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ON THE POWER SERIES REPRESENTATION

OF SMOOTH CONFORMAL MARTINGALES

NGUYEN XUAN-LOC

We introduce here the notion of (stochastically) differentiable process

with respect to a fixed conformal martingale and compute the remainder

term of the Taylor expansion of the given process (Definition 1 and Pro-

position 3). An a-priori estimate in the L2-norm of the above mentioned

remainder term is given and consequently a power series representation

of smooth conformal martingales is obtained (Theorem 4).

The results in this note on the one hand extend those of our previous

works on smooth martingales with respect to the stopped complex Brownian

motion (see [3]) and on the other hand can be applied to approximate the

solutions of complex Ito-diίfusion equations (see Applications). Further-

more they give a positive answer to an open question raised by M. Yor

(see [5]).

Power Series representation of smooth conformal martingales with
respect to a fixed martingale

For the convenience of the reader let us recall briefly the notion of

conformal martingales and their associated Ito formula. We refer to the

original work of Getoor and Sharpe for the complete literature of the

theory of conformal martingales (see [2]). By probability system we always

mean a collection Σ — (β, 3Fy (^t)t>o, P) which consists of a probability

space {Ω, !Fy P) and an increasing family (J^X^o of sub σ-fields of !F with

the following standard hypotheses:

— (^t)t>Q is right-continuous ,

— ^ o contains all null sets of !F.

We always denote by Jί'c the class of continuous complex local martin-

gales for Σ. Thus W e Jί'c iff its real and imaginary parts are continuous
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local martingales. In other words,

W = Wo + U + iV where Wo is an ̂ -measurable complex random
(1) variable and where U, V belong to the class JS?c of continuous, real

local martingales which are null at t = 0.

Let s0c be the class of continuous, real processes for Σ which are
null at t = 0 and which are locally of integrable total variations.

For Wlt W2 e Jt'c the process (Wu W2), defined by complex polarization,
is the unique member of jzfc + Lsrfc such that

(2) Wr W2 - <WU W2) is an element of Jίc.

One finds that (Wu W2) = (Wx - W1(0)9 W2 - W2(0)) and that (Wιy W2)

is linear in Wl9 conjugate linear in W2. It follows at once from (2) that
for an element W = Wo + U + ίVe f̂c we have:

(<W, W) = <[/, ί/> + <F, y> and,

In the following we denote also by (W) (resp. <Ϊ7» the process (W, W)
(resp. <[/, C7».

DEFINITION A (see [2], (5.1)). An element W = VF0 + C7 + i V of ^ c is
called conformal provided that:

(4) (U, U) - <V, V> and <?7, y > = 0 .

The class of conformal martingales for the probability system Σ will be
denoted by <g\ Clearly Wetf ifί Wetf and the stopped process Wr =
(WVΛ*)

 a l s o belongs to ̂  for every (J^^-stopping time T.

Now fix an element W = Wo + Ϊ7+ i F e J(c and let LfocίW) be the class

of previsible complex processes C = (Cs) such that ί \Cs\
2d(W)λ is locally

integrable. If W is furthermore conformal then:

(5) LUW) = Ll*(U) + iUJJJ)

(notice LL(£7) = LL(F))
To save spaces let us denote in the rest of the paper by C * W the

stochastic integral of an element of C — (Cs) e L2

l0C(W) with respect to
- W(0}) and write:
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(6) C*W(t)=\'c,odW,

Jo

(instead of C (W - W(0))(t) = ϊ'c^diW - W(0)),) .

The notation C * VF (K e iV) will be used to denote the iterated stochastic

integral:

(60 C* W(t) = C* W* * W(0 (the operation * is repeated K times).

Notice that if CeL2

l0C(W) then by the continuity of the paths C*W also

belongs to L2

l0C(W) and furthermore it is not difficult to see that

where (M,) is the local martingale given by

The following Ito-formula for the class <€ of conformal martingales of
Getoor and Sharpe will be used frequently in the sequel.

THEOREM B (see [2], (5.4)). Let D be a domain in Cn and letZ\ ,
Zn e <€ such that

P((Z\ ..,Zn)eD for any t>0) = l .

If F is holomorphίc in a neighbourhood of D, then

F(Z\, •••,Zf) = F(Zl, , Z,«) + Σ Γ df (Zl, • • •, Zΐ)• dZi

( 7 ) '

+\ Σ -/i^(^ί. ,zf) d{Z', zk>s

2 J,A: = I J O dZjdzk

(Ito formula).

Consequently if Z\ . , Zn e% and (Zj, Zk) = 0 for allj, k (notice (Z\ ZJ)

— 0 automatically) then under the same hypothesis on F, one has

F(Z), ,Zΐ) = F(Z], . . , Z$) +

i.e., F(Z], , Zf) belongs again to <g.

DEFINITION 1. a) Let W be a fixed element of <g\ A conformal

martingale φ = (φ(s)) of ^ is said to be n-times differentiate with respect
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to W (abbrev. n-times VF-differentiable) provided that there are n elements

φ{ί) e L2

1OC(W) (l<ί<ή) such that:

- φ^(0) = φ{ί+1) * W (l<ί<n - 1).

b) A conformal martingale φ e Ή is said to be smooth with respect to

W if it is W-differentiable infinitely many times.

Remarks. 1) It is implicitly stated in the formula (8) of the Defini-

tion 1 that φ{i) e # for i = 1, 2, , n - 1.

2) The particular case, where W — (BTAt) is chosen to be the com-

plex Brownian motion stopped at the stopping time T, was introduced in

an earlier work [3] and a smooth martingale (with respect to W = (BTAt))

is called in [3] a locally analytic processes.

LEMMA 2. a) Let W be a fixed conformal martingale and let n be an

integer then the process:

( 9 ) Wn = (W(t)- W(0)Y

belongs to <€ and furthermore, for every integer 1 < k < n we have

(10) Wn = n(n - 1) . -(n - k){W{n~k)) * W

(see (6) and (6') for the definition of * W).

b) Let φ = (0(0) be a (n + 1) ίimβs W-differ entiable martingale then φ

can be written as follows:

(11) φ(t) = 0(0) + 2 ^ ( 0 ) W'φ + (^" + 1>(n*1) WXί).

Proof, (a) Since <W, W> = 0, it follows from Ito-formula (7) applying

to f(z) - zn that:

From the above equality (10) can be obtained easily by iteration.

b) Suppose first that n = 0, then (11) says nothing else than the

definition of W-differentiable martingale, i.e.,

= φ(O)+

Now suppose that (11) is true for n = k and that φ is a (k + l)-times W-
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differentiate martingale then we have:

(12) φ(t) = φ(0) + Σ V-^ W%t) + (φ^ % W)(t).

On the other hand since φ{k) can be written as follows:

thus the last term of the right hand side member of (12) turns out to be:

(φι"Λ W)(t) = (0<*>(O) + 0<*+I> * HO* W(t)

0<*+» '**" W(t)

w(t) + φ ^

by (10). Hence (11) is also true for n = k + 1. q.e.d.

Remark. Notice that 0(fe)(O) (0 < k < ή) is J^Ό-measurable hence they

behave like a constant in the stochastic integration procedure and that if

ψ e L2

loc(W) then so is ψ * W.

Let Wetf be a fixed conformal martingale and let {W} — ((W}s) be

the continuous increasing process associated with W. For t > 0 let us

define the stopping-time τ(t) as follows:

(inf{s>0:

[+ co if the set of s such that <VF>s(ω) > t is empty.

PROPOSITION 3. a) Let φ = (φ(t, •)) be a (n + ΐ)-times Ψ-differentiable

conformal martingale with derivatives φ(ί) (1 < ί < n + 1). Suppose further-

more that E(\φ(τ(t, ))p) < + oo, /or some fixed t > 0, then for every t0 < t:

E(\φ(τ(t, ))|2) - ^(|ί5(r(ί0, ))|2) + f ώ . Γ

(13) ^ ^

b) Consequently if φ is a W-smooth conformal martingale such that

E(\φ(τ(t, ))|2) < + °°> ^ e y ι ^ e too following conditions are equivalent:
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(14)

(15)

, )Γ)
l !

Σ E(\ φ«Kτ(t0, )) |2) (
i = l

Proo/. a) Let 0 < t0 < t,

E(\φ{t(t,-))f-\φ(τ(t0,

ί '" ) | ίi
1(S, )|

τ(ίo, )

<*)

< + oo.

/ ΓίΛ<^>oo

= E(\ \φ\τ(s, ))

On the other hand since {ω; τ(ί, ω) = 00} = {ω; (W)^ < t} and since

l^rίβ, )) | 2ώ on ί <

i: \φ, -))\2ds = \φ\t{s, ))fds on
to

\0 on

we have, by iterating on E(\φXτ(s, ))\2),

E(\φ(τ(t, ))|2) - E(\φ(τ(t0,

φ\φ, ))Γds; ί

ί )

- E<\p(oo, )\%t -t0

- t0) + Γ ̂ ..f""1

= f
= E(\φ'(τ(t0, f

- ίo V <W>J; <W>. < ί)

, .)\>ds(tn - t0 V <W> J ;

The last term of the right-hand side is:

dtnE(\φ%oo, .)\\tπ - t0 V <W> J ;

< ί)

ΐ . )

Thus by iteration again on E(\φ2(τ(tn, ))|2) and so on we get finally (13).
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b) Suppose that (14) (resp. (15)) is true, by letting n to + oo in (13)

we get (15) (resp. (14)). q.e.d.

THEOREM 4. Let φ = (φ(t, •)) be a W-smooth conformal martingale such

that for every couple reals t > tQ > 0:

E(\φ(τ(t, ))|2) < oo and,

^ op

φ (resp, φ{ί) (£ = 1, 2, •)) admits a power series representation of the

following form:

For every t > 0:

Φ(τ(t,.)) = #o, •) + ±*^Awί(ίi0

(17) *-* ι!

where the convergence of the right-hand side of (15) is to be in L2-

norm

(resp. for i = 1, 2, :

f;

b) Let φ — (φ(t, •)) be a W-smooth conformal martingale such that

y_| El \φ (oo, )| -—— — τ(t, •) = -f- oo ) <C oo ,
ϊ=i \ il )

then for any t > 0:

OO /-Λ(O/Λ ^

(18) φ(τ(t, ')) = φ(0, •) + Σ ^-rp-^-^ru,.) α.s ^

Proof, a) By Lemma 2, ^ = (φ(τ(t, •))) has the following Taylor ex-

pansion:

φ(τ(t, •)) = φ(0, •) + Σ ^ ( T '}- Wί<«. > + Λ « + i ( ^ •))
i = 1 I!

w h e r e

L e t u s e s t i m a t e t h e Z Λ n o r m of t h e r e s t p r o c e s s Rn+ι(τ(t, -)):
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E(\Rn+Mt, ))|2) = tf(Γ'V+1 * w\\8, -)d<wy\
(19) V J o '

By a computation similar to that used in the proof of Proposition 3, a),

we get by iteration on the terms E(\φn + ί * W\\τ(ti9 •))) (0 < ί < ή):

n + 1 * W\\τ(tn, ))dtn; τ(t, .) < + oo)

^ + 1 * Wf(τ(tn, -))dtn; τ(t0, •) < τ(t, •) - +ooj

4, -))dtn; τ(t0, •) < oo, τ(t, •) =

= [ dtjtndtn_r • • pEdF+ϊτis, -Wds
Jo Jo Jo

n / rt = tn + i Γίί + 2

- Σ Λ» c?ίi+1
i=O\Jθ Jθ

X

Hence,

(20) E(\Rn+1(τ(t,
(n + 1)1

Using the condition (16) we can apply Proposition 3 and we get the

following by putting t = 2t0 in (15):

limί;(|Bn + 1(r(ί, ))|2) < ]imE(\φ» + Hτ(t, ))P) 7

 Γ + ' t = 0 .

b) By localization the local martingale φ = (φ(t)) with the sequence

of (J^,.^-stopping time (Tn), where

Γn = inf{f>0: \φ{τ{t, ))?>n}

we have by the part a):

φ(τ(t, •) Λ Tn, •) = lim ± ί^i-±. WUt,.)ΛTn in D .

The desired formula (18) comes out by letting n -» + oo. q.e.d.
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Remarks, 1) In the case where τ{t, •) < + oo a.s,, i.e, (W)^ > t, the

condition (14) in Proposition 3 is automatically satisfied and hence (13)

becomes:

E(\φ(τ(t, ))|2) - E(\φ(τ(t09 ))|2) + ΣE(\φ{ίKτ(t0, 0 ) | 2 ) - ^ — ^

\dtn--.\lE(\φ{τ{s,-))f)ds.
Jo Jo

Thus we re-fined here known results of Caroli-Walsh (Lemma 9.13, [4]) and

also that of M. Yor (Theorem 1.1, [5]). Furthermore our result answers

also an open question raised by Yor in the above mentioned paper (see

the remark following Theorem 1.1).

2) Instead of a computation on the expectation if we compute on paths

of the increasing process <i?n+1)r(ί,.) then we could obtain the following

formula which gives rise to an estimation sharper than (20),

Jo Jo Jo

where M = (M(t, •)) is a process of the form J^Mi t^il in which Mι are

local martingales.

Applications

1) Approximation of the solution of a complex Ito-diffusion equation.

Let B = (Bs) be the complex Brownian motion, i.e. B is a special

conformal martingale of the form Bs = Us + ίVs where U = (Us) and V

= (Vs) are two independent 1-dimensional Wiener processes for the given

probability system 2 — Φ> ̂ -> i^t)t>^ P)> Consider the complex Ito-

diffusion equation:

(21)
where the process a1 — (a\',φ(s))) is supposed to belong to L2

loc(B).

If the equation (21) has a unique solution φ = (φ(s)) then we can inspired

from our Definition 1 to say that the diffusion φ admits α1 as its 1st de-

rivative.
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Suppose now that the process a1 = (a\ , φ(s))) is itself the unique

solution of a complex Ito-diffusion equation of the type:

= a\ , 0(0)) + f α2( , αX , φ(s)))dBs
Jo

then the process a2 = (α2( , a\-9 φ(s)))) is called the 2nd derivative of φ.

By iteration we say that the solution φ = (0(s)) of the equation (21)

is smooth if it has derivative (a*) of arbitrary order which can be defined

recursively as the unique solutions of the following sequence of diffusion

equations:

0(0 = 0(0)

a\.,φ(t)) = α*( , 0(0)) + f α t + 1 ( , α « ( . ,
Jo

It turns out that if the solution φ = (φ(s)) is smooth then it is also B-

smooth in the sense of Definition 1 and furthermore φ{ί) = a1 (i — 1, 2, •)

and (E)t = 2L Hence by Theorem 4, φ admits the following power series

representation:

Σ^P-Bl a.s. P.,
(23)

where (α(ί)(0)) is a sequence of ^-measurable functions such that

aw(0) = a'φ, 0(0)) and α(i>(0) = α*(0, α'-^O)) (i = 2, 3, •)-

On the one hand we can approximate in the ZΛnorm the solution φ = (φ(t))

of (21) by its Taylor expansion Σ?= 0(αω(0)/ϋ) JBj and on the other hand

the rate of convergence for the approximation procedure could be con-

trolled by the following inequality:

UmE(Rn+1(t))
(n + 1)!

in which the limit in the right hand-side should be zero by (15).

2) Power series expansion of finely holomorphic functions.

Let U C C be a finely open and finely connected subset of the complex

plane C, i.e., U is a fine domain. A complex function /: U->C is said
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to be finely holomorphic (see [1]) if for any x e U there is a compact fine

neighbourhood Kx c U of x such that (f\Kx)eR(Kx). Recall that R(KX)

is the algebra of functions whose elements can be uniformly approximated

by a sequence of functions holomorphic in the neighbourhoods of Kx.

Following [3] we will denote by «5ff(C7) the algebra of finely holomorphic

functions in U. In our previous works (see [3]) we showed that there is

a fine complex differential dv\ «^f(f7)->^f(C7), such that for any/e ^(£7)

and for any x e U there is a compact fine neighbourhood Kx of x:

f{BTΛt) = f{B0) + Γ 3 t/(BΓΛ.) dBTAs a.s. P* (x e £ ' ) ,
(24) J o

where Kf is the fine interior of Kx and where T is the exit-time of
K'.

Since d'J = S^SirY) e ^f(U) (ί = 12, 3, •) it follows from (24) that the

process φ = (f(BTAt)) is smooth with respect to W — (BTM) and its ith de-

rivative is equal to (dV/(£Γ/V)). Since Px(T>0) = 1 for any xeKf and

since (BTA.)t = T /\ t, we have τ(t, ω) = Γ(ω) Λ t. By a known result on

bounded derivation of the algebra R(KX) (see [6]) there is a constant c such

that \3\rf(y)\ < c II/IU for every fe^U) and y e # ' (i = 1, 2, • •), conse-

quently the condition (16) of the Theorem 4 is satisfied for f(BTAt). The

processes f(BTM) and d\jf(BTAt) (ί = 1, 2, •) admit power series represent-

ations, thus we recover some results of [3].

3) Singularities of smooth conformal martingales.

Let φ = {0(0; t > 0} be a continuous complex process adapted to (^t)t>Q

with parameter set ]0, + oo [. φ is said to be smooth with respect to W etf

off the time "t = 0" provided that for every real t0 > 0 the shifted process

φ(θt0) = {φ(t + tQ)}t^0 is smooth with respect to the process W(θtQ) =

{W(ί + £o)}<>o which, by hypotheses, is conformal for the probability system

ΣtQ = (Ωy&Ά^t+tXzo'P)' A process φeJ?c is said to have an isolated

zero at time "t = 0" provided that

P(φ(O) = 0) = 1 and P(φ(t) = 0) = 0 for any t > 0.

The proof of the following theorem is similar to that of Theorem 7 in [3].

THEOREM 5. Let W e& be a fixed conformal martingale with only iso-

lated zero at "t = 0" and let φ = {φ(t)}t>0 be a smooth process off the time

"t = 0" with respect to W. Then one of the following three cases must

occur:
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a) The process φ can be extended to a smooth process with respect to

W on the whole interval [0, + oo[. In this case φ is said to have a ir-

removable singularity at the time "ί = 0".

b) There are m complex numbers cl9 •••, cm where m is a positive

integer and cm Φ 0 such that the process,

can be extended to be W-smooth on [0, + oo[. In this case φ is said to

have a W-pole of order m at time "£ = 0".

c) for each 3 > 0 the set,

{(φ(ω,t)); (ω,f)€]0,3[}

is dense in the complex plane C. In this case φ is said to have a W-

essential singularity at time "£ = 0".

Remarks. 1) Note that since we have only to study the process near

the time "t = 0" thus by localization we can suppose without loss of

generalities that the process satisfies the condition (16) of Theorem 4.

2) Our result generalizes that of Walsh in [7] in the sense that if

the conformal process is smooth of the time "£ = 0" then we can classify

its pole at "t = 0".
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