S. Ikeda

Nagoya Math. J.
Vol. 102 (1986), 135-154

ON THE GORENSTEINNESS OF REES ALGEBRAS OVER LOCAL RINGS

SHIN IKEDA

Introduction

Let (A, m, k) be a Noetherian local ring and I an ideal of A. We set $R(I)=\oplus_{n \geq 0} I^{n}$ and call this graded A-algebra the Rees algebra of I. The importance of the Rees algebra $R(I)$ is in the fact that $\operatorname{Proj} R(I)$ is the blowing up of $\operatorname{Spec} A$ with center in $V(I)$. The Cohen-Macaulayness of Rees algebras was studied by many mathematicians. In [GS] S. Goto any Y. Shimoda gave a criterion for $R(m)$ to be Cohen-Macaulay under the assumption that A is Cohen-Macaulay. Their results have been generalized to $R(I)$ in [HI].

Let grade $(I) \geq 2$. The purpose of this paper is to characterize the Gorensteinness of $R(I)$ in terms of canonical modules of A and the associated graded ring $G(I)=\oplus_{n \geq 0} I^{n} / I^{n+1}$. The notion of canonical modules of local rings plays an important role in the homological theory of local rings, cf. [HK]. The canonical modules of graded rings defined over a field were introduced and studied extensively in [GW]. In Section 1 we introduce the notion of canonical modules of graded rings defined over a local ring. Our definition of canonical modules coincides with that of [GW] if the local ring is a field. In Section 2 we collect several facts about the behaviour of the local cohomology modules of Rees algebras. Section 3 will be devoted to the proof of our criterion of the Gorensteinness of $R(I)$ and to the construction of an example of a local ring (A, m, k) such that $R(m)$ is Gorenstein but A is not Cohen-Macaulay.

§ 1. Local cohomology of graded rings

In this section we give a brief summary of the theory of local cohomology and duality of graded rings.

Let $R=\oplus_{n \in Z} R_{n}$ be a Noetherian graded ring and let M, N be graded

[^0]R-modules. Let us denote the category of graded R-modules by $M_{H}(R)$. A morphism in $M_{H}(R) f: M \rightarrow N$ is an R-linear map such that $f\left(M_{n}\right) \subset N_{n}$ for all $n \in \boldsymbol{Z}$. Let $n \in \boldsymbol{Z}$. We denote by $M(n)$ the graded R-module whose grading is defined by $M(n)_{m}=M_{n+m}$ for all $m \in Z$. Let $\mathscr{H}_{o m_{R}}(M, N)_{n}$ be the abelian group of all homomorphisms from M into $N(n)$ in $M_{H}(R)$. Let $\mathscr{H}_{o_{R}}(M, N)=\oplus_{n \in Z} \mathscr{H}$ om $_{R}(M, N)_{n}$. Then \mathscr{H} om $_{R}(M, N)$ is a graded R module whose homogeneous component of degree n is $\mathscr{H}_{o m_{R}}(M, N)_{n}$. A graded R-module E is injective (resp. projective) in $M_{H}(R)$ if the functor $\mathscr{H}_{\text {om }_{R}(}(, E)$ (resp. $\left.\mathscr{H}_{\text {om }}^{R}(E),\right)$ from $M_{H}(R)$ into itself is an exact functor.

The tensor product $M \otimes_{R} N$ is a graded R-module whose n-th homogeneous component is the abelian group generated by the elements of the form $x \otimes y$ with $x \in M_{i}, y \in N_{j}$ and $i+j=n$.

The category $M_{H}(R)$ is an abelian category with enough injectives (cf. [Gr H_{1}], (1, 10)). A homomorphism $f: M \rightarrow N$ in $M_{H}(R)$ is called essential if f is an injection and for any non-trivial graded R-submodule L of N we have $f(M) \cap L \neq 0$. The injective envelope of a graded R-module M is an injective object $\mathscr{E}_{R}(M)$ of $M_{H}(R)$ with an essential homomorphism $M \rightarrow \mathscr{E}_{R}(M)$ in $M_{H}(R)$.

The following proposition describes the structure of injective objects in $M_{H}(R)$.

Proposition (1.1). (1) Let M be a graded R-module. Then

$$
\operatorname{Ass}_{R}\left(\mathscr{E}_{R}(M)\right)=\operatorname{Ass}_{R}(M)
$$

(2) Let E be an injective object of $M_{H}(R)$. Then E is indecomposable if and only if $E=\mathscr{E}_{R}(R / p)(n)$ for some homogeneous prime ideal of R and for some $n \in \boldsymbol{Z}$.
(3) Every injective object of $M_{H}(R)$ can be decomposed into a direct sum of indecomposable injective objects of $M_{H}(R)$. This decomposition is unique up to isomorphism.

Proof. This is [GW], (1.2.1).
For $i \geq 0$ the functor $\mathscr{E}_{x t_{R}^{i}}($,$) is defined to be the i$-th derived functor of the functor $\mathscr{H}_{o m_{R}}($,). Suppose that M is a finitely generated graded R-module. Then $\mathscr{H} \operatorname{om}_{R}(M, N)=\operatorname{Hom}_{R}(M, N)$ as underlying R-modules. Hence ${\mathscr{E} x t_{R}^{i}}_{(}(M, N)=\operatorname{Ext}_{R}^{i}(M, N)$ for all $i \geq 0$. For any $p \in \operatorname{Spec}(R)$ and for any R-module L we define

$$
\mu^{i}(p, L)=\operatorname{dim}_{k(p)} \operatorname{Ext}_{R_{p}}^{i}\left(k(p), L_{p}\right),
$$

where $k(p)=R_{p} / p R_{p}$, and call this number the i-th Bass number of M at p (cf. [B]).

Proposition (1.2). Let M be a graded R-module and let

$$
0 \rightarrow M \rightarrow I^{0} \rightarrow I^{1} \rightarrow \cdots \rightarrow I^{n} \rightarrow I^{n+1} \rightarrow \cdots
$$

be a minimal injective resolution of M in $M_{H}(R)$. Then for any homogeneous prime ideal p and for any integer $i \geq 0, \mu^{i}(p, M)$ is equal to the number of the graded R-modules of the form $\mathscr{E}_{R}(R / p)(n)$ which appear in I^{i} as direct summands.

Proof. This is [GW], (1.2.4).
In this paper a Noetherian graded R is called defined over a local ring if R_{0} is a Noetherian local ring and $R_{n}=0$ for $n<0$. If R is defined over a local ring we denote the graded ring $R \otimes_{R_{0}} \hat{R}_{0}$ by \hat{R}, where \hat{R}_{0} is the completion of R_{0}. In the rest of this section R denotes a graded ring defined over a local ring $\left(R_{0}, m_{0}, k\right)$ and M denotes the maximal homogeneous ideal of $R . \quad R$ can be regarded as a graded R_{0}-module in a natural way. Let $E_{R_{0}}$ be the injective envelope of k as an R_{0}-module. We denote by $\mathscr{E}_{R_{0}}$ the graded R-module whose underlying R_{0}-module is $E_{R_{0}}$ and whose grading is given by $\left[\mathscr{E}_{R_{0}}\right]_{0}=E_{R_{0}}$ and $\left[\mathscr{E}_{R_{0}}\right]_{n}=0$ for $n \neq 0$.

Definition (1.3). $\quad \mathscr{E}_{R}(k)=\mathscr{H} \operatorname{om}_{R_{0}}\left(R, \mathscr{E}_{R_{0}}\right)$.
Proposition (1.4). (1) $\mathscr{E}_{R}(k)$ is the injective envelope of R / M in $M_{H}(R)$.
(2) $\mathscr{H}_{\text {om }_{R}}\left(\mathscr{E}_{R}(k), \mathscr{E}_{R}(k)\right)=R \otimes_{R_{0}} \hat{R}_{0}$, where \hat{R}_{0} is the completion of R_{0}.

Proof. (1) As in the non-graded case, in order to show that $\mathscr{E}_{R}(k)$ is injective in $M_{H}(R)$ it is enough to show that for any homogeneous ideal of R and for any integer n every homomorphism $f: I(n) \rightarrow \mathscr{E}_{R}(k)$ can be extended to a homomorphism $f^{\prime}: R(n) \rightarrow \mathscr{E}_{R}(k)$. Since

$$
\mathscr{H}_{o m_{R_{0}}}\left(R, \mathscr{E}_{R_{0}}\right) \subset \operatorname{Hom}_{R_{0}}\left(R, E_{R_{0}}\right)=\prod_{i \in Z} \operatorname{Hom}_{R_{0}}\left(R_{i}, E_{R_{0}}\right),
$$

and since $\operatorname{Hom}_{R_{0}}\left(R, E_{R_{0}}\right)$ is an injective R-module f can be extended to an R-homomorphism $f^{\prime \prime}: R \rightarrow \operatorname{Hom}_{R_{0}}\left(R, E_{R_{0}}\right)$.

Let $f^{\prime \prime}(1)=\left(g_{i}\right)_{i \in Z}$, where $g_{i} \in \operatorname{Hom}_{R_{0}}\left(R_{-i}, E_{R_{0}}\right)$. Since f is homogeneous for any homogeneous element $x \in I$ we have $x g_{j}=0$ for $j \neq-n$. This shows that the homomorphism f^{\prime} in $M_{H}(R)$ defined by $f^{\prime}(1)=g_{-n} \in$
$\operatorname{Hom}_{R_{0}}\left(R_{n}, E_{R_{0}}\right)$ extends f. It is not difficult to show that $\operatorname{Supp}\left(\mathscr{E}_{R}(k)\right)=M$. Moreover we have

$$
\begin{aligned}
\mathscr{H}_{o m_{R}}\left(R / M, \mathscr{E}_{R}(k)\right) & =\mathscr{H}_{o m_{R}}\left(R / M, \mathscr{H}_{o m_{R_{0}}}\left(R, \mathscr{E}_{R_{0}}\right)\right) \\
& =\mathscr{H} o m_{R_{0}}\left(R / M, \mathscr{E}_{R_{0}}\right) \\
& =k .
\end{aligned}
$$

This shows that $\mathscr{E}_{R}(k)$ is the injective envelope of R / M in $M_{H}(R)$.

$$
\begin{align*}
\mathscr{H}_{o m_{R}}\left(\mathscr{E}_{R}(k), \mathscr{E}_{R}(k)\right) & =\mathscr{H} o m_{R}\left(\mathscr{E}_{R}(k), \mathscr{H}_{o m_{R_{0}}}\left(R, \mathscr{E}_{R_{0}}\right)\right) \tag{2}\\
& =\mathscr{H} o m_{R_{0}}\left(\mathscr{E}_{R}(k), \mathscr{E}_{R_{0}}\right) \\
& =\mathscr{H} o_{R_{0}}\left(\mathscr{H} o m_{R_{0}}\left(R, \mathscr{E}_{R_{0}}\right), \mathscr{E}_{R_{0}}\right) \\
& =\oplus_{n \in Z} \operatorname{Hom}_{R_{0}}\left(\operatorname{Hom}_{R_{0}}\left(R_{n}, E_{R_{0}}\right), E_{R_{0}}\right) \\
& =\bigoplus_{n \in Z} R_{n} \otimes_{R_{0}} \hat{R}_{0} \\
& =R \otimes_{R_{0}} \hat{R}_{0}
\end{align*}
$$

Proposition (1.5). Let R be a graded ring defined over a complete local ring R_{0} and N a graded R-module. Then, we have:
(1) If N is Noetherian (resp. Artinian) $\mathscr{H}_{o_{R}}\left(N, \mathscr{E}_{R}(k)\right)$ is Artinian (resp. Noetherian).
(2) If N is Noetherian or Artinian

$$
\mathscr{H} \circ_{R}\left(\mathscr{H} \circ_{R}\left(N, \mathscr{E}_{R}(k)\right), \mathscr{E}_{R}(k)\right)=N .
$$

Proof. Using Proposition (1.4) this can be proved as in [M].
For every integer $i \geq 0$ we put

$$
\mathscr{H}_{M}^{i}()=\underset{n}{\lim } \mathscr{E}_{x t_{R}^{i}}^{i}\left(R / M^{n}, \quad\right)
$$

and call it the i-th local cohomology functor, where R is a graded ring defined over a local ring and M is the maximal homogeneous ideal of R. $\mathscr{H}_{M}^{i}()$ is the i-th derived functor of $\mathscr{H}_{M}^{0}()$ (cf. [$\left.\mathrm{Gr}_{2}\right]$ and [HK]).

Definition (1.6). Suppose that R_{0} is complete. We put

$$
\mathscr{K}_{R}=\mathscr{H}_{\operatorname{om}_{R}}\left(\mathscr{H}_{M}^{d}(R), \mathscr{E}_{R}(k)\right),
$$

where $d=\operatorname{dim} R$, and call this graded R-module the canonical module of R.

If R_{0} is not complete a graded R-module \mathscr{K}_{R} is a canonical module of R if there is an isomorphism in $M_{H}(\hat{R}) \mathscr{K}_{\hat{R}}=\mathscr{K}_{R} \otimes_{R} \hat{R}$.

Proposition (1.7). If there is a canonical module of R it is a finitely generated R-module and unique up to isomorphisms.

Proof. Since \hat{R} is faithfully flat over R it is sufficient to show that $\mathscr{K}_{\hat{R}}$ is finitely generated. But this follows from Proposition (1.5). For the proof of the uniqueness it is enough to show that if K and L are finitely generated graded R-modules such that $K \otimes_{R} \hat{R}=L \otimes_{R} \hat{R}$ then $K=L$. Let $f \in \mathscr{H} o_{\hat{R}}\left(K \otimes_{R} \hat{R}, L \otimes_{R} \hat{R}\right)_{0}$ be an isomorphism. Since \hat{R} is flat over R and K is finitely generated over R one gets

$$
\begin{aligned}
\mathscr{H}_{o m_{\hat{L}}}\left(K \otimes_{R} \hat{R}, L \otimes_{R} \hat{R}\right) & =\mathscr{H} \text { om }_{R}(K, L) \otimes_{R} \hat{R} \\
& =\mathscr{H} o_{R}(K, L) \otimes_{R_{0}} \hat{R}_{0}
\end{aligned}
$$

which implies that $\mathscr{H}_{o m_{\hat{R}}}\left(K \otimes_{R} \hat{R}, L \otimes_{R} \hat{R}\right)_{0}$ is the completion of $\mathscr{H}_{o m_{R}}(K, L)_{0}$ since $\mathscr{H}_{o m_{R}}(K, L)_{0}$ is a finitely generated R_{0}-module. Let $\mathscr{H}_{o m_{R}}(K, L)_{0}^{\hat{~}}$ be the m_{0}-adic completion of $\mathscr{H} \operatorname{om}_{R}(K, L)_{0}$. For any integer $n>0$ there is a homomorphism $f_{n} \in \mathscr{H}_{o_{R}}(K, L)_{0}$ such that $f-f_{n} \in m_{0}^{n} \mathscr{H}_{o m_{R}}(K, L)_{0}^{\hat{}}$. By assumption f_{n} induces an isomorphism $\bar{f}_{n}: K / m_{0}^{n} K \rightarrow L / m_{0}^{n} L$. Hence f_{n} is a surjective homomorphism. Since $K / M K$ and $L / M L$ are isomorphic there exist finitely generated graded free R-modules F and G of the same rank $\operatorname{dim}_{k} K / M K$ such that there are surjective homomorphisms in $M_{H}(R)$ $g: F \rightarrow K$ and $h: G \rightarrow L$. Let $S=\operatorname{Ker}(g)$ and $T=\operatorname{Ker}(h)$. We get a commutative diagram with exact rows

a_{n} is an isomorphism since F and G are free R-modules of the same rank. Since \bar{f}_{n} is an isomorphism from (I) we get

$$
T \subset b_{n}(S)+m_{0}^{n} G \cap T
$$

By Artin-Rees lemma there is an integer $r>0$ such that

$$
m_{0}^{n} G \cap T=m_{0}^{n-r}\left(m_{0}^{r} G \cap T\right) \quad \text { for } n>r
$$

Therefore we get $T \subset b_{n}(S)+m_{0} T$ for $n>r$. By Nakayama's lemma $T=b_{n}(S)$. From (I) one knows that f_{n} is an isomorphism.

Let us recall that R is Cohen-Macaulay (resp. Gorenstein) if and only if R_{M} is Cohen-Macaulay (resp. Gorenstein), see [AG], [MR] and [GW].

Proposition (1.8). Let $d=\operatorname{dim} R$ and assume that R_{0} is complete. Then R is Cohen-Macaulay if and only if for any finitely generate graded R-module N and for all $i \geq 0$ we have

$$
\mathscr{H}_{o m_{R}}\left(\mathscr{H}_{M}^{i}(N), \mathscr{E}_{R}(k)\right)=\mathscr{E}_{\infty} x t_{R}^{d-i}\left(N, \mathscr{K}_{R}\right) .
$$

Proof. Suppose that R is Cohen-Macaulay. We will show that the functor $T^{i}()=\mathscr{H}_{o_{R}}\left(\mathscr{H}_{M}^{d-i}(), \mathscr{E}_{R}(k)\right)$ is the i-th derived functor of $\mathscr{H}_{o m_{R}}\left(, \mathscr{K}_{R}\right)$. We must show that
(1) from the short exact sequence $0 \rightarrow N^{\prime} \rightarrow N \rightarrow N^{\prime \prime} \rightarrow 0$ we obtain the long exact sequence

$$
0 \rightarrow T^{0}\left(N^{\prime \prime}\right) \rightarrow T^{0}(N) \rightarrow T^{0}\left(N^{\prime}\right) \rightarrow T^{1}\left(N^{\prime \prime}\right) \rightarrow T^{1}(N) \rightarrow T^{1}\left(N^{\prime}\right) \rightarrow \cdots
$$

(2) $T^{i}(R)=0$ for $i>0$.

Since $\mathscr{E}_{R}(k)$ is an injective object in $M_{H}(R)$ (1) follows from the long exact sequence of the local cohomology. (2) follows from the fact that for any graded R-module $N \mathscr{H}_{o_{R}}\left(N, \mathscr{E}_{R}(k)\right)=0$ if and only if $N=0$. The converse is immediate.

Proposition (1.9). Suppose that R is Cohen-Macaulay. Then R is Gorenstein if and only if R has a canonical module \mathscr{K}_{R} and $\mathscr{K}_{R}=R(n)$ for some $n \in \boldsymbol{Z}$.

Proof. Recall that R is Gorenstein if and only if

$$
\mathscr{E} x t_{R}^{i}(R / M, R)= \begin{cases}R / M & \text { for } i=\operatorname{dim} R \\ 0 & \text { for } i \neq \operatorname{dim} R\end{cases}
$$

If R is Gorenstein we have $\mathscr{H}_{M}^{d}(R)=\mathscr{E}_{R}(k)(n)$ for some $n \in Z$. Hence $\mathscr{K}_{\hat{R}}=\hat{R}(-n)$ by Proposition (1.3). By the uniqueness of canonical modules we have $\mathscr{K}_{R}=R(-n)$. Conversely assume that $\mathscr{K}_{R}=R(-n)$ for some $n \in Z$. By Proposition (1.8) we get

$$
\mathscr{E}_{x t_{\hat{R}}^{i}}(\hat{R} / \hat{M}, \hat{R})=\mathscr{H}_{o_{\hat{R}}}\left(\mathscr{H}_{\hat{M}}^{d-i}\left(\hat{R} / \hat{M}, \mathscr{E}_{\hat{R}}(k)\right)(n)\right.
$$

for all $i \geq 0$, where \hat{M} is the maximal homogeneous ideal of \hat{R}. Hence \hat{R} is Gorenstein since $\mathscr{H}_{M}^{0}(\hat{R} / \hat{M})=\hat{R} / \hat{M}$ and $\mathscr{H}_{M H}^{i}(\hat{R} / \hat{M})=0$ for $i>0$. Since \hat{R} is faithfully flat over R it follows that R is Gorenstein.

Remark. Let $a=\max \left\{n \mid \mathscr{H}_{M}^{d}(R)_{n} \neq 0\right\}$. If R is Gorenstein we have $\mathscr{K}_{R}=R(a)$. In the sequel we denote this number by $a(R)$ and call it the a-invariant of R.

Proposition (1.10). Let $R \rightarrow S$ be a finite homomorphism of graded rings defined over local rings. Assume that R is Cohen-Macaulay and has a canonical module. Then

$$
\mathscr{K}_{S}=\mathscr{E}_{x} x t_{R}^{r}\left(S, \mathscr{K}_{R}\right),
$$

where $r=\operatorname{dim} R-\operatorname{dim} S$.
Proof. Let n_{0} be the maximal ideal of S_{0} and \hat{S}_{0} be the n_{0}-adic completion of S_{0}. Since S_{0} is finite over R_{0} we have $\hat{S}_{0}=S_{0} \otimes_{R_{0}} \hat{R}_{0}$. Let N be the maximal homogeneous ideal of S and $\hat{N}=N \otimes_{R_{0}} \hat{R}_{0}$. Let $\hat{S}=$ $S \otimes_{R_{0}} \hat{R}_{0}$. Note that $\mathscr{H}_{\text {om }_{\hat{R}}}\left(\hat{S}, \mathscr{E}_{\hat{R}}(k)\right)$ is the injective envelope of \hat{S} / \hat{N} in $M_{H}(\hat{S})$.

$$
\begin{aligned}
& \mathscr{K}_{\hat{s}}=\mathscr{H}_{\text {om }}\left(\mathscr{H}_{\hat{N}}^{s}(\hat{S}), \mathscr{E}_{S}(\hat{S} / \hat{N})\right) \quad(s=\operatorname{dim} S) \\
& =\mathscr{H}_{\operatorname{om}_{\hat{S}}}\left(\mathscr{H}_{M}^{s}(\hat{S}), \mathscr{H}_{\operatorname{om}_{\hat{R}}}\left(\hat{S}, \mathscr{E}_{\hat{R}}(k)\right)\right) \\
& =\mathscr{H}^{\circ} \mathrm{m}_{\hat{R}}\left(\mathscr{H}_{\hat{M}}^{s_{\hat{H}}}(\hat{S}), \mathscr{E}_{\hat{H}}(k)\right) \\
& =\mathscr{E}_{x t_{\hat{R}}^{r}}\left(\hat{S}, \mathscr{K}_{\hat{R}}\right) \\
& =\mathscr{E}_{x t_{R}^{r}}\left(S, \mathscr{K}_{R}\right) \otimes_{R} \hat{R} .
\end{aligned}
$$

Since S is finite over R it follows that $\mathscr{K}_{S}=\mathscr{E}^{x} t_{R}^{r}\left(S, \mathscr{K}_{R}\right)$.
Corollary (1.11). If moreover R is Gorenstein in Proposition (1.10) we get $\mathscr{K}_{s}=\mathscr{E}_{x} t_{R}^{r}(S, R)(n)$ for some $n \in Z$.

From Corollary (1.11) one knows that for any $p \in \operatorname{Supp}\left(\mathscr{K}_{s}\right)\left(\mathscr{K}_{s}\right)_{p}$ is a canonical module of the local ring S_{p} in the sense of [HK].

§ 2. Preliminaries

In this section we collect fundamental facts about the local cohomology of Rees algebras over Noetherian local rings.

Let (A, m, k) be a local ring and I an ideal of A. We put $R(I)=$ $\oplus_{n \geq 0} I^{n}$ and call this graded A-algebra the Rees algebra of I. Let $I=$ $\left(a_{1}, \cdots, a_{n}\right)$. Then $R(I)$ can be identified with the subalgebra $A\left[a_{1} X, \cdots\right.$, $\left.a_{n} X\right]$ of the polynomial ring $A[X]$ in one variable. Throughout this paper we use this identification without mentioning. Let $M=m R(I)+$ $\left(a_{1} X, \cdots, a_{n} X\right) R(I)$ be the maximal homogeneous ideal of $R(I)$. Let $G(I)$ $=\oplus_{n \geq 0} I^{n} / I^{n+1}$ be the associated graded ring of I. Note that

$$
G(I)=R(I) / I R(I) \quad \text { and } \quad A=R(I) / R(I)_{+},
$$

where $R(I)_{+}=\oplus_{n>0} I^{n}$. Let $\ell(I)=\operatorname{dim} R(I) / m R(I)$; we call this number the analytic spread of I. The analytic spread $\ell(I)$ of I is equal to the
minimum number of generators of a minimal reduction of I if the residue field k is infinite (cf. [NR]).

Proposition (2.1). Let (A, m, k) be a local ring and I an ideal of A with $\mathrm{ht}(I)>0$. If $R(I)$ is Cohen-Macaulay then
a) $a(G(I))<0$ and
b) for $i<\operatorname{dim} A$ we have

$$
\mathscr{H}_{M}^{i}(G(I))_{n}= \begin{cases}H_{m}^{i}(A) & \text { for } n=-1 \\ 0 & \text { for } n \neq-1\end{cases}
$$

Proof. For b) see the proof of [HI], Proposition (1.5). Let $J=R(I)_{+}$. From the exact sequences

$$
0 \longrightarrow J \longrightarrow R(I) \longrightarrow A \longrightarrow 0
$$

and

$$
0 \longrightarrow J(1) \longrightarrow R(I) \longrightarrow G(I) \longrightarrow 0
$$

we obtain the exact sequences of local cohomology

$$
0 \longrightarrow H_{m}^{d}(A) \longrightarrow \mathscr{H}_{M}^{d+1}(J) \xrightarrow{f} \mathscr{H}_{M}^{d+1}(R(I)) \longrightarrow 0
$$

and

$$
0 \longrightarrow \mathscr{H}_{M}^{d}(G(I)) \longrightarrow \mathscr{H}_{M}^{d+1}(J)(1) \xrightarrow{g} \mathscr{H}_{M}^{d+1}(R(I)) \longrightarrow 0,
$$

where $d=\operatorname{dim} A$. From this one gets the isomorphisms

$$
f_{n}: \mathscr{H}_{M}^{d+1}(J)_{n} \longrightarrow \mathscr{H}_{M}^{d+1}(R(I))_{n} \quad \text { for } n \neq 0
$$

and surjective homomorphisms

$$
g_{n}: \mathscr{H}_{M}^{d+1}(J)_{n} \longrightarrow \mathscr{H}_{M}^{d+1}(R(I))_{n-1} \quad \text { for all } n
$$

Since $\mathscr{H}_{M}^{d+1}(J)$ and $\mathscr{H}_{M}^{d+1}(R(I))$ are Artinian $R(I)$-modules their homogeneous components of sufficiently large degree are zero. By an easy diagram chase we know that $\mathscr{H}_{M}^{d+1}(J)_{n}=0$ for $n \geq 1$ and $\mathscr{H}_{M}^{d+1}(R(I))_{n}=0$ for $n \geq 0$. Now it is easy to see that $a(G(I))<0$.

Corollary (2.2). Let A and I be the same as in Proposition (2.2). Then $\mathscr{H}_{M}^{d+1}(R(I))_{n}=0$ for $n \geq 0$.

Proof. This follows from the proof of Proposition (2.1).
If, inparticular, $I=m$ we have the following result.
Proposition (2.3). If $d=\operatorname{dim} A>0$ the following conditions are
equivalent.
(1) $R(m)$ is Cohen-Macaulay.
(2) a) $a(G(m))<0$ and
b) for $i<d$ we have

$$
\mathscr{H}_{M}^{i}(G(m))_{n}= \begin{cases}H_{m}^{i}(A) & \text { for } n=-1 \\ 0 & \text { for } n \neq-1\end{cases}
$$

In this case A and $G(m)$ are Buchsbaum.
Proof. See [I_{1}].
For the technical simplicity in the rest of this paper we assume that every local ring has an infinite residue field.

Lemma (2.4). Let A and I be the same as above and let q be a minimal reduction of I. We put $r(q)=\min \left\{r \in Z \mid I^{r+1}=q I^{r}\right\}$. If $\mathrm{ht}(I)=\ell(I)$ we have $r(q) \geq a(G(I))+\operatorname{ht}(I)$.

Proof. See [HI], Lemma (2.3).
Lemma (2.5). Let A and I be the same as above. We put

$$
n_{i}=\max \left\{n \in Z \mid \mathscr{H}_{M}^{i}(G(I))_{n} \neq 0\right\} \quad \text { for } 0 \leq i \leq d=\operatorname{dim} A
$$

If I is m-primary we have $r(q) \leq \max _{i}\left\{n_{i}+i\right\}$ for any minimal reduction q of I.

Proof. Let $x \in A$. We denote by x^{*} the initial form of x with respect to ${ }^{*}$ I. Let $q=\left(a_{1}, \cdots, a_{d}\right)$ and $q^{*}=\left(a_{1}^{*}, \cdots, a_{d}^{*}\right)$. Then

$$
r(q)=\max \left\{r \in \boldsymbol{Z} \mid\left(G(I) / q^{*}\right)_{r} \neq 0\right\} .
$$

If $\operatorname{dim} G(I)=0$ the assertion is clear. Let $\operatorname{dim} G(I)>0$. Since the residue field is infinite we may assume that $\left.l_{G(I)}\left(0: a_{1}^{*}\right)\right)<\infty$. From the exact sequences

$$
0 \longrightarrow G(I) /\left(0: a_{1}^{*}\right)(-1) \longrightarrow G(I) \longrightarrow G(I) / a_{1}^{*} G(I) \longrightarrow 0
$$

and

$$
0 \longrightarrow\left(0: a_{1}^{*}\right) \longrightarrow G(I) \longrightarrow G(I) /\left(0: a_{1}^{*}\right) \longrightarrow 0
$$

we get the exact sequence

$$
\mathscr{H}_{M}^{i}(G(I)) \longrightarrow \mathscr{H}_{M}^{i}\left(G(I) / a_{1}^{*} G(I)\right) \longrightarrow \mathscr{H}_{M}^{i+1}(G(I))(-1)
$$

for $0 \leq i \leq d$. Let $n_{i}^{\prime}=\max \left\{n \in \boldsymbol{Z} \mid \mathscr{H}_{M}^{i}\left(G(I) / a_{1}^{*} G(I)\right)_{n} \neq 0\right\}$. Then $n_{i}^{\prime} \leq$ $\max \left\{n_{i}, n_{i+1}+1\right\}$. By induction we have $r(q) \leq \max \left\{n_{i}+i\right\}$.

§ 3. The Gorensteinness of Rees algebras

This section is devoted to the proof of the following theorem.
Theorem (3.1). Let (A, m, k) be a local ring and I an ideal of A. Suppose that $R(I)$ is Cohen-Macaulay and grade $(I) \geq 2$. Then the following conditions are equivalent.
(1) $R(I)$ is Gorenstein.
(2) $K_{A}=A$ and $\mathscr{K}_{G(I)}=G(I)(-2)$.

Remark. Since A and $G(I)$ are homomorphic images of $R(I), A$ and $G(I)$ have canonical modules if $R(I)$ is Gorenstein.

We need several preliminaries to prove this theorem.
Lemma (3.2). Let A be a local ring which has a canonical module $K_{A} . \quad$ Then the following conditions are equivalent.
(1) A satisfies $\left(S_{2}\right)$.
(2) \hat{A} satisfies $\left(S_{2}\right)$.
(3) $\operatorname{Hom}_{A}\left(K_{A}, K_{A}\right)=A$.

Proof. See [A], (4.4) and (4.5).
Lemma (3.3). Let A and I be the same as in Theorem (3.1). Let $a \in$ $I-I^{2}$ be an element whose initial form in $G(I)$ is a non zero-divisor. We put $\bar{R}=R(I) /(a, a X)$. If $R(I)$ is Gorenstein and grade $(I) \geq 2$ we have $\mathscr{H}_{M}^{d-1}(\bar{R})=0$, where $\operatorname{dim} A=d$.

Proof. Let $R=R(I)$ and $G=G(I)$. Since a is a non zero divisor, by Propositions (1.8) and (1.9), it is enough to show that $\mathscr{E}^{\circ} \mathrm{t}_{R / a R}^{1}(\bar{R}, R / a R)$ $=0$. Let $I=\left(a_{1}, \cdots, a_{n}\right)$. Then we have the exact sequence

$$
\left.(R / a R)^{n}(-1) \xrightarrow[{\left[\begin{array}{c}
a_{1} \\
\vdots \\
a_{n}
\end{array}\right.}]\right]{ } R / a R(-1) \xrightarrow[a X]{\longrightarrow} R / a R \longrightarrow \bar{R} \longrightarrow 0
$$

Applying the functor $\mathscr{H} \operatorname{om}_{R / a R}(, R / a R)$ to this sequence, we see

$$
\mathscr{E}_{x t_{R / a R}^{1}}(\bar{R}, R / a R)=(a R: I R) /(a, a X)
$$

Let $f^{m} \in(a R: I R)$, where $f \in I^{m}$ and $m \geq 0$. Then we have

$$
f \in(a A: I) \cap\left(I^{m+1}: I\right) \subset(a A: I) \cap\left(I^{m+1}: a\right) .
$$

Since grade $(I) \geq 2$ we have $(a A: I)=a A$. That a^{*} is a non zero-divisor of $G(I)$ is equivalent to that $\left(I^{m}: a\right)=I^{m-1}$ for all $m>0$. Hence we
have $\left(I^{m+1}: a\right)=I^{m}$. Therefore $f \in I^{m} \cap a A=a I^{m-1}$. This means ($a R: I R$) $=(a, a X)$, which completes the proof.

Lemma (3.4). Let A and I be the same as in Theorem (3.1). Assume that $R(I)$ is Cohen-Macaulay and $\mathscr{K}_{G(I)}=G(I)(-2)$. Then

$$
\mathscr{H}_{o m_{R(I)}}\left(k, \mathscr{H}_{M}^{d+1}(R(I))\right)_{n}=0 \quad \text { for } n \neq-1,
$$

where $d=\operatorname{dim} A$ and $k=R(I) / M$.
Proof. Let R and G be as in the proof of Lemma (3.3). Put $J=$ $\oplus_{n>0} R_{n}$. Then we get the exact sequence (cf. the proof of Proposition (2.1))

$$
\begin{align*}
0 & \longrightarrow \mathscr{H o m}_{R}\left(k, H_{m}^{d}(A)\right) \longrightarrow \mathscr{H}_{o m_{R}}\left(k, \mathscr{H}_{M}^{d+1}(J)\right) \xrightarrow{f} \mathscr{H}_{\circ m_{R}}\left(k, \mathscr{H}_{M}^{d+1}(R)\right) \tag{I}\\
& \longrightarrow \mathscr{E x t} t_{R}^{1}\left(k, H_{m}^{d}(A)\right)
\end{align*}
$$

and
(II) $0 \longrightarrow \mathscr{H}_{o m_{R}}\left(k, \mathscr{H}_{M}(G)\right) \longrightarrow \mathscr{H}_{o m_{R}}\left(k, \mathscr{H}_{M}^{d+1}(J)\right)(1) \xrightarrow{g} \mathscr{H}_{o m_{R}}\left(k, \mathscr{H}_{M}^{d+1}(R)\right)$ $\longrightarrow \mathscr{E}^{2} t_{R}^{1}\left(k, \mathscr{H}_{M}^{d}(G)\right)$.

Since $\mathscr{H}_{o m_{R}}\left(k, H_{m}^{d}(A)\right)$ is concentrated in degree 0 and since $\mathscr{E} x t_{R}^{1}\left(k, H_{m}^{d}(A)\right)_{n}$ $=0$ for $n \leq-2$ from (I) we get isomorphisms

$$
f_{n}: \mathscr{H}_{o m_{R}}\left(k, \mathscr{H}_{M}^{d+1}(J)\right)_{n} \longrightarrow \mathscr{H}_{o_{R}}\left(k, \mathscr{H}_{M}^{d+1}(R)\right)_{n}
$$

for $n \leq-2$. By assumption $\mathscr{H}_{o m_{R}}\left(k, \mathscr{H}_{M}^{d}(G)\right)_{n}=0$ for $n \neq-2$. (II) yields injective homomorphisms

$$
g_{n}: \mathscr{H}_{o m_{R}}\left(k, \mathscr{H}_{M}^{d+1}(J)\right)_{n} \longrightarrow \mathscr{H}_{o m_{R}}\left(k, \mathscr{H}_{M}^{d+1}(R)\right)_{n-1}
$$

for $n \leq-2$. Since $\mathscr{H}_{M}^{d+1}(J)$ and $\mathscr{H}_{M}^{d+1}(R)$ are Artinian

$$
\mathscr{H}_{o_{R}}\left(k, \mathscr{H}_{M}^{d+\mathrm{r}}(J)\right)_{n}=\mathscr{H}_{\circ m_{R}}\left(k, \mathscr{H}_{M}^{d+1}(R)\right)_{n}=0 \quad \text { for } n \ll 0 .
$$

Now, it is easy to see that

$$
\mathscr{H}_{o m_{R}}\left(k, \mathscr{H}_{M}^{d+1}(R)\right)_{n}=0
$$

for $n \leq-2$. On the other hand, by Corollary (2.2) we have $\mathscr{H}_{M}^{d+1}(R)_{n}=0$ for $n \geq 0$. This completes the proof.

Lemma (3.5). Let (A, m, k) be a local ring and I an ideal of A such that $R(I)$ is Cohen-Macaulay. Suppose that grade $(I) \geq n>0$, Then A and $G(I)$ satisfy $\left(S_{n}\right)$.

Proof. We may assume that A is complete. Let $G=G(I)$. Let B be a Gorenstein local ring such that A is a homomorphic image of B and $d=\operatorname{dim} A=\operatorname{dim} B$. Let n be the maximal ideal of B. By the local duality we have

$$
\operatorname{Ext}_{B}^{i}(A, B)=\operatorname{Hom}_{B}\left(H_{n}^{d-i}(A), E_{B}(B / n)\right) \quad \text { for } i \geq 0
$$

where $E_{B}(B / n)$ is the injective envelope of B / n as B-module. By Proposition (2.1) we see that $\operatorname{Ext}_{B}^{i}(A, B)$ is annihilated by I for $i>0$. Let $p \in$ $\operatorname{Spec}(A)$ and P be the inverse image of p in B. Then if $p \not \supset I$ we have

$$
\operatorname{Ext}_{B_{P}}^{i}\left(A_{p}, B_{P}\right)=0 \quad \text { for } i>0
$$

Hence A_{p} is Cohen-Macaulay. If $p \supset I$ we have depth $A_{p} \geq n$ by assumption. Therefore A satisfies $\left(S_{n}\right)$.

To prove the assertion on G we use induction on $\operatorname{dim} A / I$. Let $\operatorname{dim} A / I=0$. By Proposition (2.1) we know that $l_{G}\left(\mathscr{H}_{M}^{i}(G)\right)<\infty$ for $i<d$ and depth $G_{N} \geq n$, where N is the maximal homogeneous ideal of G. Hence G satisfies $\left(S_{n}\right)$ because G_{Q} is Cohen-Macaulay for $Q \in \operatorname{Spec}(G)$ $-\{N\}$. Let $\operatorname{dim} A / I>0$. Note that G can be written as a homomorphic image of a Gorenstein graded ring of the same dimension. By Proposition (1.8) we see that G_{p} is Cohen-Macaulay if $p \not \supset G_{+}$, where $G_{+}=\oplus_{n>0} G_{n}$. Assume that $p \supset G_{+}$and $p \neq N$. Then $p \cap A / I=P / I$ for some $P \in \operatorname{Spec}(A)$ $-\{m\}$. Since $R(I)_{P}$ is Cohen-Macaulay and $\operatorname{dim} A / I>\operatorname{dim} A_{P} / I A_{P}$ one knows that G_{P} satisfies $\left(S_{n}\right)$ by induction on $\operatorname{dim} A / I$.

Proof of Theorem (3.1). First we show that if $\mathrm{ht}(I)>0$ and $R(I)$ is Cohen-Macaulay then there is an element $a \in I-I^{2}$ whose initial form in $G(I)$ is a non zero-divisor. Since $\mathrm{ht}(\operatorname{IR}(I))>0$ one can choose an element $b \in I$ which is a non zero-divisor on $R(I)$. Noting that $R(I) / I R(I)$ $+I X R(I)=A / I$, we have ht $(I R(I)+I X R(I))=\operatorname{dim} R(I)-\operatorname{dim} A / I=d+$ $1-\operatorname{dim} A / I \geq 2$. Since the residue field of A is infinite we can choose an element $c+a X$ of $I R(I)+I X R(I)$ such that $b, c+a X$ is an $R(I)$-sequence and $a \in I-I^{2}$. Since b is also a non zero-divisor on A one can easily verify that $(b R(I): b X)=I R(I)$. This implies that there exists an exact sequence

$$
0 \longrightarrow G(I)(-1) \longrightarrow R(I) / b R(I) \longrightarrow R(I) /(b, b X) R(I) \longrightarrow 0 .
$$

By the choice of $c+a X$ we see that $c+a X$ is a non zero-divisor on $G(I)$. The canonical image of $c+a X$ in $G(I)=R(I) / I R(I)$ is nothing but
the initial form of a because $c \in I$. Therefore the initial form a^{*} of a in $G(I)$ is a non zero-divisor on $G(I)$.
(1) \Rightarrow (2): Let $R=R(I)$ and $G=G(I)$. Let $a \in I-I^{2}$ be as above. Since a is a non zero-divisor on A there are two exact sequences

$$
0 \longrightarrow A \longrightarrow R / a X R \longrightarrow R /(a, a x) \longrightarrow 0
$$

and

$$
0 \longrightarrow G(-1) \longrightarrow R / a R \longrightarrow R /(a, a X) \longrightarrow 0 .
$$

These exact sequences induce the exact sequences by Lemma (3.3)
(+)

$$
0 \longrightarrow \mathscr{H}_{M}^{d}(A) \longrightarrow \mathscr{H}_{M}^{d}(R / a X R) \longrightarrow \mathscr{H}_{M}^{d}(R /(a, a X)) \longrightarrow 0
$$

and
$(++) \quad 0 \longrightarrow \mathscr{H}_{M}^{d}(G)(-1) \longrightarrow \mathscr{H}_{M}^{d}(R / a R) \longrightarrow \mathscr{H}_{M}^{d}(R /(a, a X)) \longrightarrow 0$,
where $d=\operatorname{dim} A$ and M is the maximal homogeneous ideal of R as before. Since R is Gorenstein $\mathscr{K}_{R}=R(n)$ for some $n \in Z$. Since $a X$ is a non zero divisor of degree 1 we have $\mathscr{K}_{R / a X R}=R / a X R(n+1)$. From the exact sequence (+) we know that $n=-1$ and $K_{A}=A / J$ for some ideal J of A. From (++) we have $\mathscr{K}_{G}=G / L(-2)$ for some homogeneous ideal L of G. By Lemma (3.5) A and G satisfy $\left(S_{2}\right)$, hence by Lemma (3.2) we have $J=0$ and $L=0$.
(2) $\Rightarrow(1)$: From the exact sequences ($\#$) and (\#\#) we get two injections $\mathscr{H}_{M}^{d-1}(R /(a, a X)) \rightarrow \mathscr{H}_{M}^{d}(A)$ and $\mathscr{H}_{M}^{d-1}(R /(a, a X)) \rightarrow \mathscr{H}_{M}^{d}(G)(-1)$ since R is Cohen-Macaulay. From the first one we know that $\mathscr{H}_{M}^{d-1}(R /(a, a X))$ is concentrated in degree 0 . The assumption $\mathscr{K}_{G}=G(-2)$ shows that $\mathscr{H}_{M}^{a}(G)_{n}$ $=0$ for $n \geq-1$. From the second injection we see that $\mathscr{H}_{M}^{d-1}(R /(a, a X))$ $=0$. Hence we have the exact sequences (+) and (++). By Lemma (3.4) we know that $\mathscr{H}_{o m_{R}}\left(k, \mathscr{H}_{M}^{d}(R / a X R)\right)$ is concentrated in degree 0 . By (+) we get

$$
\mathscr{H}_{o m_{R}}\left(k, \mathscr{H}_{M}^{d}(R / a X R)\right)=\operatorname{Hom}_{A}\left(k, H_{m}^{d}(A)\right)
$$

since $\mathscr{H}_{M}^{d}(R / a R)_{n}=\mathscr{H}_{M}^{d}(R /(a, a X))_{n}=0$ for $n \geq 0$ by Corollary (2.2). By the assumption $K_{A}=A$ we have $\operatorname{Hom}_{A}\left(k, H_{m}^{i}(A)\right)=k$. This shows that R is Gorenstein.

Let I be an ideal of a local ring and q a minimal reduction of I. We put $r(q)=\min \left\{r \mid I^{r+1}=q I^{r}\right\}$. We call $r(q)$ the reduction exponent of q.

Corollary (3.6) Let A be a local ring and I an ideal of A such that ht $(I)=\ell(I)>0$ and $R(I)$ is Cohen-Macaulay. Then we have:
(1) Suppose that $a(G(I)) \geq-2$. Then we have $r(q)=\operatorname{ht}(I)-1$ or ht (I) - 2 for any minimal reduction q of I.
(2) Suppose moreover that grade $(I) \geq 2$ and $R(I)$ is Gorenstein. Then for any minimal reduction q of I we have $r(q)=\operatorname{ht}(I)-2$ if and only if $\operatorname{depth} A \geq \operatorname{dim} A / I+2$.

Proof. (1) By induction on $\operatorname{dim} A / I$. If $\operatorname{dim} A / I=0$ this follows from Lemmas (2.4) and (2.5). Let $\operatorname{dim} A / I>0$. Choose an element $b \in A$ whose image in A / I is a part of system of parameters of A / I. By Proposition (1.5) b is a non zero-divisor on $G(I)$ and $R(I)$ and we have $R(I) / b R(I)$ $=R(I(A / b A))$ and $G(I)=G(I(A / b A))$. It is easy to see that the ideal $I(A / b A)$ in $A / b A$ satisfies the same assumption on I. By induction hypothesis we have $r(q(A / b A))=h t(I)-1$ or ht $(I)-2$. By Nakayama's lemma we have $r(q(A / b A))=r(q)$.
(2) First we assume that depth $A \geq \operatorname{dim} A / I+2$. If $\operatorname{dim} A / I=0$ we have $r(q)=h t(I)-2$ by Proposition (2.1), Lemmas (2.4) and (2.5). We proceed by induction on $\operatorname{dim} A / I$. Let $\operatorname{dim} A / I>0$. Then by assumption $\operatorname{depth} A \geq 3$. Let a_{1}, a_{2} be a regular sequence in I. One can choose an element $b \in m$ so that a_{1}, a_{2}, b is a regular sequence and the image of b in A / I is a part of system of parameters of A / I. Then grade $(I(A / b A))$ ≥ 2 and $R(I(A / b A))$ is Gorenstein. Since $\operatorname{depth} A / b A \geq \operatorname{dim} A /(b, I)+2$ we have $r(q)=\mathrm{ht}(I)-2$ by induction hypothesis.

Conversely assume that $r(q)=\operatorname{ht}(I)-2$. Let $b_{1}, \cdots, b_{s} \in m$ be a system of parameters of A / I. We set $\bar{A}=A /\left(b_{1}, \cdots, b_{s}\right)$. Since b_{1}, \cdots, b_{s} is a regular sequence we have only to show that depth $\bar{A} \geq 2$. Let $\bar{I}=$ $I \bar{A}$ and $\bar{q}=q \bar{A}$. Since $r(\bar{q})=\operatorname{ht}(\bar{I})-2$ we see that $\mathscr{H}_{M}^{h}(G(\bar{I}))_{n}=0$ for $n \geq-1$ by Lemma (2.4), where $h=h t(I)$. By [HI], Proposition (1.5) we know that b_{1}, \cdots, b_{s} is a $G(I)$-sequence. Let $q_{i}=\left(b_{1}, \cdots, b_{i}\right)$ for $1 \leq i \leq s$. Then we see that $G(I) / q_{i} G(I)=G\left(I\left(A / q_{i}\right)\right)$. We set $G_{i}=G(I) / q_{i} G(I)$ for $1 \leq i \leq s$. Then we have an exact sequence

$$
\mathscr{H}_{M}^{d-i}\left(G_{i-1}\right) \xrightarrow{b_{i}} \mathscr{H}_{M}^{d-i}\left(G_{i-1}\right) \longrightarrow \mathscr{H}_{M}^{d-i}\left(G_{i}\right) \longrightarrow \mathscr{H}_{M}^{d-i+1}\left(G_{i-1}\right) .
$$

Since $r\left(q\left(A / q_{i}\right)\right)=\operatorname{ht}(I)-2$ we know that $\mathscr{H}_{M}^{d-i}\left(G_{i}\right)_{n}=0$ for $n \geq-1$ by Lemma (2.4). By Proposition (2.1) we see that $H_{m}^{d-i}\left(A / q_{i-1}\right)=b_{i} H_{m}^{d-i}\left(A / q_{i-1}\right)$ for $1 \leq i \leq s$.

This implies that $K_{A / q_{i}}=A / q_{i}$ for $0 \leq i \leq s$, where $q_{0}=0$. In particular, $K_{\bar{A}}=\bar{A}$. One sees that depth $\bar{A} \geq 2$ by [A]. The following is a generalization of a result in [GS].

Corollary (3.7). Let A be a Cohen-Macaulay local ring and I an ideal of A with $\operatorname{ht}(I)=\ell(I) \geq 2$. Then the following conditions are equivalent.
(1) $\quad R(I)$ is Gorenstein.
(2) $\quad G(I)$ is Gorenstein and $a(G(I))=-2$.
(3) $G(I)$ is Gorenstein and there exists a minimal reduction q of I such that $r(q)=\mathrm{ht}(I)-2$.
In this case A is Gorenstein.
Proof. This follows from Theorem (3.1), Corollary (3.6) and the fact that the Gorensteinness of $G(I)$ implies that of A.

Corollary (3.8). Let A and I be the same as in Corollary (3.6). Suppose that
(1) $\quad R(I)$ is Gorenstein,
(2) $l_{A}\left(H_{m}^{i}(A)\right)<\infty$ for $i<d=\operatorname{dim} A$ and
(3) $2 \mathrm{ht}(I) \leq \operatorname{dim} A$.

Then A is Gorenstein.
Proof. By Corollary (3.7) it is sufficient to prove that A is CohenMacaulay. Let b_{1}, \cdots, b_{s} be a system of parameters of A / I. We put $q_{i}=\left(b_{1}, \cdots, b_{i}\right)$ and $G_{i}=G(I) / q_{i} G(I)$ for $1 \leq i \leq s$. Let $a_{1}, \cdots, a_{h}, h=$ ht (I), be a minimal generators of a minimal reduction of I. Then $a_{1}, \cdots, a_{h}, b_{1}, \cdots, b_{s}$ is a system of parameters of A. Since $l_{A}\left(H_{m}^{i}(A)\right)<\infty$ for $i<d$ we know that if $t \leq \operatorname{depth} A$ then any t elements of a system of parameters of A form a regular sequence by [CST], (3.3). Hence we have grade $\left(I\left(A / q_{i}\right)\right) \geq 2$ for $1 \leq i<s$ by [HI], Proposition (1.5). We are going to show that $H_{m}^{d-s+i}\left(A / q_{s-j}\right)=0$ for $2 \leq j \leq s-2$ and $1 \leq i \leq j-1$ by induction on j. Let $j=2$. From the exact sequence

$$
\mathscr{H}_{M}^{d-s+1}\left(G_{s-2}\right) \xrightarrow{b_{s-1}} \mathscr{H}_{M}^{d-s+1}\left(G_{s-2}\right) \longrightarrow \mathscr{H}_{M}^{d-s+1}\left(G_{s-1}\right)
$$

we get $H_{m}^{d-s+1}\left(A / q_{s-2}\right)=b_{s-1} H_{m}^{d-s+1}\left(A / q_{s-2}\right)$ by Theorem (3.1) and Proposition (2.1) since $R\left(I\left(A / q_{s-1}\right)\right)$ is Gorenstein. By the assumption (2) we get $H_{m}^{d-s+1}\left(A / q_{s-2}\right)=0$. Let us assume that our assertion is true for $j<s-2$ and we will prove that the assertion is true for $j+1$. Since b_{s-j} is a
non zero-divisor on A / q_{s-j-i} we obtain the exact sequence

$$
H_{m}^{d-s+i}\left(A / q_{s-j-1}\right) \xrightarrow{b_{s-j}} H_{m}^{d-s+i}\left(A / q_{s-j-1}\right) \longrightarrow H_{m}^{d-s+i}\left(A / q_{s-j}\right)
$$

for $i>0$. By the induction hypothesis $H_{m}^{d-s+i}\left(A / q_{s-j}\right)=0$ for $1 \leq i \leq j-1$. Therefore $H_{m}^{d-s+i}\left(A / q_{s-j-1}\right)=0$ for $1 \leq i \leq j-1$ by assumption (2). It remains to prove that $H_{m}^{d-s+j}\left(A / q_{s-j-1}\right)=0$. But this can be proved by the same method used for $j=2$. Hence, in particular, we get $H_{m}^{i}(A)=0$ for $h+1 \leq i \leq d$. By assumption (3) we get $\operatorname{depth} A \geq \operatorname{dim} A / I+1 \geq h$ +1 cf . [HI]. Therefore A is Cohen-Macaulay.

§4. Example

In this section we construct a local ring (A, m, k) such that $R(m)$ is Gorenstein but A is not Cohen-Macaulay. For a local ring A we denote the multiplicity of A by $e(A)$.

Lemma (4.1). Let (A, m, k) be a local ring with $\operatorname{dim} A=3$ and $q=$ (a_{1}, a_{2}, a_{3}) be a minimal reduction of m. Let

$$
I=\left(\left(a_{1}, a_{2}\right): a_{3}\right)+\left(\left(a_{2}, a_{3}\right): a_{1}\right)+\left(\left(a_{1}, a_{3}\right): a_{2}\right)+m^{2} .
$$

Then $R(m)$ is Cohen-Macaulay if and only if $m^{3}=q m^{2}$ and $l_{A}\left(I / m^{2}\right)=$ $3\left(l_{A}(A / q)-e(A)\right)+3$.

Proof. See $\left[I_{2}\right]$, Theorem 5.
Lemma (4.2). Let A be the same as in Lemma (4.1). Suppose that $R(m)$ is Cohen-Macaulay and A is not Cohen-Macaulay. If $l_{A}\left(m / m^{2}\right)=6$ we have
(1) A is a Buchsbaum ring with depth $A=2$ and $l_{A}\left(H_{m}^{2}(A)\right)=1$,
(2) $m^{2}=q m$ for any minimal reduction q of m and
(3) $e(A)=3$.

Proof. See [I_{2}], Corollary 11.
Example (1). Let k be a field and $X_{i}, Y_{i}(1 \leq i \leq 3)$ be indeterminates over k. We put

$$
A=k\left[\left[X_{1}, X_{2}, X_{3}, Y_{1}, Y_{2}, Y_{3}\right]\right] /\left(X_{1} Y_{1}+X_{2} Y_{2}+X_{3} Y_{3},\left(Y_{1}, Y_{2}, Y_{3}\right)^{2}\right) .
$$

Then A is not Cohen-Macaulay but $R(m)$ is Cohen-Macaulay. By Lemma (4.2) $e(A)=3$ (cf. $\left[\mathrm{I}_{1}\right]$ and $\left[\mathrm{I}_{2}\right]$).

Example (2). Let k be a field of $\operatorname{ch}(k)=2$ and $X_{1}, X_{2}, X_{3}, Y_{1}, Y_{2}, Y_{3}, Y_{4}$ indeterminates over k. Let

$$
\begin{aligned}
A & =k\left[\left[X_{1}, X_{2}, X_{3}, Y_{1}, Y_{2}, Y_{3}, Y_{4}\right]\right] / J \\
& =k\left[\left[x_{1}, x_{2}, x_{3}, y_{1}, \cdots, y_{4}\right]\right]
\end{aligned}
$$

where J is the ideal generated by $X_{1} Y_{1}+X_{2} Y_{2}+X_{3} Y_{3}, Y_{1}^{2}, Y_{2}^{2}, Y_{3}^{2}, Y_{4}^{2}, Y_{1} Y_{4}$, $Y_{2} Y_{4}, Y_{3} Y_{4}, Y_{1} Y_{2}-X_{3} Y_{4}, Y_{2} Y_{3}-X_{1} Y_{4}$ and $Y_{1} Y_{3}-X_{2} Y_{4}$.

Then A is not Cohen-Macaulay but $R(m)$ is Gorenstein.
To prove this we need the following lemma.
Lemma (4.3). ($\left.0: y_{4}\right)=\left(y_{1}, \cdots, y_{4}\right)$
Proof. Let $R=k\left[\left[X_{1}, X_{2}, X_{3}, Y_{1}, Y_{2}, Y_{3}, Y_{4}\right]\right]$ and let $f \in\left(J: Y_{4}\right)$. Since

$$
\begin{aligned}
\left(J: Y_{4}\right)= & \left(X_{1} Y_{1}+X_{2} Y_{2}+X_{3} Y_{3}, Y_{1} Y_{2}-X_{3} Y_{4}, Y_{2} Y_{3}-X_{1} Y_{4}, Y_{1} Y_{3}-X_{2} Y_{4}\right): \\
& Y_{4}+\left(Y_{1}, \cdots, Y_{4}\right)
\end{aligned}
$$

we may assume that f belongs to the first ideal on the right side. Let us write

$$
\begin{aligned}
f Y_{4}= & \left(g_{1}+g_{1}^{\prime} Y_{4}\right)\left(X_{1} Y_{1}+X_{2} Y_{2}+X_{3} Y_{3}\right)+\left(g_{2}+g_{2}^{\prime} Y_{4}\right)\left(Y_{1} Y_{2}-X_{3} Y_{4}\right) \\
& +\left(g_{3}+g_{3}^{\prime} Y_{4}\right)\left(Y_{2} Y_{3}-X_{1} Y_{4}\right)+\left(g_{4}+g_{4}^{\prime} Y_{4}\right)\left(Y_{1} Y_{3}-X_{2} Y_{4}\right),
\end{aligned}
$$

where $g_{i} \in k\left[\left[X_{1}, X_{2}, X_{3}, Y_{1}, Y_{2}, Y_{3}\right]\right]$. From this we see that

$$
\begin{equation*}
g_{1}\left(X_{1} Y_{1}+X_{2} Y_{2}+X_{3} Y_{3}\right)+g_{2} Y_{1} Y_{2}+g_{3} Y_{2} Y_{3}+g_{4} Y_{1} Y_{3}=0 \tag{I}
\end{equation*}
$$

and
(II) $\quad f \equiv-g_{2} X_{3}-g_{3} X_{1}-g_{4} X_{4} \bmod \left(Y_{1}, \cdots, Y_{4}\right)$.

From (I) we have

$$
Y_{1}\left(g_{1} X_{1}+g_{2} Y_{2}+g_{4} Y_{3}\right)+Y_{2}\left(g_{1} X_{2}+g_{3} Y_{3}\right)=0 .
$$

Since Y_{1}, Y_{2} is a regular sequence in R we have

$$
\begin{aligned}
& g_{1} X_{1}+g_{2} Y_{2}+g_{4} Y_{3}=h Y_{2} \\
& g_{1} X_{2}+g_{3} Y_{3}=-h Y_{1}
\end{aligned}
$$

for some $h \in R$. Since X_{1}, Y_{2}, Y_{3} and X_{2}, Y_{1}, Y_{3} are regular sequences in R there are elements $a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}$ of R such that

$$
\left(g_{1}, g_{2}-h, g_{4}\right)=\left(X_{1}, Y_{2}, Y_{3}\right)\left(\begin{array}{ccc}
0 & a_{1} & a_{2} \tag{III}\\
-a_{1} & 0 & a_{3} \\
-a_{2} & -a_{3} & 0
\end{array}\right)
$$

$$
\left(g_{1}, h, g_{3}\right)=\left(X_{2}, Y_{1}, Y_{3}\left(\begin{array}{ccc}
0 & b_{1} & b_{2} \\
-b_{1} & 0 & b_{3} \\
-b_{2} & -b_{3} & 0
\end{array}\right) .\right.
$$

Hence

$$
g_{1}=-a_{1} Y_{2}-a_{2} Y_{3}=-b_{1} Y_{1}-b_{2} Y_{3} .
$$

Since $\operatorname{ch}(k)=2$ we have

$$
\left.\begin{array}{rl}
a_{2}+b_{2} & \equiv 0 \\
a_{1} & \equiv 0 \\
b_{1} & \equiv 0
\end{array}\right\} \bmod \left(Y_{1}, \cdots, Y_{4}\right)
$$

By (II), (III) and (IV) we obtain

$$
\begin{aligned}
f & \equiv a_{1} X_{1} X_{3}+b_{1} X_{2} X_{3}+\left(a_{2}+b_{2}\right) X_{1} X_{2} \\
& \equiv 0 \quad \bmod \left(Y_{1}, \cdots, Y_{4}\right) .
\end{aligned}
$$

Proof of Example (2). By Lemma (4.3) we have ($0: y_{4}$) $=\left(y_{1}, \cdots, y_{4}\right)$. From the exact sequence

$$
0 \longrightarrow A /\left(0: y_{4}\right) \longrightarrow A \longrightarrow A / y_{4} A \longrightarrow 0
$$

we get $e(A)=e\left(A /\left(0: y_{4}\right)\right)+e\left(A / y_{4} A\right)$. Since $A / y_{4} A$ is isomorphic to the local ring in Example (1) and since $A /\left(0: y_{4}\right)$ is a regular local ring we have $e(A)=4$. It is easy to see that x_{1}, x_{2}, x_{3} is a system of parameters of A and that $\left(\left(x_{1}, x_{2}\right): x_{3}\right)=\left(x_{1}, x_{2}, y_{3}\right),\left(\left(x_{2}, x_{3}\right): x_{1}\right)=\left(x_{2}, x_{3}, y_{1}\right)$ and $\left(\left(x_{1}, x_{3}\right): x_{2}\right)$ $=\left(x_{1}, x_{3}, y_{2}\right)$. This shows that A is not Cohen-Macaulay. It is easy to verify that $m^{2}=\left(x_{1}, x_{2}, x_{3}\right) m$. By Lemma (4.1) we see that $R(m)$ is CohenMacaulay. By Theorem (3.1) it is enough to show that $\mathscr{K}_{G(m)}=G(m)(-2)$. Since A is defined by homogeneous polynomials

$$
G(m)=k\left[X_{1}, X_{2}, X_{3}, Y_{1}, Y_{2}, Y_{3}, Y_{4}\right] / J^{*}=k\left[x_{1}, x_{2}, \cdots, y_{4}\right],
$$

where J^{*} is generated by the polynomials generating J. Let $S=k\left[x_{1}, x_{2}, x_{3}\right]$. Then S is a polynomial ring with $\operatorname{dim} S=3$ and $G(m)$ is generated by 1 , $y_{1}, y_{2}, y_{3}, y_{4}$ as an S-module. Since $G(m)$ has rank 4 as an S-module and depth $G(m)=2$ we get a finite free resolution of $G(m)$ as S-module

$$
0 \longrightarrow S(-2) \xrightarrow[{\left[0, x_{1}, x_{2}, x_{3}, 0\right.}]]{ } S \oplus S^{4}(-1) \underset{d}{\longrightarrow} G(m) \longrightarrow 0
$$

where d is given by $d\left(e_{0}\right)=1$ and $d\left(e_{i}\right)=y_{i}$ for $1 \leq i \leq 4$, with suitable free basis $e_{0}, e_{1}, \cdots, e_{4}$ of $S \oplus S^{4}(-1)$ with $\operatorname{deg}\left(e_{0}\right)=0$ and $\operatorname{deg}\left(e_{i}\right)=1$ for
$1 \leq i \leq 4 . \quad$ By Corollary (1.11) $\mathscr{K}_{G(m)}=\mathscr{H}_{o_{s}}(G(m), S(-3))$.
The $G(m)$-structure of $\mathscr{K}_{G(m)}$ is given by

$$
(x f)(y)=f(x y) \quad \text { for } f \in \mathscr{H} o_{m_{S}}(G(m), S(-3)) \text { and } x, y \in G(m)
$$

$\mathscr{K}_{G(m)}$ is generated by $e_{0}^{*}, x_{2} e_{3}^{*}-x_{3} e_{2}^{*}, x_{3} e_{1}^{*}-x_{1} e_{3}^{*}, x_{1} e_{2}^{*}-x_{2} e_{1}^{*}$ and e_{4}^{*} as an S-module, where e_{i}^{*} is the dual base of e_{i} with $\operatorname{deg}\left(e_{0}^{*}\right)=3$ and $\operatorname{deg}\left(e_{i}^{*}\right)=2$ for $1 \leq i \leq 4$. Using the fact that $\operatorname{ch}(k)=2$ we can easily verify the following relations as $G(m)$-module.

$$
\begin{aligned}
& y_{4} e_{4}^{*}=e_{0}^{*} \\
& y_{1} e_{4}^{*}=x_{2} e_{3}^{*}-x_{3} e_{2}^{*} \\
& y_{2} e_{4}^{*}=x_{3} e_{1}^{*}-x_{1} e_{3}^{*} \\
& y_{3} e_{4}^{*}=x_{1} e_{2}^{*}-x_{2} e_{1}^{*}
\end{aligned}
$$

Hence $\mathscr{K}_{G(m)}=G(m)(-2)$ and hence $R(m)$ is Gorenstein by Theorem (3.1).
Example (3). Let A be same as in Example (2). We put $B=$ $A\left[\left[T_{1}, \cdots, T_{n}\right]\right]$, where T_{1}, \cdots, T_{n} are indeterminates over A. Let $I=m B$. Then $R(I)=R(m) \otimes_{A} B$ is Gorenstein since B is faithfully flat over A. If $n \geq 3$ we have $2 \mathrm{ht}(I)=6 \leq \operatorname{dim} B$. But B is not Gorenstein.

Remark. a) If in Example (2) $\operatorname{ch}(k) \neq 2 A$ is not Buchsbaum. This can be seen as follows. If A is Buchsbaum we have

$$
\begin{aligned}
e(A) & =l_{A}\left(A /\left(x_{1}, x_{2}, x_{3}\right)\right)-l_{A}\left(\left(x_{1}, x_{2}\right): x_{3} /\left(x_{1}, x_{2}\right)\right) \\
& =5-1=4
\end{aligned}
$$

On the other hand one can easily see $\left(0: y_{4}\right) \supset\left(y_{1}, \cdots, y_{4}, x_{1} x_{2}\right)$ and $\operatorname{dim} A /\left(0: y_{4}\right)<3$. This implies $e(A)=e\left(A / y_{4} A\right)=3$, a contradiction.
b) Example (3) shows that Corollary (3.8) is false without any restriction on the local cohomology modules of A.

References

[A] Y. Aoyama, Some basic results on canonical modules, J. Math. Kyoto Univ., 23 (1983), 85-94.
[AG] Y. Aoyama and S. Goto, On the type of graded Cohen-Macaulay rings, J. Math. Kyoto Univ., 15 (1975), 275-284.
[B] H. Bass, On the ubiquity of Gorenstein rings, Math. Z., 82 (1963), 8-28.
[Gr_{1}] A. Grothendieck, Sur quelque points d'algebre homologique, Tohoku Math. J., IX (1957), 119-221.
[Gr_{2}] , Local cohomology, Lect. Notes in Math., 41, Berlin-Heidelberg-New York, 1967.
[GS] S. Goto and Y. Shimoda, On the Rees algebras of Cohen-Macaulay local rings, Commutative algebra (analytic methods), Lecture Notes in Pure and Applied Mathematics, 68 (1982), 201-231.
[GW] S. Goto and K. Watanabe, On graded rings I, J. Math. Soc. Japan, 30 (1978), 179-213.
[HI] M. Herrmann and S. Ikeda, Remarks on lifting of Cohen-Macaulay property, Nagoya Math. J., 92 (1983), 121-132.
[HK] J. Herzog and E. Kunz, Der kanonische Modul eines Cohen-Macaulay Rings, Springer Lect. Notes in Math., 238 (1971).
[$\left.I_{1}\right] \quad$ S. Ikeda, The Cohen-Macaulayness of the Rees algebras of local rings, Nagoya Math. J., 89 (1983), 47-63.
[I_{2}] - Remarks on Rees algebras and graded rings with multiplicity 3, Preprint.
[M] E. Matlis, Injective modules over Noetherian rings, Pacific J. Math., 8 (1958), 511-528.
[MR] J. Matijevic and P. Roberts, A conjecture of Nagata on graded Cohen-Macaulay rings, J. Math. Kyoto Univ., 14 (1974) 125-128.
[NR] D. G. Northcott and D. Rees, Reductions of ideals in local rings, Proc. Camb. Phil. Soc., 50 (1954), 145-158.
[CST] N. T. Cuong, P. Schenzel and N. V. Trung, Verallgemeinerte Cohen-MacaulayModuln, Math. Nachr., 85 (1978), 57-73.

[^0]: Received January 29, 1985.

