# PARTIAL REGULARITY AND APPLICATIONS 

TADATO MATSUZAWA

## Dedicated to Professor Sigeru MIZOHATA on his sixtieth birthday

## §1. Introduction

The problem to determine the Gevrey index of solutions of a given hypoelliptic partial differential equation seems to be not yet well investigated. In this paper, we shall show the Gevrey indices of solutions of the equations of Grushin type, [6], are determined by a rather simple application of a straightforward extension of the results given in [7], [8] and [13]. For simplicity to construct left parametrices in the operator valued sense, we shall consider the equations under the stronger condition than that of [6] (cf. Condition 1 of Section 3). Typical examples of Grushin type are given by $L_{1}=D_{y}^{2}+y^{2} D_{x}^{2}, L_{2}=D_{y}^{2}+\left(x^{2}+y^{2}\right) D_{x}^{2}, \cdots$, which will be discussed in Section 4. We remark that our approach may be compared with the one to a similar problem discussed in [17] by using suitable $L_{2}$-estimates constructed in [16].

In Section 2, we prepare some direct extension of the results given in [13] on partial regularity of the distributions and those on pseudodifferential operators given in [7]. In Section 3, we shall establish a method to treat the equations of Grushin type. Finally, Section 4 will be devoted to a discussion on typical examples of Grushin type and to a brief comment on the application of our method for more general class of hypoelliptic partial differential equations.

## § 2. Partial regularity and a class of pseudodifferential operators

In this Section, we shall give some refinement of the results in [7] and [13]. Let $\Omega$ be an open subset of $R^{N}$ whose point is denoted by $x=$ $\left(x_{1}, \cdots, x_{N}\right)$. Let $q=\left(q_{1}, \cdots, q_{N}\right)$ be a $N$-tuple of real numbers $q_{j} \geqq 1, j=$ $1, \cdots, N$. We use general notations such as $|\alpha|=\alpha_{1}+\cdots+\alpha_{N},\langle\xi\rangle=\langle\xi\rangle_{q}$ $=1+\left|\xi_{1}\right|^{1 / q_{1}}+\cdots+\left|\xi_{N}\right|^{1 / q_{N}}$ and $\langle\alpha, q\rangle=\alpha_{1} q_{1}+\cdots+\alpha_{N} q_{N}$.

[^0]Definition 2.1. Let $u \in C^{\infty}(\Omega)$, then we say that $u$ is in $G^{q}(\Omega)$ if for any compact set $K$ of $\Omega$ there are positive constants $C_{0}$ and $C_{1}$ such that

$$
\begin{equation*}
\sup _{x \in K}\left|D^{\alpha} u(x)\right| \leqq C_{0} C_{1}^{|\alpha|}|\alpha|^{\langle\alpha, q\rangle}, \quad \alpha \in Z_{+}^{N} . \tag{2.1}
\end{equation*}
$$

Proposition 2.1. Let $u \in \mathscr{D}^{\prime}(\Omega)$. Then $u \in G^{q}$ in a neighborhood of $x_{0} \in \Omega$ if and only if for some neighborhood $U$ of $x_{0}$ there is a bounded sequence $u_{j} \in \mathscr{E}^{\prime}(\Omega), j=1,2, \cdots$, which is equal to $u$ in $U$ and satisfies the estimates

$$
\begin{equation*}
\left|\hat{u}_{j}(\xi)\right| \leqq C_{0} C_{1}^{j} j!\langle\xi\rangle_{q}^{-j}, \quad j=1,2, \cdots, \tag{2.2}
\end{equation*}
$$

for some constants $C_{0}$ and $C_{1}>0$.
Proof. Necessity. Let $u \in G^{q}$ in $\left\{\left|x-x_{0}\right| \leqq 3 \delta\right\}, \delta>0$. We can find the functions $\chi_{j}(x), j=1,2, \cdots$, such that $\chi_{j} \in C_{0}^{\infty}\left(\left|x-x_{0}\right|<2 \delta\right)$, equal to 1 when $\left|x-x_{0}\right| \leqq \delta$ and

$$
\begin{equation*}
\left|D^{\alpha+\beta} \chi_{j}\right| \leqq C_{\beta} C^{|\alpha|} j^{|\alpha|} \quad \text { if } \quad|\alpha| \leqq j . \tag{2.3}
\end{equation*}
$$

Here $C$ depends only on $N$ and $\delta$, and $C_{\beta}$ depends only on $N, \delta$ and $\beta$ (cf. [11], Lemma 2.2). Then $u_{j}=\chi_{j} u$ is bounded in $\mathscr{E}^{\prime}$. By assumption we have for some constant $C_{1}$

$$
\begin{equation*}
\sup _{\left|x-x_{0}\right| \leq 3 \delta}\left|D^{\alpha} u\right| \leqq C_{1}^{1+|\alpha|}|\alpha|^{\alpha a, q\rangle} . \tag{2.4}
\end{equation*}
$$

It follows that

$$
\left|D^{\alpha}\left(\chi_{j} u\right)\right| \leqq C C_{q_{0}}\left(C+C_{1}\right)^{|\alpha|} j^{\langle\alpha, q\rangle}, \quad\langle\alpha, q\rangle \leqq j+q_{0}
$$

where $q_{0}=\max \left(q_{1}, \cdots, q_{N}\right) \geqq 1$, from which we have

$$
\left|\xi^{\alpha} \widehat{\chi_{j}} u(\xi)\right| \leqq C_{2}^{|\alpha|+1} j^{j}, \quad\langle\alpha, q\rangle \leqq j+q_{0} .
$$

On the other hand we have

$$
\sum_{\langle a, q\rangle \leqq j+q 0}\left|\xi^{\alpha}\right| \geqq C_{3}^{j} \xi_{q}^{j}, \quad j=1,2, \cdots
$$

for a constant $C_{3}$ independent of $j$, then we conclude that the estimates (2.2) hold.

Sufficiency. Since we have

$$
\left|\xi^{\alpha}\right| \leqq\langle\xi\rangle_{q}^{j}, \quad\langle\alpha, q\rangle \leqq j, \quad j=1,2, \cdots
$$

the estimates of type (2.1) in $\left|x-x_{0}\right| \leqq \delta$ are almost evident by using the Fourier inversion formula and (2.2).

Now we shall use a partition of the variable $x=\left(x^{\prime}, x^{\prime \prime}\right), x^{\prime}=$ $\left(x_{1}, \cdots, x_{p}\right), x^{\prime \prime}=\left(x_{p+1}, \cdots, x_{N}\right), 1 \leqq p \leqq N-1$. We also use the partition of the multi-index $\alpha=\left(\alpha^{\prime}, \alpha^{\prime \prime}\right), \alpha^{\prime}=\left(\alpha_{1}, \cdots, \alpha_{p}\right), \alpha^{\prime \prime}=\left(\alpha_{p+1}, \cdots, \alpha_{N}\right)$. We recall that $u \in \mathscr{E}^{\prime}(\Omega)$ is (partially) regular with respect to $x^{\prime}$ if for any $s>0$ there exist numbers $t=t(s) \in R$ and $C=C(s)$ such that

$$
\begin{equation*}
|\hat{u}(\xi)| \leqq C\left(1+\left|\xi^{\prime}\right|\right)^{-s}\left(1+\left|\xi^{\prime \prime}\right|\right)^{t}, \quad \xi \in R^{N} . \quad \text { (cf. [5]) } \tag{2.5}
\end{equation*}
$$

Definition 2.2. (cf. [13], Def. 3.2). Let $u \in \mathscr{D}^{\prime}(\Omega)$. We say $u$ is in $G_{x^{\prime}}^{q^{\prime}}, \quad q^{\prime}=\left(q_{1}, \cdots, q_{p}\right), \quad q_{j} \geqq 1, j=1, \cdots, p$, in a neighborhood of $x_{0} \in \Omega$ if for some neighborhood $U$ of $x_{0}$ there is a bounded sequence $u_{j} \in \mathscr{E}^{\prime}(\Omega)$, $j=1,2, \cdots$, which is equal to $u$ in $U$ and satisfies the estimates

$$
\begin{equation*}
\left.\left|\hat{u}_{j}(\xi)\right| \leqq C_{0} C_{1}^{j} j!\left\langle\xi^{\prime}\right\rangle\right\rangle^{-j}\left(1+\left|\xi^{\prime \prime}\right|\right)^{k}, \quad j=1,2, \cdots \tag{2.6}
\end{equation*}
$$

for some constants $C_{0}, C_{1}>0$ and $k \in R$. Here we have denoted by $\left\langle\xi^{\prime}\right\rangle=$ $1+\left|\xi_{1}\right|^{1 / q_{1}}+\cdots+\left|\xi_{p}\right|^{1 / q_{p}}$. We define quite similarly, $u \in G_{x^{\prime \prime}}^{q^{\prime \prime}}$, $q^{\prime \prime}=$ $\left(q_{p+1}, \cdots, q_{N}\right)$.

We can see that by the same method of the proof of Proposition 3.1 of [13] we have its refininement as follows:

Proposition 2.2. Let $u \in \mathscr{D}^{\prime}(\Omega)$. Then $u \in G^{q}$ in a neighborhood of $x_{0} \in \Omega$ if and only if $u \in G_{x^{\prime}}^{q^{\prime}}$ and $u \in G_{x^{\prime \prime \prime}}^{q^{\prime \prime}}$ in a neighborhood of $x_{0} \in \Omega$.

For the proof we only replace $\left|\xi^{\prime}\right|$ by $\left\langle\xi^{\prime}\right\rangle_{q^{\prime}}$ and $\left|\alpha^{\prime}\right|$ by $\left\langle\alpha^{\prime}, q^{\prime}\right\rangle$ etc., in the proof of Proposition 3.1 of [13].

Definition 2.3 (Generalization of [7], Def. 4.1). Let $-\infty<m<\infty$; $0 \leqq \delta<\rho \leqq 1 ; s \geqq 1 ; q=\left(q_{1}, \cdots, q_{N}\right), \quad q_{j} \geqq 1, j=1, \cdots, N$. We denote by $S_{\rho, o, s, s}^{m, q}\left(\Omega \times R^{N}\right)$ the set of all $a(x, \xi) \in C^{\infty}\left(\Omega \times R^{N}\right)$ such that for every compact set $K$ of $\Omega$ there are positive constants $C_{0}, C_{1}$ and $B$ such that

$$
\begin{equation*}
\sup _{x \in K}\left|a_{(\beta)}^{(\alpha)}(x, \xi)\right| \leqq C_{0} C_{1}^{|\alpha+\beta|} \alpha!\beta!^{s}\langle\xi\rangle_{q}^{m-\rho|\alpha|+\delta|\beta|}\langle\xi\rangle_{q} \geqq B|\alpha|^{\theta}, \tag{2.7}
\end{equation*}
$$

where $\theta=s /(\rho-\delta)$.
We associate with such a symbol $a(x, \xi)$ a pseudo-differential operator as usual:

$$
a(x, D) u(x)=(2 \pi)^{-N} \iint e^{i\langle x-y, \xi\rangle} a(x, \xi) u(y) d y d \xi, \quad u \in C_{0}^{\infty}(\Omega) .
$$

Let $K(x, y) \in \mathscr{D}^{\prime}(\Omega \times \Omega)$ be the distribution kernel of $a(x, D)$ expressed by the oscillatory integral:

$$
K(x, y)=(2 \pi)^{-N} \int e^{i\langle x-y, \xi\rangle} a(x, \xi) d \xi
$$

Then we get the following theorem by a slight modification of the proof of [7], Theorem 1.1.

Theorem 2.1. Let $a(x, \xi) \in S_{\rho, o, s}^{m, q}\left(\Omega \times R^{N}\right)$. Then we have the following:
(i) $K(x, y) \in G_{x, y}^{\theta q}(\Omega \times \Omega \backslash \Delta), \Delta=\{(x, x) ; x \in \Omega\}, \theta=s /(\rho-\delta)$.
(ii) The operator $a(x, D)$ is $G^{\theta^{\prime} q_{-}}$pseudolocal i.e., for any $\theta^{\prime} \geqq \theta$ and $u \in \mathscr{E}^{\prime}(\Omega)$ which is in $G^{\theta^{\prime} q}$ in a neighborhood of $x_{0} \in \Omega$ we have $a(x, D) u \in G^{\theta^{\prime} q}$ in the same neighborhood of $x_{0} \in \Omega$.

## § 3. Partial differential equations of Grushin type

In the following, we shall use the same notation of [6]. Let $\Omega$ be an open set of $R^{N}$ whose point is denoted by $x=\left(x_{1}, \cdots, x_{N}\right)$. Let there be given rational numbers $\rho_{j} \geqq 1$, and $\sigma_{j} \geqq 0,1 \leqq j \leqq N$, such that for any $j, 1 \leqq j \leqq N$, one of the following three relations is satisfied:
a) $\rho_{j}=\sigma_{j}=1$
b) $\rho_{j}>\sigma_{j}>0$
c) $\sigma_{j}=0$.

Let $y$ denote the family of variables $x_{j}$ for which property a) holds. Let $x^{\prime}$ be the set of remaining variables, so that $x$ has representation $x=\left(x^{\prime}, y\right)$, $x^{\prime}=\left(x_{1}, \cdots, x_{k}\right), y=\left(y_{1}, \cdots, y_{n}\right), k+n=N$. In turn $x^{\prime}$ is represented in the form $x^{\prime}=\left(x^{\prime \prime}, x^{\prime \prime \prime}\right)$, where b ) holds for $x^{\prime \prime}$ and c$)$ for $x^{\prime \prime \prime}$.

Let $m$ be a positive integer and set

$$
\begin{align*}
\mathscr{M} & =\{(\gamma, \alpha) ;|\alpha| \leqq m,\langle\rho, \alpha\rangle \geqq\langle\sigma, \gamma\rangle \geqq\langle\rho, \alpha\rangle-m\},  \tag{3.2}\\
\mathscr{M}_{0} & =\{(\gamma, \alpha) ;|\alpha| \leqq m,\langle\sigma, \gamma\rangle=\langle\rho, \alpha\rangle-m\}, \tag{3.3}
\end{align*}
$$

where $(\gamma, \alpha)$ is a pair of multi-indices of dimension $N$ with nonnegative integers such that $\gamma_{j}=0$ for $j$ if $\sigma_{j}=0(1 \leqq j \leqq k)$.

Now we study differential operators introduced in [6] of the form

$$
\begin{equation*}
L(x, D)=\sum_{\mu} a_{\alpha \gamma}(x) x^{\tau} D^{\alpha}, \quad a_{\alpha \gamma}(x) \in C^{\infty}\left(R^{N}\right) \tag{3.4}
\end{equation*}
$$

Associating with (3.4) we shall consider the operator

$$
\begin{equation*}
L_{0}\left(x^{\prime \prime}, y, D\right)=\sum_{\mu} a_{\alpha \gamma}(0) x^{\gamma} D^{\alpha} . \tag{3.5}
\end{equation*}
$$

Condition 1. $L_{0}\left(x^{\prime \prime}, y, D\right)$ is strongly elliptic of even degree $m$ for $\left|x^{\prime \prime}\right|+|y|=1$.

Condition 2. The differential equation

$$
\begin{equation*}
L_{0}\left(x^{\prime \prime}, y, \xi, D_{y}\right) v(y)=0 \tag{3.6}
\end{equation*}
$$

has no non-trivial solution in $\mathscr{S}\left(R_{y}^{n}\right)$ for any fixed $\xi \in R^{k}, \xi \neq 0$ and $x^{\prime \prime}$.
Remark 3.1. Condition 1 is stronger than that of [6] in which the operator $L_{0}\left(x^{\prime \prime}, y, D\right)$ is merely supposed to be elliptic for $\left|x^{\prime \prime}\right|+|y|=1$. We can replace Condition 1 by the original one if we apply the investigation of Beals, [2], Section 6 in the proof of Theorem 3.2 below.

Theorem 3.1. Under the conditions 1 and 2, the operator $L$ is partially hypoelliptic in $y$ in a neighborhood of the original in the following sense:
(i) There exists an open set $U \ni 0$ such that if $u \in \mathscr{E}^{\prime}(U)$ and $L(x, D) u$ is regular with respect to $y$ in $U$ then $u$ is also regular with respect to $y$ in $U$.
(ii) If the coefficients $a_{\alpha r}(x)$ are in $G^{s}(U), s \geqq 1$, and if $u \in \mathscr{E}^{\prime}(U)$, $L(x, D) u \in G_{y}^{s}$ in an open subset of $U$, then $u \in G_{y}^{s}$ in the same set.

Proof. We shall investigate how the assumptions of [13], Theorems 4.3 and 4.4 are satisfied for the characteristic polynomial $L\left(x^{\prime}, y, \xi, \eta\right)$. Following [6] we set

$$
\begin{aligned}
& |x|_{\sigma}=\left|x_{1}\right|^{1 / \sigma_{1}}+\cdots+\left|x_{N}\right|^{1 / \sigma_{N}}, \\
& \left|x^{\prime}\right|_{\sigma}=\left|x_{1}\right|^{1 / \sigma_{1}}+\cdots+\left|x_{k}\right|^{1 / \sigma_{k}}, \\
& |\xi|_{\rho}=\left|\xi_{1}\right|^{1 / \rho_{1}}+\cdots+\left|\xi_{k}\right|^{1 / \rho_{k}} \\
& h\left(x^{\prime \prime}, y, \xi\right)=|x|_{\sigma}^{o_{k}-1}\left|\xi_{1}\right|+\cdots+|x|_{\sigma}^{p_{k}-1}\left|\xi_{k}\right|,
\end{aligned}
$$

where the summation for $|x|_{\sigma}$ and $\left|x^{\prime}\right|_{\sigma}$ is only over the indices for which $\sigma_{j} \neq 0$. Then by Lemma 3.3 of [6], there exist a neighborhood $U$ of $0 \in R^{N}$ and positive constants $B$ and $C$ such that

$$
\begin{align*}
& \left|L\left(x^{\prime}, y, \xi, \eta\right)\right| \geqq C \sum_{\substack{|\beta| \leq m \\
\beta=\left\{\beta_{1}, \cdots, \beta_{n}\right)}} h^{m-|\beta|}\left(x^{\prime \prime}, y, \xi\right)\left|\eta^{\beta}\right|,  \tag{3.7}\\
& x=\left(x^{\prime}, y\right) \in U, \quad|\eta| \geqq B .
\end{align*}
$$

From this we have particularly

$$
\begin{equation*}
\left|L\left(x^{\prime}, y, \xi, \eta\right)\right| \geqq C(1+|\eta|)^{m}, \quad|\eta| \geqq B . \tag{3.7}
\end{equation*}
$$

This shows that $L$ is partially elliptic in $y$ since the degree of $L$ is $m$ and Hypothesis (H-1) $)_{\infty}$ of Theorem 4.4, [13] is satisfied with respect to $y$ taking $m_{0}=m$. Furthermore (H-2) of [13] is also satisfied in the following form: There are positive constants $C_{0}, C_{1}$ and $B$ such that

$$
\begin{gather*}
\left|L_{(\beta)}^{(\alpha)}\left(x^{\prime}, y, \xi, \eta\right)\right| \leqq C_{0} C_{1}^{|\alpha+\beta|} \alpha!\beta!^{s}|L|(1+|\eta|)^{-|\alpha|}(1+|\xi|)^{m},  \tag{3.8}\\
\left(x^{\prime}, y, \xi, \eta\right) \in U \times\{|\eta| \geqq B|\alpha|\} .
\end{gather*}
$$

This means we can take $\rho=1, \delta=0$ in (H-2) $)_{\infty}$. To prove (3.8) it is nearly sufficient to verify that we have the simple estimate of the form

$$
\left|D_{x}^{»} D_{\hat{\xi}, \eta}^{\tau} x^{\gamma} \xi^{\alpha} \eta^{\beta}\right| \leqq C(1+|\eta|)^{m-|\tau|}(1+|\xi|)^{m}, \quad x \in U
$$

for $(\gamma, \alpha+\beta) \in \mathscr{M}, \alpha=\left(\alpha_{1}, \cdots, \alpha_{k}, 0, \cdots, 0\right), \beta=\left(0, \cdots, \beta_{1}, \cdots, \beta_{n}\right)$ and $\nu \leqq \gamma$, $\pi \leqq \alpha+\beta$. Thus we have the assertion of Theorem 3.1 by Theorems 4.3 and 4.4 of [13]. We remark that the term $(1+|\xi|)^{m}$ has not appeared in the Hypothesis (H-2) $)_{\infty}$ of [13] but this does not demand any change of the proof.

Next we shall study the partial regularity with respect to $x^{\prime}$ for the solutions of the equation

$$
L(x, D) u(x)=f(x)
$$

Let

$$
\rho_{0}=\min _{1 \leqq j \leqq k} \rho_{j}, \quad \rho^{0}=\max _{1 \leqq j \leqq k} \rho_{j}, \quad \sigma_{0}=\min _{1 \leqq j \leqq k} \sigma_{j}, \quad \sigma^{0}=\max _{1 \leqq j \leqq k} \sigma_{j} .
$$

If $\rho_{0}>\sigma^{0}$, setting $q^{\prime}=\left(\rho_{1} / \rho_{0}, \cdots, \rho_{k} / \rho_{0}\right)$ and $\delta=\sigma^{0} / \rho_{0}$, we have $q_{j} \geqq 1, j=$ $1, \cdots, k$, and $0 \leqq \delta<1$.

Theorem 3.2. Under the Conditions 1 and 2 and $\rho_{0}>\sigma^{0}$ we have the following;
(i) The operator $L(x, D)$ is hypoelliptic in a neighborhood of the origin.
(ii) If the coefficients $a_{a_{7}}(x)$ are in $G^{s}(\Omega), s \geqq 1, \Omega \ni 0$, then there exists an open set $U \ni 0$ such that if $u \in \mathscr{E}^{\prime}(\Omega), L(x, D) u \in G^{s}(\Omega)$ then $u \in G_{x, y}^{\theta q^{\prime}, s}(U)$, where $\theta=s /(1-\delta)$.

Proof. We need to recall some fundamental results of Grushin, [6] in a slightly modified form as treated in [8], Chapter II. Let $B_{\mu}, \mu>0$, be the ball $\{|y|<\mu\}$ in $R_{y}^{n}$ and $\mathscr{D}_{\mu}=H_{0}^{m / 2}\left(B_{\mu}\right) \cap H^{m}\left(B_{\mu}\right)$, be the Sobolev space of order $m$ with Dirichlet boundary condition. Suppose $\Omega=\Omega^{\prime} \times B_{\mu}$, where $\Omega^{\prime}$ is a neighborhood of the origin of $R_{x^{\prime}}^{k}$. As in [6] and [8], we consider $L(x, D)$ as a pseudo-differential operator in the region $\Omega^{\prime}$ with the operator valued symbol

$$
\begin{equation*}
p\left(x^{\prime}, \xi\right)=L\left(x^{\prime}, y, \xi, D_{y}\right) \in \mathscr{L}\left(\mathscr{D}_{\mu}, L_{2}\left(B_{\mu}\right)\right) . \tag{3.9}
\end{equation*}
$$

The symbol $p\left(x^{\prime}, \xi\right)$ is in $S_{1,0}^{m}\left(\Omega^{\prime} \times R_{\xi}^{k}\right)$ in this sense.

We state a straightforward extension of the results of [8] and [6] without proof.

Lemma 3.1 (cf. [8], Lemma 6.1 and [6], Lemma 3.5). If the Hypotheses of Theorem 3.2 are satisfied, there exist positive numbers $A, C, \mu$ and a neighborhood $\Omega^{\prime}$ of $0 \in R^{k}$ such that for all $\xi \in R^{k},|\xi| \geqq A, x^{\prime} \in \Omega^{\prime}$ and $v(y) \in \mathscr{D} \mu$ we have

$$
\begin{align*}
& \sum_{|\beta| \leqq m} \int\left|\left(|\xi|_{\rho}+h\left(x^{\prime \prime}, y, \xi\right)\right)^{m-|\beta|} D_{y}^{\beta} v(y)\right|^{2} d y  \tag{3.10}\\
& \quad \leqq C \int\left|L\left(x^{\prime}, y, \xi, D_{y}\right) v(y)\right|^{2} d y
\end{align*}
$$

We may assume that there are constants $C_{0}$ and $C_{1}$ such that

$$
\begin{equation*}
\sup _{x \in \Omega^{\prime} \times B_{\mu}} \sum_{|\alpha| \leqq m}\left|D^{\beta} a_{\alpha_{\gamma}}(x)\right| \leqq C_{0} C_{1}^{|\beta|} \beta!^{s}, \quad \beta \in Z_{+}^{N} . \tag{3.11}
\end{equation*}
$$

Then from the estimate (3.10) we can find another couple of constants $C_{0}$ and $C_{1}$ such that

$$
\begin{align*}
& \left\|p_{\left(\beta_{1}\right)}^{\left(\alpha_{1}\right)}\left(x^{\prime}, \xi\right) v\right\|_{L_{2}\left(B_{\mu}\right)} \leqq C_{0} C_{1}^{\left|\alpha_{1}+\beta_{1}\right|} \alpha_{1}!\beta_{1}!^{s}\left\|p\left(x^{\prime}, \xi\right) v\right\|_{L_{2}\left\langle B_{\mu}\right)}\langle\xi\rangle_{q}^{-\left|\alpha_{1}\right|+\delta\left|\beta_{1}\right|} \tag{3.12}
\end{align*}
$$

for all $|\xi| \geqq A, x^{\prime} \in \Omega^{\prime}$ and $v=v(y) \in \mathscr{D}_{\mu}$, where $p\left(x^{\prime}, \xi\right)$ is defined by (3.9) and $\alpha_{1}, \beta_{1}$ are arbitrary multi-indices of dimension $k$. Since $p_{\left(\rho_{1}\right)}^{\left(\alpha_{1}\right)}\left(x^{\prime}, \xi\right) v(y)$ is a sum of the terms

$$
\left(a_{\alpha \gamma}(x) x^{\gamma}\right)^{\left(\beta_{1}\right)}\left(\xi^{\alpha^{\prime}}\right)^{\left(\alpha_{1}\right)} D_{y}^{\beta} v(y), \quad(\alpha, \gamma) \in \mathscr{M}, \quad \alpha=\left(\alpha^{\prime}, \beta\right)
$$

it is sufficient to prove the estimate of the form

$$
\begin{align*}
& \left\|\left(a_{\alpha_{1}}(x) x^{r}\right)^{\left(\beta_{1}\right)}\left(\xi^{\alpha^{\prime}}\right)^{\left(\alpha_{1}\right)} D_{y}^{\beta} v(y)\right\|_{L_{2}\left(\beta_{y}\right)}  \tag{3.13}\\
& \quad \leqq\left. C_{0} C_{1}^{\left|\alpha_{1}+\beta_{1}\right|} \alpha_{1}!\beta_{1}!|\xi| \xi\right|_{\rho} ^{-\rho_{0}\left|\alpha_{1}\right|+\sigma^{0}\left|\beta_{1}\right|}\left\|p\left(x^{\prime}, \xi\right) v\right\|_{L_{2}\left(B_{\mu}\right)} .
\end{align*}
$$

We note that

$$
|\xi|_{\rho}^{-\rho o\left|\alpha_{1}\right|+o 0\left|\beta_{1}\right|}=\left(\left|\xi_{1}\right|^{1 / \rho_{1}}+\cdots+\left|\xi_{k}\right|^{1 / \rho_{k}}\right)^{-\rho o\left(\left|\alpha_{1}\right|-\delta\left|\beta_{1}\right|\right)}
$$

which is equivalent to

$$
\left(\left|\xi_{1}\right|^{1 / q_{1}}+\cdots+\left|\xi_{k}\right|^{\left.1 / q_{k}\right)^{-\left|\alpha_{1}\right|+\delta\left|\beta_{1}\right|}} .\right.
$$

Thus (3.13) follows from the estimate of the form

$$
\begin{equation*}
\left|x^{\gamma-\beta_{1}} \xi^{\alpha^{\prime}-\alpha_{1}} \eta^{\beta}\right| \leqq C|\xi|_{\rho}^{-\left\langle\rho, \alpha_{1}\right\rangle+\left\langle\left\langle, \beta_{1}\right\rangle\right.}\left(|\xi|_{\rho}+h\left(x^{\prime \prime}, y, \xi\right)^{m-|\beta|}\left|\eta^{\beta}\right|\right) \tag{3.14}
\end{equation*}
$$

for $(\alpha, \gamma) \in \mathscr{M}, \alpha=\left(\alpha^{\prime}, \beta\right)$, which is established by observing the quasihomogeneity property of both sides in the sense of [6], that is, with positive parameter $\lambda$, make substitution $x^{\prime \prime} \rightarrow \lambda^{-\sigma} x^{\prime \prime}, y \rightarrow \lambda^{-1} y, \xi \rightarrow \lambda^{\rho} \xi, \eta \rightarrow \lambda \eta$ then the left hand side of (3.4) is of degree $\leqq m-\left\langle\rho, \alpha_{1}\right\rangle+\left\langle\sigma, \beta_{1}\right\rangle$ in $\lambda$ while the right hand side is just of degree $m-\left\langle\rho, \alpha_{1}\right\rangle+\left\langle\sigma, \beta_{1}\right\rangle$ in $\lambda$.

We take as the left inverse of $p\left(x^{\prime}, \xi\right)$ by

$$
\begin{equation*}
p^{-1} ; L_{2}\left(B_{\mu}\right) \longrightarrow \mathscr{D}_{\mu}=H_{0}^{m / 2}\left(B_{\mu}\right) \cap H^{m}\left(B_{\mu}\right), \tag{3.15}
\end{equation*}
$$

which is defined in $L_{2}\left(B_{\mu}\right)$ and $\left\|p^{-1}\right\|_{\mathscr{Q}\left(L_{2}\left(B_{\mu}\right), \mathscr{Q}_{\mu}\right)}$ is uniformly bounded in $\left(x^{\prime}, \xi\right) \in \Omega^{\prime} \times R_{\xi}^{k}$ (cf. (3.7)) and (3.10).)

Now in order to construct a left parametrix of $p\left(x^{\prime}, D\right)$, determine recursively the symbols $b_{j}$ by means of the relations

$$
\begin{equation*}
b_{0}\left(x^{\prime}, \xi\right)=p^{-1}\left(x^{\prime}, \xi\right) \in\left(L_{2}\left(B_{\mu}\right), \mathscr{D}_{\mu}\right) \tag{3.16}
\end{equation*}
$$

and for $j=1,2, \ldots$

$$
\begin{equation*}
b_{j}\left(x^{\prime}, \xi\right)=-\left[\sum_{1 \leq|\alpha| \leqslant j} \frac{1}{\alpha!} \partial_{\xi}^{\alpha} b_{j-|\alpha|} D_{x^{\alpha}}^{\alpha} p\right] b_{0} . \tag{3.17}
\end{equation*}
$$

We note that we have

$$
\left.D_{x^{\alpha}}^{\alpha} \partial_{\xi}^{\beta} b_{0}=-b_{0}\left(D_{x^{\alpha}}^{\alpha} \partial_{\xi}^{\beta} p\right) b_{0} \in \mathscr{L}\left(L_{2}\left(B_{\mu}\right)\right), \mathscr{D}_{\mu}\right)
$$

if $|\alpha+\beta|=1$ keeping in mind that $p b_{0}=\mathrm{Id}$ in $L_{2}\left(B_{\mu}\right)$ and $p_{0} b=\mathrm{Id}$ in $\mathscr{D}_{\mu}$. By induction, $D_{x}^{\alpha} \partial_{\xi}^{\beta} b_{0}$ for any $\alpha$ and $\beta \in Z_{+}^{k}$ is a linear combination of the monomials

$$
b(\alpha(1), \cdots, \alpha(h) ; \beta(1), \cdots, \beta(h))=b_{0} \Pi\left[\left(D_{x^{\prime},(j)}^{\partial_{\xi}^{\alpha(j)}} p\right) b_{0}\right]
$$

with $\alpha=\sum \alpha(j), \beta=\sum \beta(j)$. Then by using (3.12), we can see that $b_{j}\left(x^{\prime}, \xi\right) \in$ $\mathscr{L}\left(L_{2}\left(B_{\mu}\right), \mathscr{D}_{\mu}\right)$ and there are constants $C_{0}$ and $C_{1}$ such that

$$
\begin{align*}
& \sup _{x^{\prime} \in \Omega^{\prime}}\left\|b_{\partial\left(\beta_{1}\right)}^{\left(\alpha_{1}\right)}\left(x^{\prime}, \xi\right)\right\|_{\mathscr{S}\left(L_{2}\left(B_{\mu}\right), \Omega_{\mu}\right)}  \tag{3.18}\\
& \leqq \leqq C_{0} C_{1}^{\left|\alpha_{1}+\beta_{1}\right|}\left(\left|\beta_{1}\right|+j\right)!!^{s} \alpha_{1}!\langle\xi\rangle_{q}^{-\left|\alpha_{1}\right|+\delta\left|\beta_{1}\right|} \\
& \quad \alpha_{1}, \quad \beta_{1} \in Z_{+}^{k}, \quad|\xi| \geqq A .
\end{align*}
$$

As in [7], we prepare a series of cut-off functions $\phi_{j}(\xi) \in C\left(R_{\xi}^{k}\right), j=0,1, \cdots$, satisfying

$$
\begin{align*}
& 0 \leqq \phi_{j}(\xi) \leqq 1 \quad \text { and } \quad \phi_{j}(\xi)=0  \tag{3.19}\\
& \quad \text { if }\langle\xi\rangle_{q} \leqq 2 R \sup \left(j^{\theta}, 1\right) \text { and } \phi_{j}(\xi)=1 \\
& \quad \text { for }\langle\xi\rangle_{q} \geqq 3 R \sup \left(j^{\theta}, 1\right), \quad \theta=s /(1-\delta), \quad R>0 ;
\end{align*}
$$

$$
\begin{equation*}
\left|D_{\xi}^{\alpha} \phi_{j}\right| \leqq\left(C /\left(R j^{\theta-1}\right)\right)^{|\alpha|} \quad \text { if }|\alpha| \leqq 2 j . \tag{3.20}
\end{equation*}
$$

Taking $R$ sufficiently large we can see that

$$
b\left(x^{\prime}, \xi\right) \equiv \sum_{j=0}^{\infty} \phi_{j}(\xi) b_{j}\left(x^{\prime}, \xi\right) \in S_{1, \sigma, s}^{0, \frac{q}{s}}\left(\Omega^{\prime} \times R_{\xi}^{k}\right)
$$

in the operator $\mathscr{L}\left(L_{2}\left(B_{\mu}\right), \mathscr{D}_{\mu}\right)$-valued sense. We can apply essentially the same method of the proof of [7], Theorem 3.1 and have the relation

$$
\begin{equation*}
b\left(x^{\prime}, D\right) p\left(x^{\prime}, D\right) v=v+F v, \quad v \in \mathscr{D}_{\mu}, \tag{3.21}
\end{equation*}
$$

where $F$ is an integral operator with kernel $F\left(x^{\prime}, y^{\prime}\right) \in \mathscr{L}\left(\mathscr{D}_{\mu}, \mathscr{D}_{\mu}\right)$ such that we have the estimate of the form

$$
\begin{equation*}
\sup _{x^{\prime}, y^{\prime} \in \Omega^{\prime \prime}}\left\|D_{x^{\prime}}^{\alpha} D_{y^{\beta}}^{\beta} F\left(x^{\prime}, y^{\prime}\right)\right\|_{\mathscr{L}} \leqq C_{0} C_{1}^{|\alpha+\beta|} \alpha!^{\theta} \beta!^{\theta}, \quad \alpha, \beta \in Z_{+}^{k} \tag{3.22}
\end{equation*}
$$

Now if $u \in C^{\infty}\left(\Omega^{\prime} \times B_{\mu}\right)$ and $L(x, D) u \in G_{x^{\prime}}^{\theta}\left(\Omega^{\prime} \times B_{\mu}\right)$, then by Theorem 2.1, (ii), (3.21) and (3.22) we have the partial regularity, $u \in G_{x^{\prime}}^{\theta q^{\prime}}$, in a neighborhood of the origin of $R^{N}$. Then by applying Theorem 3.1, (ii) and Proposition 2.2, we have finally $u \in G_{x^{x}, y^{\prime}, s}^{\theta}$ in a neighborhood of the origin of $R^{N}$. Thus we have obtained the assertion (ii) of Theorem 3.2. The assertion (i) can be obtained by more rough procedure and we omit the proof (cf. [6]).

## §4. Examples and comments

First we shall consider the following operators:

$$
\begin{aligned}
& L_{1}=\frac{\partial^{2}}{\partial y^{2}}+y^{2} \frac{\partial^{2}}{\partial x^{2}}, \quad L_{2}=\frac{\partial^{2}}{\partial y^{2}}+\left(x^{2}+y^{2}\right) \frac{\partial^{2}}{\partial x^{2}}, \\
& L_{3}=\frac{\partial^{2}}{\partial y^{2}}+y^{2} \frac{\partial^{2}}{\partial x_{1}^{2}}+\frac{\partial^{2}}{\partial x_{2}^{2}} .
\end{aligned}
$$

(1) We see that $L_{1}$ has the form (3.4) with $\rho_{2}=\sigma_{2}=1, \rho_{1}=2, \sigma_{1}=0$. Then we have $q^{\prime}=1, \delta=0$ and $\theta=1$. Thus by Theorem 3.2 we have analytic hypoellipticity of $L_{1}$ in a neighborhood of the origin of $R^{2}$.
(2) As for $L^{2}$ we have $\rho_{2}=\sigma_{2}=1, \rho_{1}=2, \sigma_{1}=1$. Then we have $q^{\prime}=1, \delta=1 / 2$ and $\theta=2$. Thus by Theorem 3.2, we have $u \in G_{x, y}^{2,1}$ in a neighborhood of the origin of $R^{2}$ for any solution $u$ of the equation

$$
\begin{equation*}
L_{2} u(x, y)=0 \quad \text { in } R^{2} \tag{4.1}
\end{equation*}
$$

We note that a function $u(x, y) \in G_{x, y}^{2,1}$ in a neighborhood of the origin
satisfying (4.1) was constructed by $G$. Métivier, [14].
(3) $L_{3}$ has the form (3.4) with $\rho_{3}=\sigma_{3}=1, \rho_{1}=2, \rho_{2}=1, \sigma_{1}=\sigma_{2}=0$. Then we have $\delta=0, \theta=1$ and $q^{\prime}=(2,1)$. Hence by Theorem 3.2 we have $u\left(x_{1}, x_{2}, y\right) \in G_{x_{1}, x_{2}, y}^{2,1,1}$ for any solution $u$ of the equation

$$
\begin{equation*}
L_{3} u\left(x_{1}, x_{2}, y\right)=0 \tag{4.2}
\end{equation*}
$$

in a neighborhood of the origin of $R^{3}$. We note that an example of the solution $u\left(x_{1}, x_{2}, y\right) \in G_{x_{1}, x_{2}, y}^{2,1,1}$ of (4.2) was constructed by M.S. Baouendi and C. Goulaouic, [1].

Our method can be applied for the operators with quasi-homogeneous principal symbols i.e., degenerate quasi-elliptic operators. For example, consider the equations

$$
\begin{align*}
P_{j} u & =\left(\frac{\partial^{2}}{\partial y^{2}}-y^{j} \frac{\partial}{\partial x}\right) u(x, y)=0, \quad j=0,1,2, \cdots,  \tag{4.3}\\
Q_{k} u & =\left(\frac{\partial^{2}}{\partial y_{1}^{2}}+\frac{\partial^{2}}{\partial y_{2}^{2}}+y_{1}^{k} \frac{\partial}{\partial x}\right) u\left(x, y_{1}, y_{2}\right)=0, \quad k=0,1, \cdots
\end{align*}
$$

Then we have $u \in G_{x, y}^{2,1}$ for any solution of (4.3) and $u \in G_{x, y_{1}, y_{2}}^{k+2,1,}$ for any solution $u$ of (4.4). We remark that relating results have been recently obtained in [15].

Finally we remark that Theorem 2.1 of this paper can be extended for a corresponding class of partially regular pseudodifferential operators as in the manner of [13], Definition 2.3 and Theorem 2.1.

## References

[1] M. S. Baouendi and C. Goulaouic, Nonanalytic hypoellipticity for some degenerate elliptic operators, Bull. Amer. Math. Soc., 78, No. 3 (1972), 483-486.
[2] R. Beals, Spatially inhomogeneous pseudodifferential operators, II, Comm. Pure Appl. Math., XXVII, (1974), 161-205.
[3] E. Croc, Y. Dermenjian et V. Iftimie, Une classe d' opérateurs pseudodifferentiels partiellement hypoelliptique-analytiques, J. Math. pures et appl., 57 (1978), 255278.
[4] J. Friberg, Estimates for partially hypoelliptic differential operators, Comm. Mem. math. Univ. Lund, 17 (1963), 1-97.
[5] L. Gårdng et B. Malgrange, Opérateurs différentiels partiellement hypoelliptiques et partiellement elliptiques, Mat. Scand., 9 (1961), 5-21.
[6] V. V. Grushin, Hypoelliptic differential equations and pseudodifferential operators with operator valued symbols, Math. USSR Sbornik, 17 (1972), 497-514.
[7] S. Hashimoto, T. Matsuzawa et Y. Morimoto, Opérateurs pseudodifférentiels et classes de Gevrey, Comm. in Partial Diff. Eqs., 8 (12), (1983), 1277-1289.
[8] Y. Hashimoto and T. Matsuzawa, On a class of degenerate elliptic equations, Nagoya Math. J., 55 (1974), 181-204.
[ 9 ] L. Hörmander, On the theory of general partial differential operators, Acta Math., 94 (1955), 161-248.
[10] ——Pseudodifferential operators and hypoelliptic equations, Proc. Symp. Pure Math., 83 (1966), 129-209.
[11] ——, Uniqueness theorems and wave front sets for solutions of linear differential equations with analytic coefficients, Comm. Pure Appl. Math., 24 (1971), 671-704.
[12] T. Matsuzawa, Opérateurs pseudodifférentiels et classes de Gevrey, Journées "Eqs aux Dér. parts.", Saint-Jean-de-Monts (1982).
[13] ——, Partially hypoelliptic pseudodifferential operators, Comm. in Partial Diff. Eqs., 9 (11), (1984), 1059-1084.
[14] G. Métivier, Non hypoellipticité analytique pour $D_{x}^{2}+\left(x^{2}+y^{2}\right) D_{y}^{2}$, C. R. Acad. Sc., 292 (1981), 401-404.
[15] T. Okaji, On the Gevrey index for some hypoelliptic operators, to appear.
[16] C. Parenti and L. Rodino, Parametrices for a class of pseudodifferential operators, I, II, Annali Mat. Pura ed Appl., 125 (1980), 221-278.
[17] L. Rodino, Gevrey hypoellipticity for a class of operators with multiple characteristics, Astérisque, 89-90 (1981), 249-262.
[18] F. Treves, Introduction to pseudodifferential and Fourier integral operators, Vol. 1, Plenum Press (1981).

Department of Mathematics
Faculty of Science
Nagoya University
Chikusa-ku, Nagoya 464
Japan


[^0]:    Received March 20, 1985.

