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§ 1. Introduction

The problem to determine the Gevrey index of solutions of a given
hypoelliptic partial differential equation seems to be not yet well inves-
tigated. In this paper, we shall show the Gevrey indices of solutions of
the equations of Grushin type, [6], are determined by a rather simple ap-
plication of a straightforward extension of the results given in [7], [8] and
[13]. For simplicity to construct left parametrices in the operator valued
sense, we shall consider the equations under the stronger condition than
that of [6] (cf. Condition 1 of Section 3). Typical examples of Grushin
type are given by Lx = Ώ\ + fDl L2 = Ώ\ + (x2 + f)Dl, • .., which will
be discussed in Section 4. We remark that our approach may be com-
pared with the one to a similar problem discussed in [17] by using suitable
L2-estimates constructed in [16].

In Section 2, we prepare some direct extension of the results given in
[13] on partial regularity of the distributions and those on pseudodifferen-
tial operators given in [7]. In Section 3, we shall establish a method to
treat the equations of Grushin type. Finally, Section 4 will be devoted
to a discussion on typical examples of Grushin type and to a brief com-
ment on the application of our method for more general class of hypoel-
liptic partial differential equations.

§2. Partial regularity and a class of pseudodifferential operators

In this Section, we shall give some refinement of the results in [7]
and [13]. Let Ω be an open subset of RN whose point is denoted by x =
(xu , xN). Let q = (qu , qN) be a iV-tuple of real numbers q3 ^> 1, j =

1, , N. We use general notations such as \a\ = ax + + aN9 (ξ> = (β)q

= 1 + |fi|1/<Zl + + If vΓ* and (a, q) - axqx + + <*NqN.
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134 TADATO MATSUZAWA

DEFINITION 2.1. Let u e C°°(Ω), then we say that u is in Gq(Ω) if for

any compact set K of Ω there are positive constants Co and CΊ such that

(2.1) sup \Dau(x)\ £ C0Ciβ||α|<β β>, a e ZN

+ .
xeK

PROPOSITION 2.1. Let u e 9f(Ω). Then ueGq in a neighborhood of

xoe Ω if and only if for some neighborhood U of x0 there is a bounded se-

quence Uj e $'(Ω), j = 1, 2, , which is equal to u in U and satisfies the

estimates

(2.2) I ώ/f)| ^ C0C{jl <?>,"', j = 1, 2, . . ,

for some constants Co and Cί > 0.

Proo/. Necessity. Let ueGq in {|x - xo\ £ 3d}, δ > 0. We can find

the functions Xj(x), jf = 1, 2, , such that 3̂  e Cj°(|x — xo\ < 2^), equal to

1 when \x — xo\ <L δ and

(2.3) \Da+nj\ £ CpC^jw if \a\£j.

Here C depends only on N and ,̂ and Cβ depends only on N, δ and β

(cf. [11], Lemma 2.2). Then Uj = XjU is bounded in £'. By assumption we

have for some constant Cλ

(2.4) s u p \Dau\ ^ C{+la]\a\^q>.
\x-xo\^Zδ

It follows that

\D°(XjU)\ £ CCqo(C + Cd^j^q>, <«, Q> ^ J + Qo,

where ^0 = max (gx, , qN) ^ 1, from which we have

On the other hand we have

ΣΣ .7 =

for a constant C3 independent of j , then we conclude that the estimates

(2.2) hold.

Sufficiency. Since we have

m^iOϊ, <*,q>£j, .7 = 1,2,...

the estimates of type (2.1) in \x — xo\ ^ δ are almost evident by using the

Fourier inversion formula and (2.2).
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Now we shall use a partition of the variable x = (x'9 x"), xf —

(xu , xp), x" — (xp+u , xN), 1 ^ p ^ N — 1. We also use the partition

of the multi-index a = (a', a"), af = (au , αp), a" = (αp+i, , α^). We

recall that w e $\Ω) is (partially) regular with respect to xr if for any

s > 0 there exist numbers £ = Z(s) e R and C — C(s) such that

(2.5) ί ύ(ξ)\ ^ C(l + |fΊ)" s(l + i n ) ' , f e RN . (cf. [5])

DEFINITION 2.2. (cf. [13], Def. 3.2). Let u e 2>\Ω). We say u is in

Gj:, q' = (g1? , gp), gj ^ 1, = 1, ,p, in a neighborhood of xoefi if

for some neighborhood U of x0 there is a bounded sequence u5 e £\Ω),

y = 1, 2, , which is equal to u in £/ and satisfies the estimates

(2.6) \ύtf)\ ^ C0C{j\ <O" J (1 + IΠ) f c , j = 1, 2,

for some constants Co, Ct > 0 and k e R. Here we have denoted by (f7) =

1 + \ξi\1/Ql + + \ξP\
1/qp. We define quite similarly, u e Gf, q" =

(qP+u - —, <7iv)

We can see that by the same method of the proof of Proposition 3.1

of [13] we have its refininement as follows:

PROPOSITION 2.2. Let u e Q}\Ω). Then ueGq in a neighborhood of

xQ e Ω if and only if ue G% and u e Gj" in a neighborhood of x0 e Ω.

For the proof we only replace \ξ'\ by <?'><?' a n ( i l^Ί by (a',q') etc.,

in the proof of Proposition 3.1 of [13].

DEFINITION 2.3 (Generalization of [7], Def. 4.1). Let — oo < m < oo;

0<Lδ < p<Ll; 5 ^ 1 ; q = (qu , qN), qό^> 1, j = 1, , N. We denote

by S?£8W X RN) the set of all α(x, ξ) e C°°(Ω X RN) such that for every

compact set K of Ω there are positive constants Co, CΊ and B such that

(2.7) sup|α$(*,£)l ^ CoCr^^I^XO?^ 1 " 1 ^" 1 ^), ̂  B W ,
xeK

where 61 = s/(̂ o — δ).

We associate with such a symbol α(x, f) a pseudo-differential operator

as usual:

if u e C0"(fl).

Let iί(x, y) e ^ ' (β X β) be the distribution kernel of α(x, D) expressed

by the oscillatory integral:
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K(x, y) = (2π)~N J β«*-«"*>α(x, ξ)dξ .

Then we get the following theorem by a slight modification of the proof

of [7], Theorem 1.1.

THEOREM 2.1. Let α(x, ξ) e S™£S(Ω x RN). Then we have the following:

( i ) K(x, y) e G%{Ω X Ω\Δ), Δ = {(x, x); x e Ω}9 θ = s/(p - δ).

(ii) The operator a(x, D) is G*'ρ-pseudolocal i.e., for any ff I> θ and

u € <o\Ω) which is in Gθ'q in a neighborhood of xQ e Ω we have a(x, D)u e Gθ'q

in the same neighborhood of x0 e i3.

§ 3. Partial differential equations of Grushin type

In the following, we shall use the same notation of [6]. Let Ω be an

open set of RN whose point is denoted by x = (xl9 , xN). Let there be

given rational numbers pj |Ξ> 1, and σ7 ^ 0 , 1 ^ j <̂  JV, such that for any

j , 1 ^jί ^ N, one of the following three relations is satisfied:

(3.1) a) Pj = σj = l b) Pj > σ, > 0 c) σ̂  = 0 .

Let y denote the family of variables Xj for which property a) holds. Let

x' be the set of remaining variables, so that x has representation x = (x'9 y),

x7 = (xί9 , xk), y = (y19 - - ',yn), k + n = N. In turn x' is represented in

the form x' = (x", xf"), where b) holds for x" and c) for x'".

Let m be a positive integer and set

(3.2) u? = {(r, α); \a\ ̂  m, <p, ̂ > ^ <σ, Γ> ^ <p, a) - m],

(3.3) ^ 0 = {(r, α); |α| ^ m, <σ, r> - (p, a} - m) ,

where (Γ, cv) is a pair of multi-indices of dimension N with nonnegative

integers such that ϊj = 0 for j if σ3 = 0 (1 ^ j ^ ^).

Now we study differential operators introduced in [6] of the form

(3.4) L(x, D) = Σ aar{x)xrDa, aaγ(x) e C~(RN).

Associating with (3.4) we shall consider the operator

(3.5) L0(x",yyD) = Σaar(0)xrDa

JC

CONDITION 1. L0(x", y, D) is strongly elliptic of even degree m for

+ \y\ = i.

CONDITION 2. The differential equation
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(3.6) Lo(x",y,ξ,Dy)v(y) = O

has no non-trivial solution in ^{Rn

y) for any fixed ξ e Rk, ζ Ψ 0 and x".

Remark 3.1. Condition 1 is stronger than that of [6] in which the

operator L0(x", y, D) is merely supposed to be elliptic for |x"| + \y\ — 1.

We can replace Condition 1 by the original one if we apply the investiga-

tion of Beals, [2], Section 6 in the proof of Theorem 3.2 below.

THEOREM 3.1. Under the conditions 1 and 2, the operator L is partially

hypoelliptic in y in a neighborhood of the original in the following sense:

( i ) There exists an open set UBO such that if u e £'(U) and L(x, D)u

is regular with respect to y in U then u is also regular with respect to y

in U.

(ii) If the coefficients aaγ(x) are in GS(U), s >̂ 1, and if ueS\U),

L(x, D)u eGs

y in an open subset of U, then u eGs

y in the same set.

Proof. We shall investigate how the assumptions of [13], Theorems

4.3 and 4.4 are satisfied for the characteristic polynomial L(x\ y, ξ, η).

Following [6] we set

\X\a — Xl\ "Γ # ' * "T \XN\ N 9

xΊ = μ.11"' + • + l**r* ,

where the summation for \x\a and |x'|, is only over the indices for which

Oj ±r 0. Then by Lemma 3.3 of [6], there exist a neighborhood U of 0 e Rv

and positive constants B and C such that

(3.7) \L{x',y,ξ,η)\^C Σ h
β = (βw ,βn)

x = (x',y)eU,

From this we have particularly

(3.7)' \L(x',y, ζ, η)\ ^

This shows that L is partially elliptic in y since the degree of L is m and

Hypothesis (H-l)^ of Theorem 4.4, [13] is satisfied with respect to y

taking m0 = m. Furthermore (H-2),. of [13] is also satisfied in the fol-

lowing form: There are positive constants Co, Cx and B such that
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(3.8) \L{«β](x',y,ξ,V)\ ^ C0Cr^alβls\L\(l + |? | )-" ' (1 + jf|)»,

(x\y,ξ,τ])eUx{\η\^B\a\}.

This means we can take p = 1, δ = 0 in (H-2)^. To prove (3.8) it is

nearly sufficient to verify that we have the simple estimate of the form

\DiD^ηxψ^\ £ C(l + |?|)W- | Γ |(1 + |f|)TO, xeU

for (Γ, a + β) e Jί, a = (α,, ., αfc, 0, , 0), β = (0, . . ., βu . , βn) and * ̂  r,

π <. a + β. Thus we have the assertion of Theorem 3.1 by Theorems 4.3

and 4.4 of [13]. We remark that the term (1 + \ξ\)m has not appeared in

the Hypothesis (H-2)^ of [13] but this does not demand any change of

the proof.

Next we shall study the partial regularity with respect to xf for the

solutions of the equation

L(x, D)u(x) = /(*).

Let

p0 = min pj, p° — max pj, σ0 = min σ ;, σ°
ISjύk l^jύi lSi^A

If ^0 > σ°, setting q' = (pjpo, , pjpo) and δ = σo//?O) we have g ; ̂  1, j =

1, , A, and 0 ̂  3 < 1.

THEOREM 3.2. Under the Conditions 1 and 2 ami ^ > σ° we have the

following;

(i) The operator L(x, D) is hypoellίptίc in a neighborhood of the origin.

(ii) // the coefficients aaΐ(x) are in GS(Ω), s ^ 1, Ω a 0, then there exists

an open set UBO such that if ue £\Ω), L{x, D)u e GS(Ω) then u e Ge

x%>'(U)9

where θ = s/(l — δ).

Proof. We need to recall some fundamental results of Grushin, [6] in

a slightly modified form as treated in [8], Chapter II. Let Bμ, μ > 0, be

the ball {| y\ < μ] in Rn

y and 9μ = Hfβ{Bμ) ΓΊ Hm{Bμ\ be the Sobolev space

of order m with Dirichlet boundary condition. Suppose Ω = Ωf X Bμ,

where Ωf is a neighborhood of the origin of Rk

x,. As in [6] and [8], we

consider L(x, D) as a pseudo-differential operator in the region Ωf with the

operator valued symbol

(3.9) p(x', ξ) = L(x\ y, ξ, Dv) € &(9μ, L2(Bμ)).

The symbol p(x\ ξ) is in S^Q(Ω' X i?£) in this sense.
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We state a straightforward extension of the results of [8] and [6]

without proof.

LEMMA 3.1 (cf. [8], Lemma 6.1 and [6], Lemma 3.5). // the Hypotheses

of Theorem 3.2 are satisfied, there exist positive numbers A, C, μ and a

neighborhood Ωf of 0 e Rk such that for all ξeR\ \ξ\^A, xfeΩ' and

v(y) e 9)μ we have

(3.10) Σ ί Iflfl, + Kx",y, ξ))m~mDlv{y)fdy
\β\£m J

We may assume that there are constants Co and Cj such that

(3.11) sup Σ \Dβaaj(x)\ £ Cfil"βϊ, βeZ».

Then from the estimate (3.10) we can find another couple of constants Co

and Cί such that

(3.12) \\p\a

β\](x',ξ)v\\L2iBμ)

for all \ξ\^A, xf e Ω' and υ = v(y) e $μ9 where p(x', ξ) is defined by (3.9)

and al9 βλ are arbitrary multi-indices of dimension k. Since pg#(x/, ξ)v(y)

is a sum of the terms

, (a, ϊ) eJί9 a = (a', β),

it is sufficient to prove the estimate of the form

(3.13) \\(aa

We note that

| £ . | - ? 0 l « l l + * ° l j 8 l l _ ( I f j P ^ i _ j _ . . . _ | _ \ ξ ^ υ P k y P 0 ί \

which is equivalent to

(|£i| ί/ff*+ ••• + | f k r * ) " | β l I + ί | ^

Thus (3.13) follows from the estimate of the form

(3.14) |* r -*£ β # - β y I £ C\ξ\;<'^+<°>^(\ξ\p + h(x",y,
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for (a, T)eJH9 a = (a', β), which is established by observing the quasi-

homogeneity property of both sides in the sense of [6], that is, with posi-

tive parameter λ, make substitution x" -+l~σx", y-+λ~ιy, ξ-^λpξ, η-+λη

then the left hand side of (3.4) is of degree <; m — (p, a,} + (σ, ft> in λ

while the right hand side is just of degree m — (p, at} + (σ, βt) in λ.

We take as the left inverse of p(x', ξ) by

(3.15) p" 1 ; L,{Bμ) >3μ = Hf\Bμ) Γ) H*(Bμ),

which is defined in L2(Bμ) and \\p~ιh{Lίl{Bμ)^μ) is uniformly bounded in

(x', ξ) e Ωf x R\ (cf. (3.7)) and (3.10).)

Now in order to construct a left parametrix of p(x\ D), determine

recursively the symbols bj by means of the relations

(3.16) bo(x\ ξ) = p-\xf, f) e {L2{Bμ), ®μ)

and for j = 1, 2,

(3.17) &/*',£) = - f Σ Λ-9?6>-

We note that we have

Di'dfa = - bo(D«,d?p)bo e

if \a + β\ = 1 keeping in mind that pb0 = Id in L2(Bμ) and pob = Id in % .

By induction, Da

xd
β

ζbQ for any a and /3 e Z\ is a linear combination of the

monomials

with a = Σ tfO'X j8 = Σ ^O') T h e n b y u s i n ^ ( 3 1 2 )^ w e c a n s e e t h a t bAx'> f) e
^(L2(Bμ), Q)μ) and there are constants Co and d such that

(3.18) sup 116^)(xr, f ) L ( z 2 ( V , v

As in [7], we prepare a series of cut-off functions φ}(ξ) e CCRf), j — 0,1,

satisfying

(3.19) 0 £ φj(ξ) ^ 1 and φ}{ξ) = 0

if <f>,^2fisupO"M) and φ0) = 1

for <?\ ^ 3i? sup (/, 1), θ = β/(l - 5), i? > 0
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(3.20) \Diφ,\ £ (C/(i?/-'))"" if \a\ £ 2j .

Taking R sufficiently large we can see that

b{x\ ξ) = Σ ΦAίMx', ξ) e S°:UΩ' x Rf)
.7=0

in the operator <g{L2{Bμ), S^-valued sense. We can apply essentially the

same method of the proof of [7], Theorem 3.1 and have the relation

(3.21) b(x', D)p(x\ D)v = v + Fv, ve$μ,

where F is an integral operator with kernel F(x\ / ) e &(βμ, @μ) such that

we have the estimate of the form

(3.22) sup \\I%,DLF(x',y')\\e £ C0C[a+βla\θβ\θ, a,βeZk

+.
x',y'€Ω'

Now if u e C°°(Ω' X Bμ) and L(x, D)u e GΘ

X{Ω' X Bμ\ then by Theorem

2.1, (ii), (3.21) and (3.22) we have the partial regularity, u e G9/, in a

neighborhood of the origin of RN. Then by applying Theorem 3.1, (ii) and

Proposition 2.2, we have finally u e Gp^s in a neighborhood of the origin

of RN. Thus we have obtained the assertion (ii) of Theorem 3.2. The

assertion (i) can be obtained by more rough procedure and we omit the

proof (cf. [6]).

§4. Examples and comments

First we shall consider the following operators:

LJΛ
 : = — "x* y — , J-jy = = — "T* \X ~τ~ y ) — »

dy2 dx2 a/ dx2

L = - 3 ! - + v2!2 + ^
3 dy2 dx\ dxl '

(1) We see that Lx has the form (3.4) with p2 - σ2 = 1, p, = 2, ^ = 0.

Then we have qf = 1, d = 0 and 0 = 1. Thus by Theorem 3.2 we have

analytic hypoellipticity of Lx in a neighborhood of the origin of R2.

(2) As for U we have ρ2 = σ2 = 1, ^ = 2, ^ = 1. Then we have

ςr7 = 1, δ = 1/2 and 0 = 2. Thus by Theorem 3.2, we have u e G2

X^V in a

neighborhood of the origin of R2 for any solution u of the equation

(4.1) L2u{x,y) = 0 in R2.

We note that a function w(x, y) e G ^ in a neighborhood of the origin
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satisfying (4.1) was constructed by G. Metivier, [14].

(3) L3 has the form (3.4) with 3̂ = σ3 = 1, px — 2, p2 = 1, ax = σ2 = 0.

Then we have d = 0, 0 = 1 and g' = (2,1). Hence by Theorem 3.2 we

have u(xu x2) y) e G2

xf£2iy for any solution u of the equation

(4.2) LMxux2,y) = 0

in a neighborhood of the origin of R\ We note that an example of the

solution u(xu x2, y) e G2^;^y of (4.2) was constructed by M.S. Baouendi and

C. Goulaouic, [1].

Our method can be applied for the operators with quasi-homogeneous

principal symbols i.e., degenerate quasi-elliptic operators. For example,

consider the equations

(4.3) PjU = (l--y>A-)u(x,y) = 0, j = 0, 1,2,
\dy dx /

(4.4) Qku = (JL + 3L + tf-f)u(x,yuyj = 0, k = 0,1, .. .

Then we have u e G ^ for any solution of (4.3) and u e G%*£%1 for any

solution u of (4.4). We remark that relating results have been recently

obtained in [15].

Finally we remark that Theorem 2.1 of this paper can be extended

for a corresponding class of partially regular pseudodifferential operators

as in the manner of [13], Definition 2.3 and Theorem 2.1.
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