EXISTENCE OF NORMAL MEROMORPHIC FUNCTIONS WITH A PERFECT SET AS THE SET OF ESSENTIAL SINGULARITIES

TOSHIKO KUROKAWA

§ 1. Introduction

1. We are interested in whether there is a Cantor set E admitting no exceptionally ramified or normal meromorphic functions with E as the set of essential singularities. As for an exceptionally ramified meromorphic function, we [2] have recently given the following result.

Theorem A. Let E be a Cantor set with successive ratios ξ_{n} satisfying the condition

$$
\xi_{n+1}=o\left(\xi_{n}^{5}\right),
$$

then the domain complementary to E admits no exceptionally ramified meromorphic functions with E as the set of essential singularities.

However, for a normal meromorphic function, S. Toppila [4] proved that if the set F is an infinite closed set, there exists a normal meromorphic function in the domain F^{c} complementary to F with at least one essential singularity in F. In [4], he gave a normal meromorphic function in F^{c} with one essential singularity in F.

In this paper, using the analogous method in S. Toppila [4], we shall give a normal meromorphic function with a Cantor set as the set of essential singularities.

Our result is stated as follows:
Theorem. Let E be a Cantor set with successive ratios ξ_{n} such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \xi_{n}=0 \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\xi_{n+1}=O\left(\xi_{n}\right) . \tag{2}
\end{equation*}
$$

[^0]Then there exists a normal meromorphic function in the domain complementary to E with E as the set of essential singularities.

Thus it follows from Theorem that the conclusion of Theorem A is false if we assume that a function is normal, instead of exceptionally ramified.

§ 2. Proof of Theorem

2. We form a Cantor set with successive ratios $\xi_{n}, 0<\xi_{n}<2 / 3$, in the usual manner. We remove first an open interval of length ($1-\xi_{1}$) from the interval $I_{0,1}:[-1 / 2,1 / 2]$, so that on both sides there remains a closed interval of length $\xi_{1} / 2 \equiv \ell_{1}$. The remained intervals are denoted by $I_{1,1}$ and $I_{1,2}$. Inductively we remove an open interval of length $\left(1-2 \eta_{n}\right) \prod_{p=1}^{n-1} \eta_{p}$, with $\xi_{p} / 2 \equiv \eta_{p}, p=1,2,3, \cdots$, from each $I_{n-1, k}, k=1,2, \cdots, 2^{n-1}$, so that on both sides there remains a closed interval of length $\prod_{p=1}^{n} \eta_{p} \equiv \ell_{n}$. The remaining intervals are denoted by $I_{n, 2 k-1}$ and $I_{n, 2 k}$. By repeating this procedure endlessly, we obtain an infinite sequence of closed intervals $\left\{I_{n, k}\right\}_{n=0,1,2, \ldots, k=1,2, \ldots, 2 n}$. The set given by

$$
E=\bigcap_{n=0}^{\infty} \bigcup_{k=1}^{2^{n}} I_{n, k}
$$

is said to be the Cantor set in the interval $I_{0,1}$ with successive ratios ξ_{n}.
Denoting by $z_{n, k}$ the midpoint of $I_{n, k}$ and setting $\alpha_{n, k}=\boldsymbol{z}_{n, k}+i \ell_{n} / 2$, we shall give an infinite product

$$
f(\boldsymbol{z})=\prod_{n=1}^{\infty} \prod_{k=1}^{2 n} \frac{\boldsymbol{z}-\alpha_{n, k}}{\boldsymbol{z}-\bar{\alpha}_{n, k}} .
$$

Obviously this function f has the set E as the set of essential singularities. In order to prove Theorem it is enough to show that f is normal in the domain Ω complementary to E.

The proof of this is based on the following result due to O. Lehto and K. I. Virtanen [3].

Theorem B. A function f meromorphic in a domain G of hyperbolic type, is normal in G if and only if there exists a finite constant C so that for every $z \in G$

$$
\frac{\left|f^{\prime}(z)\right|}{1+|f(z)|^{2}}|d z| \leqq C d \sigma_{G}(z),
$$

where $d \sigma_{G}(z)$ denotes the hyperbolic element of length of G.

In order to estimate $|d z| \mid d \sigma_{\Omega}(z)$, we need the following
Lemma. Let D be the domain complementary to the set $\{0,1, \infty\}$. Then

$$
\lim _{w \rightarrow 0}\left(|w| \log \frac{1}{|w|}\right) \frac{d \sigma_{D}(w)}{|d w|}=\frac{1}{2}
$$

(see C. Constantinescu [1]).
3. We first discuss $|d z| / d \sigma_{\Omega}(z)$. By Lemma, there exists a positive number $\delta_{0}, 1 / 8>\delta_{0}>0$, such that

$$
\begin{equation*}
\frac{|d w|}{d \sigma_{D}(w)}<4|w| \log \frac{1}{|w|} \quad \text { in } w \in\left\{w\left|0<|w|<4 \delta_{0}\right\} \equiv R_{0} .\right. \tag{3}
\end{equation*}
$$

Applying the linear transformations $w=1-\zeta$ and $w=1 / \zeta$ to (3), we have

$$
\begin{align*}
& \frac{|d w|}{d \sigma_{D}(w)}<4|w-1| \log \frac{1}{|w-1|} \tag{4}\\
& \quad \text { in } w \in\left\{w\left|0<|w-1|<4 \delta_{0}\right\} \equiv R_{1}\right.
\end{align*}
$$

and

$$
\begin{equation*}
\frac{|d w|}{d \sigma_{D}(w)}<4|w| \log |w| \quad \text { in } w \in\left\{w\left|1 / 4 \delta_{0}<|w|<\infty\right\} \equiv R_{\infty}\right. \tag{5}
\end{equation*}
$$

respectively. Since the set $R \equiv\left\{w\left||w| \geqq \delta_{0} / 4,|w-1| \geqq \delta_{0} / 4,|w| \leqq 4 / \delta_{0}\right\}\right.$ is compact, there exists a positive number C_{1} such that

$$
\begin{equation*}
\frac{|d w|}{d \overline{\sigma_{D}}(w)}<C_{1} \quad \text { in } w \in R \tag{6}
\end{equation*}
$$

We now set

$$
\begin{aligned}
& \hat{\gamma}_{n, k}=\left\{\boldsymbol{z}| | z-z_{n, k} \mid=\delta_{0} \ell_{n-1}\right\}, \\
& \check{\gamma}_{n, k}=\left\{\boldsymbol{z}| | \boldsymbol{z}-\boldsymbol{z}_{n, k}\left|=\ell_{n}\right| \delta_{0}\right\}, \\
& \Gamma_{n, k}=\left\{\boldsymbol{z}| | \boldsymbol{z}-\boldsymbol{z}_{n, k} \mid=\sqrt{\ell_{n} \ell_{n-1}}\right\}
\end{aligned}
$$

and

$$
\left(\Gamma_{n, k}\right)=\left\{z| | z-z_{n, k} \mid<\sqrt{\ell_{n}} \overline{\ell_{n-1}}\right\},
$$

for $n=1,2,3, \cdots, k=1,2, \cdots, 2^{n}$. We denote by $S_{n, k}$ (resp. $T_{n, k}$) the closed ring domain bounded by $\hat{\gamma}_{n, k}$ (resp. $\check{\gamma}_{n, k}$) and $\Gamma_{n, k}$. The triply connected closed domain bounded by $\Gamma_{n, k}, \Gamma_{n+1,2 k-1}$ and $\Gamma_{n+1,2 k}$ (resp. $\check{\gamma}_{n, k}$, $\hat{\gamma}_{n+1,2 k-1}$ and $\hat{\gamma}_{n+1,2 k}$) is denoted by $\Delta_{n, k}$ (resp. $\Delta_{n, k}^{\prime}$), where $\Delta_{0,1}$ denotes the
closed ring domain bounded by $\Gamma_{1,1}$ and $\Gamma_{1,2}$ in the extended complex plane \hat{C}. Immediately we have

$$
\Omega=\underset{\substack{k=1,2, \cdots, 2 n \\ n=0,1,2,2 .}}{ } \Delta_{n, k}
$$

Denoting by $a_{n, k}$ (resp. $b_{n, k}$) the left (resp. right) endpoint of $I_{n, k}$, we write

$$
D_{n, k}=\left\{\begin{array}{c}
\text { the domain complementary to the set }\left\{a_{n, k}, b_{n, k}, 1\right\} \\
\text { if } k=1,2, \cdots, 2^{n-1}, \\
\text { the domain complementary to the set }\left\{0, a_{n, k}, b_{n, k}\right\} \\
\text { if } k=2^{n-1}+1,2^{n-1}+2, \cdots, 2^{n}
\end{array}\right.
$$

We take the conformal mapping $w=\phi_{n, k}(z)$ from $D_{n, k}$ onto D such that

$$
\phi_{n, k}\left(a_{n, k}\right)=0, \quad \phi_{n, k}\left(b_{n, k}\right)=1
$$

and

$$
\begin{cases}\phi_{n, k}(1)=\infty, & \text { if } k=1,2, \cdots, 2^{n-1} \\ \phi_{n, k}(0)=\infty, & \text { if } k=2^{n-1}+1,2^{n-1}+2, \cdots, 2^{n}\end{cases}
$$

From (1), there is a positive integer $N, N \geqq 2$,

$$
\begin{equation*}
\xi_{n}<\delta_{0}^{2} / 2, \quad \text { for } n \geqq N \tag{7}
\end{equation*}
$$

We denote by Ω_{0} the closed domain bounded by the circles $\left\{\Gamma_{N, k}\right\}_{k=1,2, \cdots, 2^{N}}$ in \hat{C}. For every $z \in \Omega-\Omega_{0}$, we choose the integers n and k such that $z \in \Delta_{n, k}$. Since $d \sigma_{\Omega}(z) \geqq d \sigma_{D_{n, k}}(z)$ and since the hyperbolic element of length is conformally invariant, we have for $z \in \Delta_{n, k}$

$$
\begin{equation*}
\frac{|d z|}{d \sigma_{R}(z)} \leqq \frac{|d z|}{d \sigma_{D_{n, k}}(z)}=\frac{|d z|}{|d w|} \cdot \frac{|d w|}{d \sigma_{D}(w)}<9 \ell_{n} \frac{|d w|}{d \sigma_{D}(w)} \tag{8}
\end{equation*}
$$

where $w=\phi_{n, k}(z)$.
By elementary computations, we have

$$
\begin{aligned}
& \phi_{n, k}\left(\hat{\gamma}_{n+1,2 k-1}\right) \subset\left\{w\left|\delta_{0} / 4<|w|<4 \delta_{0}\right\}\right. \\
& \phi_{n, k}\left(\hat{\gamma}_{n+1,2 k}\right) \subset\left\{w\left|\delta_{0} / 4<|w-1|<4 \delta_{0}\right\}\right.
\end{aligned}
$$

and

$$
\phi_{n, k}\left(\check{\gamma}_{n, k}\right) \subset\left\{w\left|1 / 4 \delta_{0}<|w|<4 / \delta_{0}\right\}\right.
$$

in view of (7). Thus

$$
\begin{aligned}
& \phi_{n, k}\left(S_{n+1,2 k-1}\right) \subset R_{0} \\
& \phi_{n, k}\left(S_{n+1,2 k}\right) \subset R_{1}, \\
& \phi_{n, k}\left(T_{n, k}\right) \subset R_{\infty}
\end{aligned}
$$

and

$$
\phi_{n, k}\left(\Delta_{n, k}^{\prime}\right) \subset R .
$$

Hence applying (3), (4), (5) and (6) to the image of $\Delta_{n, k}$ under $w=\phi_{n, k}(z)$, we deduce from (8) that
(9)

$$
\begin{cases}\frac{|d z|}{d \sigma_{\Omega}(z)}<C_{2}\left|z-a_{n, k}\right| \log \frac{3 \ell_{n}}{\left|z-a_{n, k}\right|}, & \text { for } z \in S_{n+1,2 k-1} \\ \frac{|d z|}{d \sigma_{\Omega}(z)}<C_{3}\left|z-b_{n, k}\right| \log \frac{3 \ell_{n}}{\left|z-b_{n, k}\right|}, & \text { for } z \in S_{n+1,2 k} \\ \frac{|d z|}{d \sigma_{\Omega}(z)}<C_{4}\left|z-a_{n, k}\right| \log \frac{2\left|z-a_{n, k}\right|}{\ell_{n}}, & \text { for } z \in T_{n, k} \\ \frac{|d z|}{d \sigma_{2}(z)}<C_{5} \ell_{n}, & \text { for } z \in \Delta_{n, k}^{\prime}\end{cases}
$$

where C_{j} are constant.
4. We next discuss the spherical derivative $\rho(f(z)) \equiv\left|f^{\prime}(z)\right| /\left(1+|f(z)|^{2}\right)$ of f. We have for $z \in \Delta_{n, k}, n \geqq N$,

$$
\begin{aligned}
\rho(f(z)) \leqq & \frac{|f(z)|}{1+|f(z)|^{2}} \sum_{\substack{h=1,2, \ldots, 2^{m} \\
m=1,2,3, \cdots}} \frac{\ell_{m}}{\left|z-\alpha_{m, h}\right|\left|z-\bar{\alpha}_{m, h}\right|} \\
\leqq & \frac{1}{2} \sum_{\substack{h=1,2, \ldots, 2^{m} \\
m=1, \ldots, n \\
(m, h) \neq(n, k)}} \sqrt{\left|z-\alpha_{m, h}\right|\left|z-\bar{\alpha}_{m, h}\right|} \\
& +\frac{|f(z)| \ell_{n}}{\left(1+|f(z)|^{2}\right)\left|z-\alpha_{n, k}\right|\left|z-\bar{\alpha}_{n, k}\right|} \\
& +\frac{1}{2} \sum_{\substack{h=1,2, \ldots, 2^{2 n}, \ldots \\
m=n+1, n+2, \ldots}} \frac{\ell_{m}}{\left|z-\alpha_{m, h}\right|\left|z-\bar{\alpha}_{m, h}\right|} \\
\equiv & \mathrm{I}+\mathrm{II}+\mathrm{III.}
\end{aligned}
$$

The second term II is simply estimated as follows:
We have

$$
\begin{aligned}
\left.\mathrm{II}<\frac{\ell_{n}}{\left|\boldsymbol{z}-\bar{\alpha}_{n, k}\right|^{2}} \prod_{(m, h) \neq(n, k)} \right\rvert\, & \left|\frac{\boldsymbol{z}-\alpha_{m, n}}{\boldsymbol{z}-\bar{\alpha}_{m, n}}\right|<\frac{\ell_{n}}{\left|\boldsymbol{z}-\bar{\alpha}_{n, k}\right|^{2}}<\frac{36}{\ell_{n}}, \\
& \text { for } \boldsymbol{z \in U _ { n , k } \equiv \{ \boldsymbol { z } | | \boldsymbol { z } - \alpha _ { n , k } | \leqq \ell _ { n } | 6 \} ,}
\end{aligned}
$$

$$
\begin{array}{r}
\mathrm{II}<\ell_{n} /\left\{\left|z-\alpha_{n, k}\right|^{2} \prod_{(m, h) \neq(n, k)}\left|\frac{z-\alpha_{m, h}}{z-\bar{\alpha}_{m, h}}\right|\right\}<\frac{\ell_{n}}{\left|z-\alpha_{n, k}\right|^{2}}<\frac{36}{\ell_{n}}, \\
\text { for } z \in U_{n, k}^{\prime} \equiv\left\{z| | z-\bar{\alpha}_{n, k} \mid \leqq \ell_{n} / 6\right\}
\end{array}
$$

and

$$
\begin{aligned}
\mathrm{II}<\frac{\ell_{n}}{2\left|z-\alpha_{n, k}\right|\left|z-\bar{\alpha}_{n, k}\right|} & <18 / \ell_{n}, \\
& \text { for } z \in \Delta_{n, k}^{\prime}-\left(U_{n, k} \cup U_{n, k}^{\prime}\right),
\end{aligned}
$$

so that

$$
\begin{equation*}
\mathrm{II}<36 / \ell_{n}, \quad \text { for } z \in \Delta_{n, k}^{\prime} \tag{10}
\end{equation*}
$$

For $z \in S_{n+1,2 k-1} \cup S_{n+1,2 k} \cup T_{n, k}$ we have immediately

$$
\begin{equation*}
\mathrm{II}<\frac{\ell_{n}}{2\left|z-\alpha_{n, k}\right|\left|z-\bar{\alpha}_{n, k}\right|} . \tag{11}
\end{equation*}
$$

In order to estimate I and III, we take roughly a lower bound of $\left|z-\alpha_{m, h}\right|$ or $\left|z-\bar{\alpha}_{m, h}\right|,(m, h) \neq(n, k)$. We may without loss of generality suppose that $k=1$, i.e. $z \in \Delta_{n, 1}$.
(i) If $\alpha_{m, n} \in\left(\Gamma_{p, 2}\right), p=1,2,3, \cdots, n$, we have

$$
\begin{equation*}
\left|z-\alpha_{m, n}\right| \geqq d\left(\Gamma_{n, 1}, \Gamma_{p, 2}\right) \geqq d\left(\Gamma_{p, 1}, \Gamma_{p, 2}\right) \geqq \ell_{p-1} / 3, \tag{12}
\end{equation*}
$$

where $d\left(\Gamma_{p, q}, \Gamma_{r, s}\right)$ denotes the distance between $\Gamma_{p, q}$ and $\Gamma_{r, s}$.
(ii) If $\alpha_{m, h} \in\left(\Gamma_{n+1, j}\right), j=1,2$, we have

$$
\begin{cases}\left|z-\alpha_{m, n}\right| \geqq\left(\ell_{n} / \delta_{0}\right)-\left(\ell_{n} / 2\right)>\ell_{n}, & \text { for } z \in T_{n, 1} \tag{13}\\ \left|z-\alpha_{m, h}\right| \geqq d\left(\Gamma_{n+1, j}, \alpha_{m, n}\right) \geqq \sqrt{\ell_{n} \ell_{n+1}} / 3, & \text { for } z \in \Delta_{n, 1}-T_{n, 1}\end{cases}
$$

(iii) For the others, i.e. $\alpha_{1,1}, \alpha_{2,1}, \cdots, \alpha_{n-1,1}$, we have

$$
\begin{equation*}
\left|z-\alpha_{m, 1}\right| \geqq d\left(\Gamma_{n, 1}, \alpha_{m, 1}\right) \geqq d\left(\Gamma_{m+1,1}, \alpha_{m, 1}\right) \geqq \ell_{m} / 3 \tag{14}
\end{equation*}
$$

for $m=1,2, \cdots, n-1$. Here we may substitute $\bar{\alpha}_{m, h}$ for $\alpha_{m, h}$ in (12), (13) and (14). We need also

$$
\begin{equation*}
\ell_{p} / \ell_{q}=\eta_{p} \eta_{p-1} \cdots \eta_{q+1}<(1 / 3)^{p-q} \quad(p>q) \tag{15}
\end{equation*}
$$

Using (12) and (14) we deduce

$$
\mathrm{I}=\sum_{\substack{m=1 \\(m, h) \neq(n, 1)}}^{n} \frac{\ell_{m}}{2}\left(\sum_{n=1,2, \cdots, 2 m} \frac{1}{\left|z-\alpha_{m, n}\right|\left|z-\bar{\alpha}_{m, h}\right|}\right)
$$

$$
\begin{aligned}
= & \sum_{m=1}^{n-1} \frac{\ell_{m}}{2}\left\{\sum_{p=1}^{m}\left(\sum_{\alpha_{m, n} \in\left(r_{p, 2}\right)} \frac{1}{\left|z-\alpha_{m, h}\right|\left|z-\bar{\alpha}_{m, n}\right|}\right)+\frac{1}{\left|z-\alpha_{m, 1}\right|\left|z-\bar{\alpha}_{m, 1}\right|}\right\} \\
& +\frac{\ell_{n}}{2} \sum_{p=1}^{n} \sum_{\alpha_{n, h} \in\left(r_{p, 2}\right.} \frac{1}{\left|z-\alpha_{n, h}\right|\left|z-\bar{\alpha}_{n, h}\right|} \\
\leqq & \sum_{m=1}^{n-1} \frac{\ell_{m}}{2}\left\{\left(\frac{3}{\ell_{m}}\right)^{2}+\left(\frac{3}{\ell_{m-1}}\right)^{2}+2\left(\frac{3}{\ell_{m-2}}\right)^{2}+2^{2}\left(\frac{3}{\ell_{m-3}}\right)^{2}+\cdots+2^{m-1}\left(\frac{3}{\ell_{0}}\right)^{2}\right\} \\
& +\frac{\ell_{n}}{2}\left\{\left(\frac{3}{\ell_{n-1}}\right)^{2}+2\left(\frac{3}{\ell_{n-2}}\right)^{2}+\cdots+2^{n-1}\left(\frac{3}{\ell_{0}}\right)^{2}\right\} .
\end{aligned}
$$

Also in view of (15) we have

$$
\begin{equation*}
\mathrm{I}<C_{6} / \ell_{n-1}=C_{6} \eta_{n} \mid \ell_{n} \tag{16}
\end{equation*}
$$

Similarly we deduce from (12) and (13)

$$
\begin{aligned}
& \mathrm{III}<\sum_{m=n+1}^{\infty} 9 \cdot 2^{m-n-1} \frac{\ell_{m}}{\ell_{n}^{2}} \\
& \begin{array}{r}
\times\left\{\frac{1}{9}+\left(\frac{\ell_{n}}{\ell_{n-1}}\right)^{2}+2\left(\frac{\ell_{n}}{\ell_{n-2}}\right)^{2}+\cdots+2^{n-1}\left(\frac{\ell_{n}}{\ell_{0}}\right)^{2}\right\}, \\
\text { for } z \in T_{n, 1},
\end{array} \\
& \mathrm{III}<\sum_{m=n+1}^{\infty} 9 \cdot 2^{m-n-1} \frac{\ell_{m}}{\ell_{n} \ell_{n+1}} \\
& \times\left\{1+\frac{\ell_{n} \ell_{n+1}}{\ell_{n-1}^{2}}+2 \frac{\ell_{n} \ell_{n+1}}{\ell_{n-2}^{2}}+\cdots+2^{n-1} \frac{\ell_{n} \ell_{n+1}}{\ell_{0}^{2}}\right\}, \\
& \text { for } z \in \Delta_{n, 1}-T_{n, 1} \text {, }
\end{aligned}
$$

and so we have

$$
\begin{cases}\text { III }<C_{7} \eta_{n} / \ell_{n}, & \text { for } z \in T_{n, 1} \tag{17}\\ \text { III }<C_{8} / \ell_{n}, & \text { for } z \in \Delta_{n, 1}-T_{n, 1}\end{cases}
$$

in view of (2) and (15).
Thus summing (10), (11), (16) and (17), we have

$$
\begin{cases}\rho(f(z))<\frac{C_{9}}{\ell_{n}}+\frac{\ell_{n}}{2\left|z-\alpha_{n, k}\right|\left|z-\bar{\alpha}_{n, k}\right|}, & \text { for } z \in S_{n+1,2 k-1} \cup S_{n+1,2 k} \tag{18}\\ \rho(f(z))<\frac{C_{10}}{\ell_{n}} \eta_{n}+\frac{\ell_{n}}{2\left|z-\alpha_{n, k}\right|\left|z-\bar{\alpha}_{n, k}\right|}, & \text { for } z \in T_{n, k} \\ \rho(f(z))<C_{11} \mid \ell_{n}, & \text { for } z \in \Delta_{n, k}^{\prime}\end{cases}
$$

Hence combining (9) and (18), we deduce that

$$
\begin{aligned}
\rho(f(z)) \frac{|d z|}{d \sigma_{\Omega}(z)}< & C_{2}\left(3 C_{9}+\frac{3 \ell_{n}^{2}}{2\left|z-\alpha_{n, k}\right|\left|z-\bar{\alpha}_{n, k}\right|}\right) \\
& \times \frac{\left|z-a_{n, k}\right|}{3 \ell_{n}} \log \frac{3 \ell_{n}}{\left|z-a_{n, k}\right|}, \quad \text { for } z \in S_{n+1,2 k-1}, \\
\rho(f(z)) \frac{|d z|}{d \sigma_{\Omega}(z)}< & C_{3}\left(3 C_{9}+\frac{3 \ell_{n}^{2}}{2\left|z-\alpha_{n, k}\right|\left|z-\bar{\alpha}_{n, k}\right|}\right) \\
& \times \frac{\left|z-b_{n, k}\right|}{3 \ell_{n}} \log \frac{3 \ell_{n}}{\left|z-b_{n, k}\right|}, \quad \text { for } z \in S_{n+1,2 k}, \\
\rho(f(z)) \frac{|d z|}{d \sigma_{\Omega}(z)}< & C_{4}\left(\frac{C_{10}\left|z-a_{n, k}\right|^{2}}{\ell_{n}^{2}} \eta_{n}+\frac{\left|z-a_{n, k}\right|^{2}}{2\left|z-\alpha_{n, k}\right|\left|z-\bar{\alpha}_{n, k}\right|}\right) \\
& \times \frac{\ell_{n}}{2\left|z-a_{n, k}\right|} \log \frac{2\left|z-a_{n, k}\right|}{\ell_{n}}, \quad \text { for } z \in T_{n, k}
\end{aligned}
$$

and

$$
\rho(f(z)) \frac{|d z|}{d \sigma_{\Omega}(z)}<C_{5} C_{11}, \quad \text { for } z \in \Delta_{n, k}^{\prime}
$$

Using the simple inequalities:

$$
\begin{array}{ll}
0<x \log \frac{1}{x}<1 / e, & \text { for } 0<x<1, \\
\left|z-a_{n, k}\right| \mid \ell_{n}<1, & \text { for } z \in S_{n+1,2 k-1}, \\
\left|z-b_{n, k}\right| / \ell_{n}<1, & \text { for } z \in S_{n+1,2 k}, \\
\left|z-\alpha_{n, k}\right|>\ell_{n} / 3, & \text { for } z \in S_{n+1,2 k-1} \cup S_{n+1,2 k}, \\
\left|z-\bar{\alpha}_{n, k}\right|>\ell_{n} / 3, & \text { for } z \in S_{n+1,2 k-1} \cup S_{n+1,2 k}, \\
\frac{1}{4}<\left|\frac{z-a_{n, k}}{\mid z-\alpha_{n, k}}\right|<4, & \text { for } z \in T_{n, k}, \\
\frac{1}{4}<\left|\frac{z-a_{n, k}}{z-\bar{\alpha}_{n, k}}\right|<4, & \text { for } z \in T_{n, k}
\end{array}
$$

and

$$
\frac{2}{3} \sqrt{\eta_{n}}<\frac{\ell_{n}}{\left|z-a_{n, k}\right|}<\frac{1}{4}, \quad \text { for } z \in T_{n, k}
$$

we are able to prove that $\rho(f(z))\left(|d z| / d \sigma_{\Omega}(z)\right)$ is bounded in $\Omega-\Omega_{0}$. Further, since $\rho(f(z))\left(|d z| / d \sigma_{\Omega}(z)\right)$ is also bounded in a compact set Ω_{0}, it is bounded in Ω. Thus by Theorem B , we deduce that f is normal in Ω. This completes the proof of Theorem.

References

[1] C. Constantinescu, Einige Anwendungen des hyperbolischen Masses, Math. Nachr., 15 (1956), 155-172.
[2] T. Kurokawa, Exceptionally ramified meromorphic functions with a non-enumerable set of essential singularities, Nagoya Math. J., 88 (1982), 133-154.
[3] O. Lehto and K. I. Virtanen, Boundary behaviour and normal meromorphic functions, Acta Math., 97 (1957), 47-65.
[4] S. Toppila, Linear Picard sets for entire functions, Ann. Acad. Sci. Fennicae, Ser. I, 1 (1975), 111-123.

Department of Mathematics
Faculty of Education
Mie University
Tsu 514, Japan

[^0]: Received June 20, 1984.

