbol{Z}_{p}\right)^{*}
$$

is a free A-module of finite rank.

Proof. Since the cohomological dimension of $G\left(F_{T} / F\right)$ is equal or less 2, the group $H^{2}\left(G\left(F_{T} / F\right), \boldsymbol{Q}_{p} / \boldsymbol{Z}_{p}\right)$ is divisible, and $H^{3}\left(G\left(F_{T} / F\right), \boldsymbol{Q}_{p} / \boldsymbol{Z}_{p}\right)$ is zero. The exact sequences obtained from the Hochschild-Serre spectral sequence

$$
\begin{aligned}
0 & \longrightarrow H^{i}\left(G\left(F_{T} / F_{\infty}\right), \boldsymbol{Q}_{p} / \boldsymbol{Z}_{p}\right)_{T} \longrightarrow H^{i+1}\left(G\left(F_{T} / F\right), \boldsymbol{Q}_{p} / \boldsymbol{Z}_{p}\right) \\
& \longrightarrow H^{i+1}\left(G\left(F_{T} / F_{\infty}\right), \boldsymbol{Q}_{p} / \boldsymbol{Z}_{p}\right)^{r} \longrightarrow 0
\end{aligned}
$$

for $i=1,2$ show:

$$
\begin{aligned}
& H^{2}\left(G\left(F_{T} / F_{\infty}\right), \boldsymbol{Q}_{p} / \boldsymbol{Z}_{p}\right)^{\Gamma} \quad \text { is divisible, } \\
& H^{2}\left(G\left(F_{T} / F_{\infty}\right), \boldsymbol{Q}_{p} / \boldsymbol{Z}_{p}\right)_{\Gamma}=0
\end{aligned}
$$

This gives the assertion, [8] 1.2.
Now we are interested in the conditions under which $G\left(F_{S} / F_{\infty}\right)^{\text {ab }}$ is a Λ-torsion module, where S is a finite set of primes of F such that $S_{p} \backslash S\left(F_{\infty}\right)$ is finite and the degree condition $\left({ }^{*}\right)$ holds. This is equivalent to the weak Leopoldt conjecture, which says: the defect

$$
\delta_{n}:=r_{1}\left(F_{n}\right)+r_{2}\left(F_{n}\right)-1-\operatorname{rank}_{z_{p}} \bar{U}_{s}\left(F_{n}\right)
$$

is bounded for $n \rightarrow \infty$, [2] Lemma 14 .
Proposition 2. Let S be a set of primes of F such that the degree condition (*) holds and let F_{∞} be a Z_{p}-extension in F_{S} such that $S_{p} \backslash S\left(F_{\infty}\right)$ is finite. Then the following assertions are equivalent:
i) $\operatorname{rank}_{1} G\left(F_{S} / F_{\infty}\right)^{\mathrm{ab}}=0$.
ii) a) $H^{2}\left(G\left(F_{S} / F_{\infty}\right), \boldsymbol{Q}_{p} \mid \boldsymbol{Z}_{p}\right)=H^{2}\left(G\left(F_{S \cup S_{p}} \mid F_{\infty}\right), \boldsymbol{Q}_{p} \mid \boldsymbol{Z}_{p}\right)=0$
and
b) $\prod_{v \in S_{p} \backslash\left(F_{\infty}\right)} U_{v}\left(F_{\infty}\right) \xrightarrow{\varphi} G\left(F_{S U S_{p}} / F_{S}\right)_{c}$.
iii) a) $\operatorname{rank}_{A} H^{2}\left(G\left(F_{S} / F_{\infty}\right), \boldsymbol{Q}_{p} / \boldsymbol{Z}_{p}\right)=\operatorname{rank}_{A} H^{2}\left(G\left(F_{S \cup S_{p}} / F_{\infty}\right), \boldsymbol{Q}_{p} / \boldsymbol{Z}_{p}\right)=0$
and

$$
\text { b) } \operatorname{rank}_{A} \bar{U}_{S \cup S_{p}}\left(F_{\infty}\right)=\operatorname{rank}_{A} \bar{U}_{S}\left(F_{\infty}\right) .
$$

Proof. We estimate the rank of $G\left(F_{s} / F_{\infty}\right)^{\text {ab }}$ by using the diagram (**) for $T=S \cup S_{p}$:

$$
\begin{aligned}
\operatorname{rank}_{A} G\left(F_{S} \mid F_{\infty}\right)^{\mathrm{ab}} \geq & \operatorname{rank}_{A} G\left(F_{T} / F_{\infty}\right)^{\mathrm{ab}} \\
& -\left(\operatorname{rank}_{A} \prod_{v \in T \backslash S} U_{v}\left(F_{\infty}\right)-\operatorname{rank}_{\Lambda} \operatorname{Ker} \varphi\right) \\
& +\operatorname{rank}_{A} H^{2}\left(G\left(F_{S} / F_{\infty}\right), \boldsymbol{Q}_{p} / Z_{p}\right)^{*} \\
& -\operatorname{rank}_{A} H^{2}\left(G\left(F_{T} / F_{\infty}\right), \boldsymbol{Q}_{p} / \boldsymbol{Z}_{p}\right)^{*}
\end{aligned}
$$

By the global duality theorem due to Tate and Poitou one can compute the Euler-Poincaré characteristic of $G\left(F_{T} / F\right)$:

$$
\chi_{2}\left(G\left(F_{T} / F\right)\right)=\chi\left(G\left(F_{T} / F\right)\right)=-r_{2}(F),
$$

see [3] Proposition 22, Corollary 5. Furthermore, Iwasawa's result on local Z_{p}-extensions, [4] Theorem 25, gives

$$
\operatorname{rank}_{1} \prod_{v \in S_{p} \backslash S\left(F_{\infty}\right)} U_{v}\left(F_{\infty}\right)=\sum_{v \in S_{p} S(F)}\left[F_{v}: \boldsymbol{Q}_{p}\right]=r_{\underline{z}}(F) .
$$

Hence by the lemma we get

$$
\operatorname{rank}_{1} G\left(F_{S} / F_{\infty}\right)^{\mathrm{ab}_{2}} \geq \operatorname{rank}_{1} \operatorname{Ker} \varphi+\operatorname{rank}_{A} H^{2}\left(G\left(F_{s} / F_{*}\right), \boldsymbol{Q}_{p} / Z_{p}\right)^{*},
$$

Therefore i) implies

$$
\operatorname{rank}_{4} \operatorname{Ker} \varphi=\operatorname{rank}_{4} H^{2}\left(G\left(F_{S} / F_{\infty}\right), \boldsymbol{Q}_{p} / Z_{p}\right)^{*}=0
$$

If F_{∞} is a non-cyclotomic Z_{p}-extension, we have considering the Λ-module structure of the local groups $U_{v}\left(F_{\infty}\right)$

$$
\prod_{v \in S_{p} S\left(F_{\infty}\right)} U_{v}\left(F_{\infty}\right) \subseteq A^{r_{2}(F)}
$$

([4] Theorem 25), so $\operatorname{Ker} \varphi$ must be zero as a rank zero submodule of a free . 1 -module, i.e., φ is an isomorphism. If F is the cyclotomic Z_{p}-extension, S must contain S_{p}, and there is nothing to show for 0 .

Furthermore, we obtain

$$
\operatorname{rank}_{4} G\left(F_{T} / F_{\infty}\right)^{\mathrm{ab}}=r_{2}(F),
$$

hence by the lemma and Proposition 1

$$
H^{2}\left(G\left(F_{T} / F_{\omega}\right), \boldsymbol{Q}_{p} \mid \boldsymbol{Z}_{p}\right)=0 .
$$

Therefore we get the inclusion

$$
H^{2}\left(G\left(F_{S} \mid F_{\omega}\right), \boldsymbol{Q}_{p} \mid \boldsymbol{Z}_{p}\right)^{*} \subseteq G\left(F_{T} \mid F_{S}\right)_{c} \cong \prod_{v \in S_{p} \backslash S} U_{v}\left(F_{\because s}\right) \equiv 1^{r_{2}(F)},
$$

hence as above

$$
H^{2}\left(G\left(F_{s} \mid F_{\infty}\right), \boldsymbol{Q}_{p} / \boldsymbol{Z}_{p}\right)=0 .
$$

Assertion iii) follows from ii) for trivial reasons. Finally, iii) implies i) by combining the following rank equalities:

$$
\begin{aligned}
& \operatorname{rank}_{A} G\left(F_{S} / F_{\omega}\right)^{\mathrm{ab}}=\operatorname{rank}_{1} G\left(F_{T} / F_{\infty} \mathrm{ab}^{\mathrm{ab}}-r_{2}(F),\right. \\
& \operatorname{rank}_{1} G\left(F_{T} / F_{\omega}\right)^{\mathrm{ab}}=r_{2}(F)+\operatorname{rank}_{A} H^{2}\left(G\left(F_{T} / F_{\omega}\right), \boldsymbol{Q}_{H} / Z_{p}\right)^{*} .
\end{aligned}
$$

(the last one follows from the lemma, Proposition 1 and $c d_{p}\left(G\left(F_{T} \mid F\right)\right) \leq 2$).
Proposition 3. Let S and F_{∞} be as in Proposition 2. If the A-rank of $G\left(F_{s} / F_{\infty}\right)^{\mathrm{ab}}$ is zero, the following is true:
i) $G\left(F_{S} / F_{\circ}\right)^{\text {ab }}$ and $G\left(F_{S \cup S_{p}} / F_{\infty}\right)^{\text {ab }}$ do not contain any non-trivial finite 1-submodule.
ii) There exists an inclusion

$$
\operatorname{Tor}_{Z_{p}} G\left(F_{S \cup S_{p}} / F_{\infty}\right)^{\mathrm{ab}} \hookrightarrow \operatorname{Tor}_{Z_{\rho}} G\left(F_{S} / F_{\infty}\right)^{\mathrm{ab}}
$$

In particular, there is an inequality

$$
\mu\left(G\left(F_{S \cup s_{p}} / F_{\infty}\right)^{\mathrm{ab}}\right) \leq \mu\left(G\left(F_{S} / F_{\infty}\right)^{\mathrm{ab}}\right)
$$

iii) The Galois group $G\left(F_{s} / F_{\infty}\right)\left(\right.$ resp. $\left.G\left(F_{S \cup s_{p}} / F_{\infty}\right)\right)$ is a free pro-p-group if and only if $\mu\left(G\left(F_{s} / F_{\infty}\right)^{\text {ab }}\right)\left(\right.$ resp. $\left.\mu\left(G\left(F_{s \cup s_{p}} / F_{\infty}\right)^{\text {ab }}\right)\right)$ is zero.

Proof. We have $c d_{p}\left(G\left(F_{S \cup s_{p}} / F\right)\right) \leq 2$ and $H^{2}\left(G\left(F_{S \cup s_{p}} / F_{\infty}\right), \boldsymbol{Q}_{p} / Z_{p}\right)=0$ by Proposition 2, so the lemma implies i) for $G\left(F_{S \cup s_{p}} / F_{\infty}\right)^{\text {ab }}$.

Now assume $S_{p} \not \subset S$ (hence F_{∞} is not the cyclotomic Z_{p}-extension). Proposition 2 and Theorem 25 in [4] give

$$
\left(G\left(F_{S \cup S_{p}} \mid F_{S}\right)_{c}\right)^{r} \cong\left(\prod_{v \in S_{p} \backslash S\left(F_{\infty)}\right)} U_{v}\left(F_{\infty}\right)\right)^{r}=0
$$

Therefore we obtain the exact sequence

$$
\begin{aligned}
0 \longrightarrow & G\left(F_{S \cup s_{p}} / F_{\infty}\right)^{\mathrm{ab} r} \longrightarrow G\left(F_{S} / F_{\infty}\right)^{\mathrm{ab} \Gamma} \\
& \longrightarrow\left(\prod_{v \in S_{p} \backslash S\left(F_{\infty}\right)} U_{v}\left(F_{\infty}\right)\right)_{\Gamma} \xrightarrow{\psi} G\left(F_{S \cup s_{p} p} / F_{\infty}\right)_{\Gamma}^{\mathrm{ab}} .
\end{aligned}
$$

Since F_{∞} / F is unramified for all $v \in S_{p} \backslash S$ we get an isomorphism

$$
0=H^{1}\left(\Gamma_{n, v}, U_{v}\left(F_{n}\right)\right) \longrightarrow U_{v}\left(F_{n}\right)_{\Gamma_{n, v}} \longrightarrow U_{v}(F) \longrightarrow \hat{H}^{0}\left(\Gamma_{n, v}, U_{v}\left(F_{n}\right)\right)=0
$$

($\Gamma_{n, v}=G\left(F_{n, v} / F_{v}\right)$), and consequently

$$
\left(\prod_{v \in S_{p} \backslash S\left(F_{\infty>}\right)} U_{v}\left(F_{\infty}\right)\right)_{\Gamma}=\prod_{v \in S_{p} S(F)} U_{v}(F) .
$$

By class field theory we have a commutative and exact diagram

$$
\begin{array}{r}
{ }_{p m}\left(\prod_{v \in S_{p} \backslash S} U_{v}(F)\right) \xrightarrow{\psi}{ }_{p m}\left(G\left(F_{S \cup S_{p}} / F_{\infty}\right)_{\Gamma}^{a^{3}}\right) \\
0 \\
0 \\
\downarrow \\
{ }_{p m m_{1}^{\prime \prime}}(F) \xrightarrow{\Delta}{ }_{p m}\left(\prod_{v \in S \cup S_{p}} U_{v}(F)\right) \longrightarrow{ }_{p m} G\left(F_{S \cup S_{p}} / F\right)^{\mathrm{ab}} .
\end{array}
$$

Since the group $\mu(F)$ of all roots of unity in F is diagonal embedded in the local groups, we see that ψ restricted to the Z_{p}-torsion subgroup of $\Pi_{v \in S_{p} \backslash S} U_{v}(F)$ is injective. In the beginning of the proof we showed that $G\left(F_{S \cup S_{p}} / F_{\infty}\right)^{\text {abr }}$ is Z_{p}-free, hence we now get the same assertion for $G\left(F_{s} / F_{\infty}\right)^{\text {abb } \Gamma}$.

Since $\operatorname{Tor}_{Z_{p}}\left(\prod_{v \in S_{p} \backslash\left(F_{\infty}\right)} U_{v}\left(F_{\infty}\right)\right)$ is trivial, the exact sequence

$$
0 \longrightarrow \prod_{v \in s_{p} \mid S\left(F_{\infty}\right)} U_{v}\left(F_{\infty}\right) \longrightarrow G\left(F_{S \cup s_{p}} / F_{\infty}\right)^{a b} \longrightarrow G\left(F_{S} / F_{\infty}\right)^{\text {ab }} \longrightarrow 0
$$

gives the assertion ii), whereas iii) follows from the isomorphism

$$
0 \longrightarrow{ }_{p} G\left(F_{T} / F_{\infty}\right)^{\mathrm{ab} *} \xrightarrow{\sim} H^{2}\left(G\left(F_{T} / F_{\infty}\right), \boldsymbol{F}_{p}\right) \longrightarrow{ }_{p} H^{2}\left(G\left(F_{T} / F_{\infty}\right), \boldsymbol{Q}_{p} / \boldsymbol{Z}_{p}\right)=0
$$

with $T=S$ resp. $\quad T=S \cup S_{p}$.
Proof of the Theorem. In order to prove the second statement we first consider the exact sequence

$$
0 \longrightarrow G\left(F_{s} / F_{S \cap s_{p}}\right)_{c} \longrightarrow G\left(F_{S} / F_{\infty}\right)^{\text {ab }} \longrightarrow G\left(F_{S \cap s_{p}} / F_{\infty}\right)^{\text {ab }} \longrightarrow 0
$$

(observe: $H^{2}\left(G\left(F_{s \cap s_{p}} \mid F_{\infty}\right), \boldsymbol{Q}_{p} / Z_{p}\right)=0$, Proposition 2 ii)). Now the surjection induced by the reciprocity map

$$
\prod_{v \in S \backslash S_{p}\left(F_{\infty}\right)} U_{v}\left(F_{\infty}\right) \xrightarrow{\varphi} G\left(F_{S} / F_{S \cap S_{p}}\right)_{c}
$$

gives the rank equality

$$
\operatorname{rank}_{A} G\left(F_{S} / F_{\infty}\right)^{\mathrm{ab}}=\operatorname{rank}_{4} G\left(F_{S \cap S_{p}} / F_{\infty}\right)^{\mathrm{ab}}=0
$$

Indeed, the module

$$
\left.\prod_{v \in S \backslash S_{p}\left(F_{\infty}\right)} U_{v}\left(F_{\infty}\right) \cong \prod_{\substack{q \in S S_{p}(F) \\ N(a)=1 \bmod p}} U_{q}\left(F_{\infty}\right) \llbracket \Gamma / \Gamma_{a}\right]
$$

is Λ-torsion, because we have for a decomposition group Γ_{q} of $\Gamma, q \nmid p$:

$$
\begin{aligned}
& \Gamma_{\mathrm{q}}=1 \Longleftrightarrow U_{\mathrm{q}}\left(F_{\infty}\right)=U_{\mathrm{q}}(F) \quad \text { (cyclic of finite order) } \\
& {\left[\Gamma: \Gamma_{\mathrm{q}}\right]<\infty \Longleftrightarrow U_{\mathrm{q}}\left(F_{\infty}\right) \cong Z_{p} .}
\end{aligned}
$$

Using Proposition 2 we get

$$
\begin{gathered}
\prod_{v \in S_{p} S\left(F_{\infty}\right)} T_{v}\left(F(p) / F_{\infty}\right)^{a b} \xrightarrow{\sim} G\left(F_{S_{p}} / F_{S \cap S_{p}}\right)_{c}, \\
H^{2}\left(G\left(F_{S_{p}} / F_{\infty}\right), \boldsymbol{Q}_{p} / \boldsymbol{Z}_{p}\right)=0,
\end{gathered}
$$

and the Hochschild-Serre spectral sequence implies

$$
\begin{aligned}
0=H^{2}\left(G\left(F_{s_{p}} / F_{\infty}\right), \boldsymbol{Q}_{p} / \boldsymbol{Z}_{p}\right) & \longrightarrow H^{1}\left(G\left(F_{S \cap s_{p}} / F_{\infty}\right), H^{1}\left(G\left(F_{s_{p}} / F_{s \cap s_{p}}\right), \boldsymbol{Q}_{p} / \boldsymbol{Z}_{p}\right)\right) \\
& \longrightarrow H^{3}\left(G\left(F_{s \cap s_{p}} / F_{\infty}\right), \boldsymbol{Q}_{p} / \boldsymbol{Z}_{p}\right)=0
\end{aligned}
$$

Therefore Lemma 2.1 in [9] gives the isomorphism

$$
\underset{v \in \boldsymbol{o}_{S_{p} \backslash\left(F^{(} F_{\cap \cap} S_{p}\right)}}{*} T_{v}\left(F(p) / F_{\infty}\right) \xrightarrow{\sim} G\left(F_{S_{p}} / F_{S_{\cap} s_{p}}\right) .
$$

In the commutative and exact diagram

$$
\begin{aligned}
& \underset{\cup \in \mathcal{A}_{T \cup S_{p} \backslash S \cap S_{p}\left({ }_{S} \cup S_{p}\right)}^{*} \prod_{v}\left(F(p) / F_{\infty}\right) \longrightarrow G\left(F_{T \cup S_{p}} / F_{S \cap S_{p}}\right)}{ } \\
& \underset{v \in \mathscr{I}_{\left.T \cup S_{p}\right\rangle S_{p}\left(F_{S_{p}}\right)}^{*} T_{v}\left(F(p) / F_{\infty}\right) \longrightarrow G\left(F_{T \cup S_{p}} / F_{S_{p}}\right)}{ } \\
& \begin{array}{|c}
\uparrow \\
0
\end{array} \\
& \uparrow
\end{aligned}
$$

the bottom map is an isomorphism by the theorem of Neumann. Therefore we obtain the assertion ii) for the sets $T \cup S_{p}$ and $S \cap S_{p}$, hence for T and $S \cap S_{p}$ by dividing through the normal subgroup generated by all inertia groups for $v \in S_{p} \backslash T$. Finally, the normal subgroup

$$
\underset{v \in \mathscr{s}_{S \backslash T(F S)}^{*}}{*} T_{v}\left(F(p) / F_{\infty}\right) \quad \text { of } \quad \underset{v \in \mathcal{F}_{T \backslash S \cap S_{p}\left(F S \cap S_{p}\right)}^{*}}{*} T_{v}\left(F(p) / F_{\infty}\right) \cong G\left(F_{T} / F_{S \cap s_{p}}\right)
$$

is just the kernel of the canonical surjection $G\left(F_{T} / F_{S \cap S_{p}}\right) \longrightarrow G\left(F_{S} / F_{S \cap s_{p}}\right)$, hence isomorphic to $G\left(F_{T} / F_{S}\right)$.

In order to prove i) we observe that by the just established isomorphism

$$
\underset{v \in \mathcal{O} S \backslash S \cap s_{p}}{*} T_{v}\left(F(p) / F_{\infty}\right) \xrightarrow{\sim} G\left(F_{S} / F_{s \cap s_{p}}\right)
$$

the surjection φ is in fact an isomorphism. Thus we get

$$
\mu\left(G\left(F_{S} / F_{\infty}\right)^{\mathrm{ab}}\right)=\mu\left(G\left(F_{S \cap S_{p}} / F_{\infty}\right)^{\mathrm{ab}}\right)+\sum_{\substack{q \in S \mid S_{p} \\ N(Q)=1 \bmod p}} \mu\left(U_{q}\left(F_{\infty}\right) \llbracket \Gamma / \Gamma_{\mathrm{q}} \rrbracket\right) .
$$

Now the proof of the theorem is accomplished by using Proposition 3 ii), iii).

References

[1] Coates, J. and Wiles, A., On the conjecture of Birch and Swinnerton-Dyer, Invent. Math., 39 (1977), 223-251.
[2] -, Infinite descent on elliptic curves with complex multiplication, Progress in Mathematics Vol. 35 (Birkhäuser) Arithmetic and Geometry I dedicated to I.R. Šafarevič Boston-Basel-Stuttgart 1983.
[3] Haberland, K., Galois cohomology of algebraic number fields, Deutscher Verlag der Wissenschaften, Berlin (1978).
[4] Iwasawa, K., On Z_{ℓ}-extensions of algebraic number fields, Ann. of Math., 98 (1973), 246-326.
[5] Jannsen, U., Über Galoisgruppen lokaler Körper, Invent. Math., 70 (1982), 53-69.
[6] Neukirch, J., Einbettungsprobleme mit lokaler Vorgabe und freie Produkte lokaler Galoisgruppen, J. reine angew. Math., 259 (1973), 1-47.
[7] Neumann, O., On p-closed number fields and an analogue of Riemann's existence theorem, In A. Fröhlich, Algebraic number fields, Acad. Press, London (1977), 625-647.
[8] Wingberg, K., Duality theorems for Γ-extensions of algebraic number fields, Compositio Math., 55 (1985), 333-381.
[9] Ein Analogon zur Fundamentalgruppe einer Riemann'schen Fläche im Zahlkörperfall, Invent. Math., 77 (1984), 557-584.

NWF I-Mathematik der Universität Regensburg
Universitätsstraße 31
D-8400 Regensburg
F.R.G.

