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BOUNDS OF MODES AND UNIMODAL PROCESSES

WITH INDEPENDENT INCREMENTS

KEN-ITI SATO

§ 1. Introduction

A probability measure μ is called unimodal if there is a point a such

that the distribution function of μ is convex on (— oo, α) and concave on

(a, co). The point a is called a mode of μ. When μ is unimodal, the mode

of μ is not always unique; the set of modes is a one point set or a closed

interval. If μ is a unimodal distribution with finite variance, Johnson and

Rogers [6] give a bound

(1.1) \a-m\<^3ϋ,

where m and v are mean and variance of μ (see also [11]). Here V 3 is

the best constant. Let βp be the absolute moment (possibly infinite) of μ

of order p. We will extend the method of [6] and give a bound

(1.2) \a\< const βι

p

/p

for any (not necessarily integer) p > 0. The constant depends only on p,

We can give it explicitly, although it is not the best constant. Inequal-

ities of the type (1.2) are proved in Section 2. We emphasize that they

apply to distributions for which βp is finite only for small p, such as non-

Gaussian stable distributions.

In Section 3 we consider a stochastic process Xt with homogeneous

independent increments. Some behaviors of its absolute moments as t -> co

are given. We use them to show some limit theorems of modes when Xt

is unimodal. The inequalities in Section 2 can be used to give explicit

bounds in the behaviors of modes. In Section 4 the modes of stable pro-

cesses with index 1 are examined.

Bounds of modes for special classes of unimodal distributions are

treated in some papers. Wolfe [12] and Sato-Yamazato [9] consider distri-
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butions of class L. Hall [4] studies unimodal sums of i.i.d. random vari-

ables in the domain of attraction of the Gaussian distribution.

§ 2. Bound of modes

The following lemma is basic to our discussion. It is suggested by a

discussion in Johnson and Rogers [6].

LEMMA 2.1. If μ is unimodal and the origin is a mode, then

ί/P OVP
PP

(2.1) (q + iy«β]f« < (p + 1)

for any p > q > 0.

Proof. By a result of Khintchine and Shepp ([1] V.9), the distribu-

tion of X is unimodal with a mode 0 if and only if there are independent

random variables U and Y such that U is uniformly distributed on [0,1]

and UY has the identical distribution with X. Hence βp = E\X\P =

EUPE\Y\P = (p + l ) - 1 ^ Y|p, if X has distribution μ. Now (2.1) is a con-

sequence of the moment inequality ([1] V.8) applied to the absolute

moments of Y.

THEOREM 2.1. Let μ be a unimodal probability measure. Let a be a

mode of μ. Then,

(2.2) (q + 1 - (p + l)q/p)\a\q < (q + ί)βq + (p + l)*'>ffi»

for any p and q satisfying 0 < q < 1 and q < p.

Note that (x + l)1 / x is decreasing in x > 0, so the coefficient of \a\q is

positive.

Proof. Let X be a random variable with distribution μ. Then X — a

is unimodal with a mode 0. Applying Lemma 2.1, we have

(2.3) (q + l)ι/q(E\X - a\q)1/q < (p + 1)1/P(E\X - a\p)1/p

for 0 < q <p. W e u s e \\x\a - \y\a\ < \x - y\a < \x\a + \y\a for 0 < a < 1.

I f O < g < p < l , then it follows that

(q + \)\\a\q - βq\ <(p + ΐ)q'p(\a\p + βp)
q'p

< ( p + l)«"(|α|« + $ " ) .

If 0 < q < 1 < p, then we use Minkowski's inequality in the right-hand

side of (2.3) to obtain
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(q |σ|« - ,3,! < (p

Thus we get (2.2).

If β, < co for μ, denote the mean by m and the central absolute mo-

ment of order p by ΐp,

- mγμ(dx).

THEOREM 2.2. Let μ be unimodal with a mode a. Let p > 1. Then

(2.4) ((q + If" - (p + iY/p)\a\ < (q + \)ι" βψ + (p -f l ) 1 ' " ^

for 1 < q < p, and

(2.5) (2 - (p + l)" ') |α - m| < (p + D 1 ' ' ^ ,

(2.6) (2 - (p + l ) w ) | α | < 2|m| + (p + l ) 1 " ^

Proof. For 1 < g < p, we apply Minkowski's inequality to the both

sides of (2.4). Then we have

(q + l)^(|α| - βψ) <(p + iy»(\a\ + fi»),

which is identical with (2.4). In order to get (2.5), we let q = 1 in (2.3),

and then

2E\X - a\<(p + iy*(\m - a\ + ϊψ>).

Since \m - a\ < E\X — a\, we have (2.5). The bound (2.6) follows from

(2.5), because Ίψ <\m\ + βτjp. The proof is complete.

THEOREM 2.3. For each p > 0, there is a constant AP such that, if μ

is unimodal with a mode α, then

(2.7) a\<Ap?J>.

// Ap is the best such constant, then Ap is non-increasing in p and

(2.8) Ap < 2-±(P±^/P for p > 1,
2 — (p + 1)/p

(2.9) Ap < inf Ap,η for 1 < p < 2,
0<<Z<l

(2.10) Av < inf A,lhll for 0 < p < 1,

where
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Proof. Use the moment inequality β*Λ/ < /3^ for 0 < q < p in (2.2) or

(2.4). Then we get

(2.12) \a\ < A,,qβψ} for 0 < q < p .

where APtQ is (2.11) or

(2.13) A,, = to_+J)^_+JP+i^. for 1 < q < p .

This shows existence of Ap satisfying (2.7). Let Ap be the best such

constant. The bounds (2.8)-(2.10) are immediate since Ap < APjQ. Obviously

Ap > Ap,, for p < p'.

Remark. For p > 1, the APtq of (2.13) is increasing in q e [l,p), since

(q + ί)ί/q is decreasing in q. Hence min1<i2<p APiQ = Ap>1. For p > 2, we

have mino<^1-Ap,ρ = A ,̂! because A^^ is decreasing in qe(0,1]. In fact,

fix p > 2 and let /(g) = g + 1 + (p + ΐ)q/p and g(q) = q + 1 - (p + l)«/p

for 0 < g < 1. Then

(dldq)logAp.q = - r2log(/(g)/£(g)) + qΛfWfiq) - g'(q)lg(q))

and we have

g'(g) = 1 - (p + l)^/^-1 log (p + 1) > £'(1) > 1 - y/^-1 log 3 > 0,

f(q)!g(q) > 1 + 2lg(q) > 1 + 2/g(ΐ) > 3,

f'(q)lf(q) < 2-ψ(ΐ) < 2-!(l + S1/22-1 log 3)< 1.

Hence (d/dq) log A:,, < - q~2 log 3 + q~ι < 0.

§ 3. Processes with homogeneous independent increments

Let Xt, t > 0, be a real-valued process with homogeneous independent

increments with XQ = 0. We give estimates of its absolute moments. Let

THEOREM 3.L Let 0 < p < 1. Suppose that E\Xt\
p < oo. Then, for

0<q<P,

(3.1) EiXt* < Bq{2q-' + e(p - qYι){2^>βpt)^ for t > 1,

where
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(3.2) Bq = 2π~1Γ(q + 1) sin (2~V)

Moreover, if p ψ 1, then, for 0 < q < p,

(3.3) E\Xt\* = o(ta/p) as t -* oo .

Remark. For any p > 0, the condition E\Xt\
p < oo for some t > 0

implies i ^ X ^ < oo for all t > 0, because this is equivalent to the condition

ί \x\pι>(dx) < oo for the Levy measure v of Xt ([7], [8]).

Proof of Theorem 3.1. Let E exp (iz Xt) = φt(z) = e ' , the character-

istic function of Xt. Define hUp{z) by

(3.4) φt(z) - 1 - 1̂ 1̂ /1,̂ (2).

Then, ht%p(z) is bounded in z. By Theorems 2.1 and 4.1 of Hsu [5], we

have

(3.5)

(3.6)

and

(3.7)

zl-'ih^piz^dz < oo if p < 1,

z\-'\^ht,p{z)\dz< oo if p = 1,

E\Xtγ = BPΓ z-'
Jo

An explicit bound of ht,p(z) is known:

(3.8)

Indeed,

\httP(z)\<21-Έ\Xt

|sinΨt{z) - 1! < J|e*" - \\μt{dx) = 2 J|sii

< 2 ί I sin 2-12x!p/j,(dx) < ^ ^ l ^ ^ f \x J1uXdx),

where μt is the distribution of Xt. Since

! Λl + w

for any complex number if satisfying |iϋ| < 2"1, we have

< 22~p R \z\p — c~p
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if \z\ < c, where c = (22-pβp)'ί/p. Define gp(z) by ψ(z) = \z\pgp(z). Now let

0 < q < p. Formula (3.7) with p replaced by q yields

E\Xt\* - Bq F'z-ιB*httq(z)dz^Bq Γ V ^ I l - e
Jo Jo

- exv(tz»gp(z))\dz = Bqt<"»(I + J),

where / and J are the integrals of z~q~1\l — exp(zpgp(t 1/pz))\ over the

intervals (0, c) and (c, oo), respectively. Since \etλHz)\ < 1, we have

J < 2 z~q~ιdz — 2q~1c~q .
J<

Since

fw- _ I , ,
| 1 — βtt<| = e w d u | < \w\eιw{

Jo i

for any complex w, we have

Cr

Jo

It follows from (3.9) that

I < ec~p zp~q~1dz = e(p — g ) " ^ ^ .
Jo

Thus we obtain (3.1).

Next we show (3.3). Let 0 < q <p < 1. It follows from (3.5) that

(3.10) \z\-ι\gp(z)\dz < oo .
J -i

By the calculation above, we have

E\Xt\« < Bqt«<*(I(u) + J(u))

for any u > 0, where I(u) and J(u) are the integrals of z~q~ι\l —

exp(zvgp(t~ι/pz))\ over intervals (0, u) and (u, oo), respectively. For any

given ε > 0, we can find u such that

J(u) < 2

Since gp(z) is locally bounded, there is a constant K (depending on u)

such that



UNIMODAL PROCESSES 35

for 0 < z < u and t > 1. Hence, for t > 1,

KC-' Γ "" z-ι\gp(z)\dz,
Jo

which tends to zero as t -> co by virtue of (3.10). Thus (3.3) follows. The

proof is complete.

THEOREM 3.2. Let 1 <p < 2. Assume that E\Xt\
p < co and EXt = 0.

Then, for 1 <q <p,

(3.11) E\Xt\« < Bq(2qι + e(p - q)-%T^p-γβpty^ for t > 1,

where Bq is given by (3.2). Moreover, if p Φ 2, then, for 1 < q < p, we

have

(3.12) E\Xt\
q = o(tq/p) as t -> co .

Proof Define Λt,p(z) again by (3.4). By Theorem 2.1 of Hsu [5], (3.5)

and (3.7) are true also for 1 <p < 2. An explicit bound of ht,p(z) is

(3.13) \httP(z)\<22^p

in place of (3.8), because

<pt(z) - 1 - φf

t(0)z = Γ (φ't(u) - φ't(0))du
Jo

and

\φ't{z) - φ't(ϋ)\ < J \x\\eίzx - l\μt(dx) = 2 J | * | | s i n 2 - ' z

< 2 ί | x | | s i n 2 - 1 ^ x | ^ 1 ^ ( < i j c ) < 22-p\z\p~ι {\x\pμt(dx).

L e t t i n g c = (2"-^-'βp)~ί/p, we h a v e

\ψ(z)\<c~p\z\p if |2:| < c .

Now, if 1 < q < p , then, starting with (3.7) for E\Xt\
q, we can proceed

along the same line as the proof of (3.1) and obtain (3.11). If 1 < q < p

and 1 < p < 2, then the proof of (3.12) is wholly similar to that of (3.3).

From now on we assume that the distribution of Xt is unimodal for

every t For example, if Xt has distribution of class L, then it is unimodal,
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which is proved by Yamazato [13]. Let a{t) be a mode of Xt. Let m =

EX1 (if it exists) and ϊp — E\Xt — m\p. To see asymptotic behavior of a(t)

as t-+ oo, we use the following lemma.

LEMMA 3.1. Let {μn} be a sequence of probability measures that con-

verges weakly to μ. Suppose that, for each n, μn is unimodal with a mode

an, μ is unimodal, and the mode a of μ is unique. Then, an —> a.

This is obvious from the proof of Theorem 4 of Gnedendo-Kolmogorov

[3], Section 32.

THEOREM 3.3. Let 0 <p < 1 and assume that E\Xt\
p < oo. Then

(3.14) \a(t)\ < AqBψ(2q~ι + e(p - q)-iy/q(22-p βpt)
1/p for t > l ,

where q is an arbitrary number satisfying 0 < q < p. If p Φ 1, then

(3.15) a(i) = o(t1/p) as t -» oo .

If p = 1, then

(3.16) a(t) = mt + o(t) as t -+ oo .

Proof. The bound (3.14) is a conclusion of Theorems 2.3 and 3.1. In

order to prove (3.15) for p φ 1, choose 0 < q < p. Then (3.3) of Theorem

3.1 says that E\f1/pXt\
q -* 0 as *-> oo. It follows that t~ι/pXt tends to 0

in distribution. Hence we get (3.15) from Lemma 3.1. If p — 1, then

t~\Xt — mt) tends to 0 in distribution by the law of large numbers. Thus

we have (3.16) by Lemma 3.1. The proof is complete.

THEOREM 3.4. Let 1 <p < 2 and let E\Xt\
p < oo. Then

(3.17) a(t) = mt + o(t1/p) as t-+o°

and

(3.18) \a(i) - mt\ < C.B^q-1 + e(p - qyi)1/q(23-pp~1rpt)
1/p for t > l ,

where q is an arbitrary number satisfying 1 < q < p and

(3.19) Cq = —-ί?
2 - (q + I)1'*

Proof. Let Yt = Xt — mt. Then Yt is a process with homogeneous

independent increments with mean 0 and E\ Yt\
p < oo. It is unimodal with

a mode a(t) — mi. Hence we get (3.18), combining Theorems 2.2 and 3.2.
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Let p Φ2. By Theorem 3.2, we have E\t'1/pYt\
q ->0 as t-> oo for 1 < q <p.

Thus t~1/p Yt tends to 0 in distribution and (3.17) follows from Lemma 3.1. In

case p = 2, the central limit theorem implies convergence of the distri-

bution of t~ιβYt to a Gaussian distribution with mean 0 and, hence,

t~1/2(a(t) — mt) tends to 0 by Lemma 3.1. This completes the proof.

Remark 1. In the proof we do not get any information on speed of

convergence in the asymptotic behavior (3.15), (3.16), and (3.17) of the

mode a(t), because Lemma 3.1 does not tell anything about the speed.

However, we can give an alternative proof to (3.15) for 0 < p < 1 and to

(3.17) for 1 < p < 2 without resort to Lemma 3.1, combining the bounds

(3.3) and (3.12) of absolute moments with the bounds (2.5) and (2.7) of the

modes. So, in case 0 < p < 1 or 1 < p < 2, we can estimate speed of

convergence in (3.15) or (3.17), if estimate of speed of convergence in (3.3)

or (3.12) is given. In order to do this, estimate of the convergence

(3.20) Γ \z\-l\hUp(z)\dz-»0 (u-+0)
J -u

is essential, as is seen from examination of the proof of (3.3) and (3.12).

Concerning (3.20) we note

Γ \z\-ι\hι%v{*)\d* = Γ \z\~p-ι\φλz)-l\dz
J - a J - u

< Γ \z\-"~ιdzΓ \e<" - l\μi(dx)
J -U J -co

- 2 Γ \x\p

μi(dx) Γ '^ l^ l^- 1 !^ - l\dz

for 0 < p < 1 and a similar relation

Γ \z\-^\φί(z)~l~φ[(0)z\dz
J -n

< 2 V \x\*μι(dx) [UU\z\-p-ι\eiz - 1 - iz\dz

for 1 < p < 2.

Remark 2. It is known that, if E \Xt \
p < oo for some 0 < p < 1, then

t~1/pXt tends to 0 almost surely as t -» oo ([2], [10]). This fact implies (3.15)

by Lemma 3.1.
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§4. Stable processes with index 1

Let Xt be a stable process with index 0 < a < 2. A general form of

its characteristic function is as follows:

(4.1) φt(z) = exp [tλ(ίϊz - \z\a + iσ(tan 2-ίπa)z\z\«~1)] (a ψ 1) ,

(4.2) φt{z) = exp [tλ(iϊz -\z\- ia2π~xz log \z\)] (α = 1) ,

where λ, ΐ, and σ are real parameters, Λ > 0, — 1 < σ < 1. The Levy

measure is supported on the positive half line if and only if σ = 1. It is

supported on the negative half line if and only if σ = — 1. We assume

that λ = 1 and T = 0. It does not do harm to generality (consider Xt/λ — tϊ

instead of Xt). It is a special case of Yamazato's result [13] that Xt is

unimodal for each t. Furthermore the mode of Xt is unique for each t

(Sato-Yamazato [9]). We denote it by a(t). When the index a is not one,

Zolotarev [14] gives some information on a(t). Thus he proves that

sgn a(t) = sgn σ if 0 < a < 1,

sgn a(t) = — sgn a if 1 < a < 2 ,

where sgn x = 1, 0, — 1 according as x > 0, x — 0, x < 0, respectively. In

case a = 1, however, to get information on a(t) is more difficult. By nu-

merical calculation he finds that α(l) < 0 if a = 1 and σ = β/20, £ =

1, 2, , 20 ([14] p. 172). But no proof is given to the assertion that

sgn α(l) = — sgn a for a = 1.

We restrict our consideration to the case of index a — 1. Thus the

characteristic function of Xf is

(4.3) <pt(z) = exp [ί(- |z | - ^Tr^zlog |2|)] .

Denote the mode of Xf by α,(£).

PROPOSITION 4.1. (i) aσ(t) is a continuous function of two variables

(σ, t). ao(t) = 0, α.(0) = 0, α_,(*) - - aσ(t).

(ii) For αn^ fixed σ,

(4.4) αα(ί) - taσ(ΐ) + 2π~1σt log ί.

Let 0 < σ < 1. T/ie derivative a'σ(t) strictly increases from — oo to + oo

as t moves from 0 to + oo. 7%β mode ασ(ί) strictly decreases from ΰ to a

minimum negative value until an epoch sσ and then strictly increases to

+ co. There is a unique epoch tσ > 0 such that aσ(ta) = 0.



UN I MODAL PROCESSES 30

(iii) As <7-^0,

(4.5) aσ(t) = σ(-Kt + 2π~H log t) + tθ(σ"),

where O(σz) does not depend on t and

(4.6) K= π~T;(3) > 0 .

(iv) As σ decreases to 0,

(4.7) sσ = exp ( - 1 + 2'ιπK) + O(σ2),

(4.8) ta = exp (2-^i:) + O(σ2).

(v) TTiere exists Tx > 0 swcΛ *Λαί, if 0 < t < T{ and 0 < σ < 1,

α.(ί) < 0.

(vi) 7%ere exisίs T2 > 0 swc/i ί/iαί, i/ ί > T2 and 0 < σ < 1,

α.(ί) > 0.

(vii) Arc explicit bound of aa{\) is

(4.9) |α.(l)| < A . B ^ p - 1 + (1 - p ) - + 4^"2(2 - p)-V)1^

/or 0 < p < 1, w/iere Ap and β p are of (2.7) and (3.2).

Proof, (i) Continuity of a,(£) follows from Lemma 3.1 because φt{z)

is continuous in (σ, t) for each z. If σ = 0, then X£ is symmetric and

aσ(t) — 0. Since Xt starts at the origin, aσ(0) = 0. The relation a_σ(£) = —

ασ(0 is seen from (4.3).

(ii) The equality (4.4) is already observed by Zolotarev [14]. It is an

easy consequence of the space-time relation

φt(z) = φγ{tz) exp (i2π~ισzt log t).

Since we have

(4.10) a',(t) = ασ(l) + 2τr-1<τ(l + log ί)

from (4.4), the rest of the assertion is obvious.

(iii) It is enough to prove (4.5) for t = 1. Let f(x) be the density

function of X. By the Fourier inversion we have

f(x) = (2π)~1 Γ exp(-ίxz - |2| - i2rrxσz log \z\)dz .

Write αff(l) = a. Since a is the zero point of f\x), we get

z e x p ( — iaz — \z\ — i2π~ισzlog \z\)dz = 0 .
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Taking the imaginary part,

Λco

ze~z sin (az + 2π~1σz log z)dz = 0 .
Jo

Using I sin x — x\ < const jx]3, we have

Π z2e~z(a + 2π~'σ log z)dz + R = 0
Jo

where

|i?ί < const V z'e~z\a + 2π'ισ log z\zdz < const (|α|3 + |σ|3).
Jo

Therefore

a + Kσ = O(| α |8) + O(|σ|3),

where

K = r:"1 Γ z2e~zlogzdz = ΓΓT'CS) > 0
Jo

(Γ' is the derivative of the gamma function). Hence

α(l + O(a2)) - - Kσ(l + O(σ2)).

Since a —> 0 as σ —> 0 by (i), we have a — — if σ(l + o(l)) and hence

α = - Kσ(l + O(σ2)) .

(iv) is a consequence of (iii), as we have

from (4.4) and (4.10).

(v) It follows from (iii) that there exists σ1 > 0 such that aσ(ΐ) < 0

for 0 < σ < 0V Hence ασ(0 < 0 for 0 < σ < σ, and 0 < ί < 1. If ^ < <7 < 1

and 0 < t < 1, then

Gσ(0 < taσ(l) + 2τr-1(τ1ίlogί

by (4.4). Since aa(l) is bounded in a by continuity, it follows that aσ(t) < 0

for σx < σ < 1 if t is small enough.

(vi) If Γ > 1 is big enough, we see from (4.5) that a'^a^T) tends to

a positive number as σ -» 0. Hence there is σ2 > 0 such that ασ(T
τ) > 0

for 0 < a < σ2. Hence aσ(t) > 0 for 0 < σ < σ2 and t > T. Since
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aa(t) > taσ(ϊ) + 2π'ισd\ogt

for σ2 < σ < 1 and t > 1, we see, using boundedness of aσ(l) again, that

aσ(t) > 0 for σ, < σ < 1 if t is sufficiently large,

(vii) Use (3.7). Then

E\XX\* = Bp [° z~*-χ[l - e~z cos (2π~'σz log z)]dz = BP(I + J),
Jo

where I and J are the integrals over the intervals (0, 1) and (1, oo), re-

spectively. We have

I < Γ z~pdz + 2τr-V Γ ^ ( l o g zfdz ,
Jo Jo

J<2 V z-^λdz,

using 1 — e~e cosy < z + 2~ιy2. Thus we obtain (4.9) from Theorem 2,3.

The proof is complete.

Added in proof. The author has found the best constants Ap and

Dp in the inequalities \a\ < Apβ
ι

p

/P (p > 0) and \a — m\ < ΌpΊψ (p > 1).

The results are that Av is the unique zero point of x1^1 — (p + ί)x — p for

x > 1, and that Dp = (p + l)1 / p. Proof will be published in Ann. Statist.

Math. A under the title "Modes and moments of unimodal distributions".
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