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GALOIS GROUPS OF NUMBER FIELDS GENERATED

BY TORSION POINTS OF ELLIPTIC CURVES

KAY WINGBERG

Coates and Wiles [1] and B. Perrin-Riou (see [2]) study the arithmetic

of an elliptic curve E denned over a number field F with complex multi-

plication by an imaginary quadratic field K by using p-adic techniques,

which combine the classical descent of Mordell and Weil with ideas of

Iwasawa's theory of Zp-extensions of number fields. In a special case they

consider a non-cj^elotomic ZίΓextension FC3 defined via torsion points of E

and a certain Iwasawa module attached to EjF, which can be interpreted

as an abelian Galois group of an extension of FM. We are interested in

the corresponding non-abelian Galois group and we want to show that the

whole situation is quite analogous to the case of the cyclotomic Zp-

extension (which is generated by torsion points of Gm).

To make this precise: The odd prime number p satisfies the following

two conditions:

(i) p splits in K into two distinct primes: (p) = pp*,

(ii) E has good (ordinary) reduction at every prime of F above p.

Then F^ is the unique Z^-extension in F(Epoo)9 where £Jμoo — Un>i^» ^s

the group all torsion points of E(F) annihilated by a power of p.

Now, let Sp = SP(F) be the set of primes above p in F and let Fs be

the maximal p-extension of F unramified outside the set of primes S — S(F).

Assuming the weak p-adic Leopoldt conjecture, the abelian Galois group

G(FsJFJdh is a A = ZP[Γ]-torsion module where Γ = G(FJF). This module

gives an alternative description of the Selmer group of E/F^, [2] Theorem

12, and its characteristic power series defines the Iwasawa L-function

of EjF for which an p-adic analogue of the conjecture of Birch and

Swinnerton-Dyer is stated. In the following we will call this situation

(p ψ 2 with i) and ii), Fco g F(EP~\ Fs) the elliptic case.

In general, nothing is known about the (non-abelian) Galois groups
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JFn) or G(FτIFSp) for T =2 Sp not even their cohomological dimension.

On the other hand, let F^ be the cyclotomic Zp-extension, i.e. the unique

Zp-extension in F(μpJ), where μp™ is the group of all torsion points of Gm

of p-power order, and let S contain the set Sp of all primes above p.

Then GiFJFJ) is a free pro-p-group, if the ^-invariant of GiFs/FJ)** is

zero (hence this holds for abelian extensions F/Q). Furthermore, the

Galois group G(FTIFS)9 T Ξ> S, is the free pro-p-product of all inertia

groups Tv(F(p)IFJ) with v e T\S(FS), where F(p) denotes the maximal

p-extension of F. This is a result of Neukirch [6] for F = Q and in

general of O. Neumann, [7] or [9] for a short proof. If in addition we

assume F to be totally real, then G(FSJF(J) is finitely generated, and we

will call this situation (p ψ 2, Fw c: F(μp*>)9 FSp) the G^-case.

We prove the more general

THEOREM. Let S be a finite set of primes of F such that the following

degree condition holds

(*) Σ [Fυ: Qp] = r,(F) + r2(F) 9
υesr\Sp

where r^F) resp. r2(F) is the number of real resp, complex places of F.

Let FO0 be a Zp-extension in Fs for which SP\S(FX) is a finite set and the

"weak Leopoldt conjecture"

is satisfied.

(i) Assume μiGiFsp.sJF^Y10) is zero. Then the Galois groups J

and GiFςnsJFJ) are free pro-p-groups and the same is true for G(FsjF«)

and G(FS[jSJFJ) if and only if the set of primes {v e SXS^F^): v\q, N(q) =

lmodp} is finite.

(ii) If H3(G(FSf]SJFJ, QjZp) is zero, then the Galois group G{FτjFs)

for T'^2 S is a free pro-p-product of inertia groups:

^ - > G(FT/FS),

where the isomorphism is induced by the maps

TV(F(P)IF~) = Tυ{F(p)IFδ) - - > G(F(p)IFs) —» G(FTIFS), * e T\S(F3).

Remark, a) &T\s(Fs) is the protective limit of the sets 3?T\S(L) =

{vL\v: v e T\S} provided with the cofinal topology, where LjFruns through
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all finite Galois subextensions of Fs/F, see [9] Section 2.

b) In the (7m-case the assertion ii) is the result of Neumann (there

is no condition in that case, since Iwasawa proved in [4] that the weak

Leopoldt conjecture is true, see also [8] Proposition 5.1).

COROLLARY (The elliptic case for F — K). Let E be an elliptic curve

defined over the imaginary quadratic field K with complex multiplication by

the ring of integers of K. Let p Φ 2 be a prime, which satisfies the con-

ditions i) and ii), and let F^ be the unique Zp-extension in F(E^). Then

the Galois group G(FSIFJ), S 3 SP9 is a free pro-p-group and G(FTIFS) for

T =2 S Ξ5 Sp is a free pro-p-product of inertia groups:

* Tυ(F(p)IFJ - ^ > G(FT/FS).

This follows immediately from the theorem. Indeed, the (weak) Leopoldt

conjecture is valid for K and recently L. Schneps and independently R.

Gillard proved μ — 0 for F — K. The second assertion is quite remarka-

ble, since the inertia groups Tv(F(p)jFJ) are not finitely generated for

primes v above p*/p (recall: Tυ(F(p)!FJ) ^ Zp or 1 for vJ(p).

We need the following notations: Let MΓ resp. MΓ be the Γ-

invariants resp. jΓ-coinvariants of a compact noetherian /ί-module M.

According to the general structure theory we have

rank^ M = rankZ p MΓ — rankZ p M
Γ .

Furthermore, A* = Horn (A, QPIZP) denotes the Pontrjagin dual of a Zp-

module A and Apm and pmA are defined by the exact sequence

U ^ ptn-Ά. ^ JCΛ. y ^ JΓX ^ XΛ.pm ^ U ,

where the middle map is the multiplication by pm.

Now we start with a purely algebraic

LEMMA. Let

1 >H >G >Γ ^1

be an exact sequence of pro-p-groups, where G is finitely generated and Γ

is isomorphic to Zv. Then we have the following assertions for the com-

pact noetherian Λ-module HΆh:

(i) rank, ίP b = - X2(G) + dimFp H\G, QjZp\ + τankZp(H\H, QJZ.YY

with the partial Euler-Poίncare characteristic
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(ii) Let H2(H, QjZp) be zero and let H2(G, QJZP) be divisible; then

Hah does not contain any non-trivial finite Λ-submodule.

Proof, Let l->i?—>-F—•G—» 1 be a minimal representation of G by

a free pro-p-group F of rank n = άiτaFp Hι(G, Fp) and a closed normal

subgroup R and let the free pro-p-group E be defined by the commutative

and exact diagram

1
Λ

H

1
Λ

G

E

Γ

Γ 1.

R
A

R

Dualizing the corresponding Hochschild-Serre spectral sequences we get

the exact sequences

Ga

0 • H\G, Q
P
/Z

p
r > RI[R, F] > F^ -

0 • W(H, QJZ,)* • RI[R, E] > E^ -

Since Eah is a free Λ-module of rank n — 1 ([5] Satz 3.4 a), we get

•0

0 .

rank,iίa b = n - 1 - rank,RI[R, E] + rank,H\H, QjZp)*

= n - l - (rankZp R/[R, F] - rankZp R/[R, E]1)

+ (rank,,H\H, QjZjf - τan\iZpH\H, QPlZp)*r)

= n - l - (vankZp H\G, QjZp)*

+ (rankZp R/[R, E]Γ - rankZp H\H,

+ rankZp H%H,QJZPY*

= n - l - (rankZp H\G, QJZJ*

+ rankZp H\H,QPlZpy*.

The exact cohomology sequence

0 >(
P
G«T >H\G,F

P
)

P
H\G, Q

P
IZ

P
) — ^ 0
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induced by the sequence 0 -> Zip -> QJZP > QJZP -> 0 now gives the

first assertion. The second follows by the exact sequence

0 > H\H, QPIZP)Γ • H\G, QJZP) > H*(H, QjZPY — * 0 ,

since i/a b does not contain any non-trivial /1-submodule if and only if

HΛhΓ = (H\H, QPIZP)Γ)* is a free Zp-module.

In the following we deal with the commutative and exact diagram

obtained by class field theory:

0

(**)

Π UV(FJ)

Π
veT

• Π W - ) - J L» G(FT/FS)C > 0
ϋSΓ\.S

0

H\G(FSIF.,X QJZP)*
A

Here we have used the following notations: S and T are sets of primes

with Γ ^ S , If Fn is the 7i-th layer of Fm, let Uv(Fn) be the p-primary

part of the unit group of the υ-completion of Fn and let Us(Fn) be the

topological closure of the image of the global unit group of Fn diagonal

embedded in the local groups. Then U^FJ) resp. US(FJ) is the protective

limit of Uυ(Fn) resp. Us(Fn) relative to the norm map. A denotes the

Galois group of the maximal abelian unramified p-extension of F^ and for

shortness we set G(FTIFS)C for G(FTIFS)/[G(FTIFS), G(Fr/Fco)].

In the diagram the vertical sequence is obtained from the Hochschild-

Serre spectral sequence and the horizontal maps in the middle are induced

fay the reciprocity homomorphism. The map φ is surjective, since Fs has

no unramified p-extension.

PROPOSITION 1. Let T be a finite set of primes of F containing Sp.

Then

is a free Λ-module of finite rank.
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Proof. Since the cohomological dimension of G(FT/F) is equal or less

2, the group H\G(FTIF\ Qp/Zp) is divisible, and H\G(FTIF), QJZP) is zero.

The exact sequences obtained from the Hochschild-Serre spectral sequence

0 > H%G(FTIFJ, QPIZP)Γ • H^(G(FTIF), Qp/Zp)

> Hι

for ι = l , 2 show:

H\G(FτIFm), QPIZPY is divisible ,

HXG(FTIFJ), QjZp)r = 0.

This gives the assertion, [8] 1.2.

Now we are interested in the conditions under which G(FsIFJ)ah is a

Λ-torsion module, where S is a finite set of primes of F such that SP\S(FOO)

is finite and the degree condition (*) holds. This is equivalent to the

weak Leopoldt conjecture, which says: the defect

r2{Fn) - 1 - rank Z p Πs(Fn)

is bounded for n -> oo, [2] Lemma 14.

PROPOSITION 2. Let S be a set of primes of F such that the degree

condition (*) holds and let F^ be a Zp-extension in Fs such that

is finite. Then the following assertions are equivalent:

ii) a) IPiGiFJFJ), QJZP) = H\G(FSΌSJF^ QjZp) = 0

and

b) Π Uυ(FJ - 4 > G(FSΌSJFS)C.
vesp\s(Foo)

iii) a) τaήkΛH\G(FsIFJ, QjZp) = rank,H*(G(FSUSJFJ, QJZ,) = 0

and
b) rank, ϋS[}S,(FJ = rank, Ϊ7S(FJ.

Proo/. We estimate the rank of G(FsjFmYb by using the diagram (**)

for T= S U Sp:

rank, G(FsIFmYb > rank^

- ( r a n k , fl ί/,,^) - rank, Ker p)
υeΓVS

+ rank, H\G(FSIFJ, QjZp)*
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By the global duality theorem due to Tate and Poitou one can compute

the Euler-Poincare characteristic of G(FTIF):

UG(FTIF)) = X(G(FT/F)) = - r2(F),

see [3] Proposition 22, Corollary 5. Furthermore, Iwasawa's result on

local Zp-extensions, [4] Theorem 25, gives

rank, Π W - ) = Σ [Fv: QP] = r,(F).

Hence by the lemma we get

rank, G(F 5 /FJ e b > rank, Ker φ + rank, H\G{FsjFX QJZP)* ,

Therefore i) implies

rank,Ker^ = rank, H\G{FSIF^\ QJZP)* = 0 .

If F^ is a non-cyclotomic Zp-extension, we have considering the Λ-module

structure of the local groups UV(FJ)

([4] Theorem 25), so Ker̂ > must be zero as a rank zero submodule of a free

J-module, i.e., φ is an isomorphism. If F is the cyclotomic Zp-extension,

S must contain Sp, and there is nothing to show for φ.

Furthermore, we obtain

hence by the lemma and Proposition 1

H\G(FTIFJ,QJZP) = O.

Therefore we get the inclusion

H\G(FSIFJ), QJZPT c G(FT/FS)C s Π ^ ί ^ ) = -ίrΛF),
vesp\s

hence as above

F^\ QJZV) - 0 .

Assertion iii) follows from ii) for trivial reasons. Finally, iii) implies

i) b}̂  combining the following rank equalities:

rank, G(Fs/FJ*h = rank, G(FT/F^ - r2(F),

r a n k M F T I F ^ = r2(F) + rank, H\G(FTIF), QJZP)* .
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(the last one follows from the lemma, Proposition 1 and cdp(G(FτIF)) < 2).

PROPOSITION 3. Let S and F^ be as in Proposition 2. If the Λ-rank

of G{FsIF00Y
h is zero, the following is true:

i) G(FS/F^yh and G(FsusJFooY
h do not contain any non-trivial finite

Λ'Submodule.

ii) There exists an inclusion

Tor*, J

In particular, there is an inequality

iii) The Galois group G(FSIFJ) (resp. G(FsusJFm)) is a free pro-p-group

if and only if ,«(G(FJFM)ab) (resp. μ(G(FsusJFJlib)) is zero.

Proof. We have cdp(G(FsυsJF)) < 2 and H%G(FsusJFm), QJZP) = 0

by Proposition 2, so the lemma implies i) for G(FsusJFJfh.

Now assume Sp ς£ S (hence Fm is not the cyclotomic Z^-extension).

Proposition 2 and Theorem 25 in [4] give

Therefore we obtain the exact sequence

0 • G(FS[JSJF^Γ

— • ( Π U υ ( J

veSpXSiF^)

Since FJF is unramified for all v e SP\S we get an isomorphism

0 = IP(ΓntV, Uυ(Fn)) > Uυ(Fn)Γ^υ - ^ > Uυ(F) > H\ΓntΌ, Uv{Fn)) = 0

(ΓW i l ? = G(Fnil7/FL,)), and consequently

( Π UJίFJ))Γ= Π Uυ{F).
ve sp\s(F oo) veSp\S(F)

By class field theory we have a commutative and exact diagram

pm( Π Uυ(F))^->pm(G(FSΌSJF^)

^>,m( Π UV(F)) —•> pmG(FwsJFΓ .
vesuS
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Since the group μ(F) of all roots of unity in F is diagonal embedded in

the local groups, we see that ψ restricted to the Zp-torsion subgroup of

Πuespvs UV(F) is injective. In the beginning of the proof we showed that

G(FSΌSJFJ)ΆhΓ is Zp4γee, hence we now get the same assertion for G(FJF c o) a b Γ.

Since rΐoγZp(Y\veSp\s(F00) UV(FJ)) is trivial, the exact sequence

0—* Π UάFJ—>G(Fsus,IF»r—*G(FslFc.r>—*0
υeSpXSiFcv)

gives the assertion ii), whereas iii) follows from the isomorphism

0 > pG(FτlFJ^ - ^ > H\G(FTIFJ, Fp) • PH\G(FTIFOX QJZP) = 0

with T = S resp. T = S U Sp.

Proof of the Theorem, In order to prove the second statement we first

consider the exact sequence

0 — • G(FsIFsnSf)c — y G(FSIFJ» — > G(FSΓιSJFJ*» — > 0

(observe: H\G(FSΓίSJFJ), QjZ) = 0, Proposition 2 ii)). Now the surjection

induced by the reciprocity map

Π Uΰ(FJ -5U G(FsIFsnSi)c

gives the rank equality

rank, G(FSIF^ - rank, G(FSf]SJFJ^ - 0 .

Indeed, the module

Π Π
V£S\Sp(Fco) q£S\Sp(F)

Λ r(q)=l mod p

is /ί-torsion, because we have for a decomposition group Γq of Γ, c\)(p:

Γq = 1 Φ=> Uq(FJ) - U,(F) (cyclic of finite order)

Using Proposition 2 we get

Π Tυ(F(p)IFJ*h - ^ > G(FsJFSf]Sp)c,

and the Hochschild-Serre spectral sequence implies
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0 = H\G(FSJFJ, QJZP) — ^ H\G(FsnsJFJ, H\G(FsJFsnSp), QJZP))

— > H\G(FsnsJFm), QJZP) = 0.

Therefore Lemma 2.1 in [9] gives the isomorphism

In the commutative and exact diagram

0

- = ^ G(FsJFsnSp)

ί
TJF(p)IFJ) — > G ( F r u S p / F s n s ? )

ί ί
Tυ(F(p)IFJ)—+ G(FτusJFSp)

0 0

the bottom map is an isomorphism by the theorem of Neumann. There-

fore we obtain the assertion ii) for the sets T U Sp and S Π Sp, hence for

T and S Π Sp by dividing through the normal subgroup generated by all

inertia groups for υ 6 SP\T. Finally, the normal subgroup

Tv(F(p)IFJ of * Tυ(F(p)IFJ s G(Fτ/Fsr]Sp)
ve&τ\sS(FsS)

is just the kernel of the canonical surjection G(F Γ /F 5 n 5 p ) —*• G(FsIFsnSp),

hence isomorphic to G(FT/FS).

In order to prove i) we observe that by the just established isomor-

phism

* Tΰ(F(p)IFm) - ^ * G(FsIFsnS])

ve?s\snSp

the surjection φ is in fact an isomorphism. Thus we get

Now the proof of the theorem is accomplished by using Proposition 3 ii), iii).
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