ON THE GORENSTEINNESS OF REES ALGEBRAS OVER LOCAL RINGS

SHIN IKEDA

Introduction

Let (A, m, k) be a Noetherian local ring and I an ideal of A. We set $R(I) = \bigoplus_{n\geq 0} I^n$ and call this graded A-algebra the Rees algebra of I. The importance of the Rees algebra R(I) is in the fact that Proj R(I) is the blowing up of Spec A with center in V(I). The Cohen-Macaulayness of Rees algebras was studied by many mathematicians. In [GS] S. Goto any Y. Shimoda gave a criterion for R(m) to be Cohen-Macaulay under the assumption that A is Cohen-Macaulay. Their results have been generalized to R(I) in [HI].

Let grade $(I) \geq 2$. The purpose of this paper is to characterize the Gorensteinness of R(I) in terms of canonical modules of A and the associated graded ring $G(I) = \bigoplus_{n\geq 0} I^n/I^{n+1}$. The notion of canonical modules of local rings plays an important role in the homological theory of local rings, cf. [HK]. The canonical modules of graded rings defined over a field were introduced and studied extensively in [GW]. In Section 1 we introduce the notion of canonical modules of graded rings defined over a local ring. Our definition of canonical modules coincides with that of [GW] if the local ring is a field. In Section 2 we collect several facts about the behaviour of the local cohomology modules of Rees algebras. Section 3 will be devoted to the proof of our criterion of the Gorensteinness of R(I) and to the construction of an example of a local ring (A, m, k) such that R(m) is Gorenstein but A is not Cohen-Macaulay.

§ 1. Local cohomology of graded rings

In this section we give a brief summary of the theory of local cohomology and duality of graded rings.

Let $R = \bigoplus_{n \in \mathbb{Z}} R_n$ be a Noetherian graded ring and let M, N be graded

Received January 29, 1985.

R-modules. Let us denote the category of graded R-modules by $M_H(R)$. A morphism in $M_H(R)$ $f \colon M \to N$ is an R-linear map such that $f(M_n) \subset N_n$ for all $n \in \mathbb{Z}$. Let $n \in \mathbb{Z}$. We denote by M(n) the graded R-module whose grading is defined by $M(n)_m = M_{n+m}$ for all $m \in \mathbb{Z}$. Let $\mathscr{H}om_R(M, N)_n$ be the abelian group of all homomorphisms from M into N(n) in $M_H(R)$. Let $\mathscr{H}om_R(M, N) = \bigoplus_{n \in \mathbb{Z}} \mathscr{H}om_R(M, N)_n$. Then $\mathscr{H}om_R(M, N)$ is a graded R-module whose homogeneous component of degree n is $\mathscr{H}om_R(M, N)_n$. A graded R-module E is injective (resp. projective) in $M_H(R)$ if the functor $\mathscr{H}om_R(M, E)$ (resp. $\mathscr{H}om_R(E, E)$) from $M_H(R)$ into itself is an exact functor.

The tensor product $M \otimes_{\mathbb{R}} N$ is a graded R-module whose n-th homogeneous component is the abelian group generated by the elements of the form $x \otimes y$ with $x \in M_i$, $y \in N_j$ and i + j = n.

The category $M_H(R)$ is an abelian category with enough injectives (cf. [Gr₁], (1, 10)). A homomorphism $f: M \to N$ in $M_H(R)$ is called essential if f is an injection and for any non-trivial graded R-submodule L of N we have $f(M) \cap L \neq 0$. The injective envelope of a graded R-module M is an injective object $\mathscr{E}_R(M)$ of $M_H(R)$ with an essential homomorphism $M \to \mathscr{E}_R(M)$ in $M_H(R)$.

The following proposition describes the structure of injective objects in $M_H(R)$.

Proposition (1.1). (1) Let M be a graded R-module. Then $\operatorname{Ass}_{\mathcal{P}}(\mathscr{E}_{\mathcal{P}}(M)) = \operatorname{Ass}_{\mathcal{P}}(M).$

- (2) Let E be an injective object of $M_H(R)$. Then E is indecomposable if and only if $E = \mathscr{E}_R(R/p)(n)$ for some homogeneous prime ideal of R and for some $n \in \mathbb{Z}$.
- (3) Every injective object of $M_H(R)$ can be decomposed into a direct sum of indecomposable injective objects of $M_H(R)$. This decomposition is unique up to isomorphism.

Proof. This is [GW], (1.2.1).

For $i \geq 0$ the functor $\mathscr{E}_{xt_R^i}(\$,) is defined to be the i-th derived functor of the functor $\mathscr{H}_{om_R}(\$,). Suppose that M is a finitely generated graded R-module. Then $\mathscr{H}_{om_R}(M,N) = \operatorname{Hom}_R(M,N)$ as underlying R-modules. Hence $\mathscr{E}_{xt_R^i}(M,N) = \operatorname{Ext}_R^i(M,N)$ for all $i \geq 0$. For any $p \in \operatorname{Spec}(R)$ and for any R-module L we define

$$\mu^i(p, L) = \dim_{k(p)} \operatorname{Ext}_{R_p}^i(k(p), L_p),$$

where $k(p) = R_p/pR_p$, and call this number the *i*-th Bass number of M at p (cf. [B]).

Proposition (1.2). Let M be a graded R-module and let

$$0 \to M \to I^0 \to I^1 \to \cdots \to I^n \to I^{n+1} \to \cdots$$

be a minimal injective resolution of M in $M_H(R)$. Then for any homogeneous prime ideal p and for any integer $i \geq 0$, $\mu^i(p, M)$ is equal to the number of the graded R-modules of the form $\mathscr{E}_R(R/p)(n)$ which appear in I^i as direct summands.

Proof. This is [GW], (1.2.4).

In this paper a Noetherian graded R is called defined over a local ring if R_0 is a Noetherian local ring and $R_n=0$ for n<0. If R is defined over a local ring we denote the graded ring $R\otimes_{R_0}\hat{R}_0$ by \hat{R} , where \hat{R}_0 is the completion of R_0 . In the rest of this section R denotes a graded ring defined over a local ring (R_0, m_0, k) and M denotes the maximal homogeneous ideal of R. R can be regarded as a graded R_0 -module in a natural way. Let E_{R_0} be the injective envelope of k as an R_0 -module. We denote by \mathscr{E}_{R_0} the graded R-module whose underlying R_0 -module is E_{R_0} and whose grading is given by $[\mathscr{E}_{R_0}]_0 = E_{R_0}$ and $[\mathscr{E}_{R_0}]_n = 0$ for $n \neq 0$.

DEFINITION (1.3). $\mathscr{E}_R(k) = \mathscr{H}_{om_{R_0}}(R, \mathscr{E}_{R_0}).$

Proposition (1.4). (1) $\mathscr{E}_{R}(k)$ is the injective envelope of R/M in $M_{H}(R)$.

(2) $\mathscr{H}_{om_R}(\mathscr{E}_{_R}(k),\mathscr{E}_{_R}(k)) = R \bigotimes_{_{R_0}} \hat{R}_{_0}$, where $\hat{R}_{_0}$ is the completion of $R_{_0}$.

Proof. (1) As in the non-graded case, in order to show that $\mathscr{E}_R(k)$ is injective in $M_H(R)$ it is enough to show that for any homogeneous ideal of R and for any integer n every homomorphism $f: I(n) \to \mathscr{E}_R(k)$ can be extended to a homomorphism $f': R(n) \to \mathscr{E}_R(k)$. Since

$$\mathscr{H}_{{\it om}_{R_0}}\!(R,\,\mathscr{E}_{{\it R}_0}) \subset \operatorname{Hom}_{{\it R}_0}\!(R,\,E_{{\it R}_0}) = \prod\limits_{i \in \mathbf{Z}} \operatorname{Hom}_{{\it R}_0}\!(R_i,\,E_{{\it R}_0})$$
 ,

and since $\operatorname{Hom}_{R_0}(R, E_{R_0})$ is an injective R-module f can be extended to an R-homomorphism $f'' \colon R \to \operatorname{Hom}_{R_0}(R, E_{R_0})$.

Let $f''(1) = (g_i)_{i \in \mathbb{Z}}$, where $g_i \in \operatorname{Hom}_{R_0}(R_{-i}, E_{R_0})$. Since f is homogeneous for any homogeneous element $x \in I$ we have $xg_j = 0$ for $j \neq -n$. This shows that the homomorphism f' in $M_H(R)$ defined by $f'(1) = g_{-n} \in$

 $\operatorname{Hom}_{R_0}(R_n, E_{R_0})$ extends f. It is not difficult to show that $\operatorname{Supp}\left(\mathscr{E}_R(k)\right) = M$. Moreover we have

$$egin{aligned} \mathscr{H}_{\mathit{om}_R}(R/M,\mathscr{E}_R(k)) &= \mathscr{H}_{\mathit{om}_R}(R/M,\mathscr{E}_{R_0}) \ &= \mathscr{H}_{\mathit{om}_{R_0}}(R/M,\mathscr{E}_{R_0}) \ &= k. \end{aligned}$$

This shows that $\mathscr{E}_R(k)$ is the injective envelope of R/M in $M_H(R)$.

(2)
$$\mathcal{H}_{om_{R}}(\mathscr{E}_{R}(k), \mathscr{E}_{R}(k)) = \mathcal{H}_{om_{R}}(\mathscr{E}_{R}(k), \mathcal{H}_{om_{R_{0}}}(R, \mathscr{E}_{R_{0}}))$$

$$= \mathcal{H}_{om_{R_{0}}}(\mathscr{E}_{R}(k), \mathscr{E}_{R_{0}})$$

$$= \mathcal{H}_{om_{R_{0}}}(\mathcal{H}_{om_{R_{0}}}(R, \mathscr{E}_{R_{0}}), \mathscr{E}_{R_{0}})$$

$$= \bigoplus_{n \in \mathbf{Z}} \operatorname{Hom}_{R_{0}}(\operatorname{Hom}_{R_{0}}(R_{n}, E_{R_{0}}), E_{R_{0}})$$

$$= \bigoplus_{n \in \mathbf{Z}} R_{n} \otimes_{R_{0}} \hat{R}_{0}$$

$$= R \otimes_{R_{0}} \hat{R}_{0}.$$

Proposition (1.5). Let R be a graded ring defined over a complete local ring R_0 and N a graded R-module. Then, we have:

- (1) If N is Noetherian (resp. Artinian) $\mathcal{H}_{om_R}(N, \mathcal{E}_R(k))$ is Artinian (resp. Noetherian).
 - (2) If N is Noetherian or Artinian

$$\mathcal{H}_{om_R}(\mathcal{H}_{om_R}(N, \mathcal{E}_R(k)), \mathcal{E}_R(k)) = N.$$

Proof. Using Proposition (1.4) this can be proved as in [M].

For every integer $i \geq 0$ we put

$$\mathscr{H}_{M}^{i}(\)=\varinjlim_{n}\mathscr{E}\mathit{xt}_{R}^{i}(R/M^{n},\)$$

and call it the *i*-th local cohomology functor, where R is a graded (ring defined over a local ring and M is the maximal homogeneous ideal of R. $\mathscr{H}^{i}_{M}(\)$ is the *i*-th derived functor of $\mathscr{H}^{0}_{M}(\)$ (cf. [Gr₂] and [HK]).

Definition (1.6). Suppose that R_0 is complete. We put

$$\mathcal{K}_{R} = \mathcal{H}_{om_{R}}(\mathcal{H}_{M}^{d}(R), \mathcal{E}_{R}(k)),$$

where $d = \dim R$, and call this graded R-module the canonical module of R.

If R_0 is not complete a graded R-module \mathscr{K}_R is a canonical module of R if there is an isomorphism in $M_H(\hat{R})$ $\mathscr{K}_{\hat{R}} = \mathscr{K}_R \bigotimes_{\hat{R}} \hat{R}$.

Proposition (1.7). If there is a canonical module of R it is a finitely generated R-module and unique up to isomorphisms.

Proof. Since \hat{R} is faithfully flat over R it is sufficient to show that $\mathscr{K}_{\hat{R}}$ is finitely generated. But this follows from Proposition (1.5). For the proof of the uniqueness it is enough to show that if K and L are finitely generated graded R-modules such that $K \otimes_R \hat{R} = L \otimes_R \hat{R}$ then K = L. Let $f \in \mathscr{H}_{om_{\hat{R}}}(K \otimes_R \hat{R}, L \otimes_R \hat{R})_0$ be an isomorphism. Since \hat{R} is flat over R and K is finitely generated over R one gets

$$\mathscr{H}_{om_{\hat{R}}}(K \bigotimes_{R} \hat{R}, L \bigotimes_{R} \hat{R}) = \mathscr{H}_{om_{R}}(K, L) \bigotimes_{R} \hat{R}$$

$$= \mathscr{H}_{om_{R}}(K, L) \bigotimes_{R_{0}} \hat{R}_{0}$$

which implies that $\mathscr{H}_{om_{\hat{R}}}(K \otimes_R \hat{R}, L \otimes_R \hat{R})_0$ is the completion of $\mathscr{H}_{om_R}(K, L)_0$ since $\mathscr{H}_{om_R}(K, L)_0$ is a finitely generated R_0 -module. Let $\mathscr{H}_{om_R}(K, L)_0$ be the m_0 -adic completion of $\mathscr{H}_{om_R}(K, L)_0$. For any integer n > 0 there is a homomorphism $f_n \in \mathscr{H}_{om_R}(K, L)_0$ such that $f - f_n \in m_0^n \mathscr{H}_{om_R}(K, L)_0$. By assumption f_n induces an isomorphism $\overline{f}_n \colon K/m_0^n K \to L/m_0^n L$. Hence f_n is a surjective homomorphism. Since K/MK and L/ML are isomorphic there exist finitely generated graded free R-modules F and G of the same rank $\dim_k K/MK$ such that there are surjective homomorphisms in $M_H(R)$ $g \colon F \to K$ and $h \colon G \to L$. Let $S = \operatorname{Ker}(g)$ and $T = \operatorname{Ker}(h)$. We get a commutative diagram with exact rows

(I)
$$0 \longrightarrow S \longrightarrow F \longrightarrow K \longrightarrow 0$$

$$\downarrow b_n \qquad \downarrow a_n \qquad \downarrow f_n$$

$$0 \longrightarrow T \longrightarrow G \longrightarrow L \longrightarrow 0.$$

 a_n is an isomorphism since F and G are free R-modules of the same rank. Since \overline{f}_n is an isomorphism from (I) we get

$$T \subset b_n(S) + m_0^n G \cap T$$
.

By Artin-Rees lemma there is an integer r > 0 such that

$$m_0^nG\cap T=m_0^{n-r}(m_0^rG\cap T) \qquad ext{for } n>r.$$

Therefore we get $T \subset b_n(S) + m_0 T$ for n > r. By Nakayama's lemma $T = b_n(S)$. From (I) one knows that f_n is an isomorphism.

Let us recall that R is Cohen-Macaulay (resp. Gorenstein) if and only if R_M is Cohen-Macaulay (resp. Gorenstein), see [AG], [MR] and [GW].

PROPOSITION (1.8). Let $d = \dim R$ and assume that R_0 is complete. Then R is Cohen-Macaulay if and only if for any finitely generate graded R-module N and for all $i \geq 0$ we have

$$\mathcal{H}_{om_R}(\mathcal{H}_M^i(N), \mathcal{E}_R(k)) = \mathcal{E}_{xt_R^{d-i}}(N, \mathcal{K}_R).$$

Proof. Suppose that R is Cohen-Macaulay. We will show that the functor $T^i(\)=\mathcal{H}_{\mathit{om}_R}(\mathcal{H}^{d-i}_{\mathit{M}}(\),\mathcal{E}_{\mathit{R}}(k))$ is the i-th derived functor of $\mathcal{H}_{\mathit{om}_R}(\ ,\mathcal{K}_{\mathit{R}})$. We must show that

(1) from the short exact sequence $0 \to N' \to N \to N'' \to 0$ we obtain the long exact sequence

$$0 \rightarrow T^{\scriptscriptstyle 0}(N^{\prime\prime}) \rightarrow T^{\scriptscriptstyle 0}(N) \rightarrow T^{\scriptscriptstyle 0}(N^\prime) \rightarrow T^{\scriptscriptstyle 1}(N^{\prime\prime}) \rightarrow T^{\scriptscriptstyle 1}(N) \rightarrow T^{\scriptscriptstyle 1}(N^\prime) \rightarrow \cdots$$

(2)
$$T^{i}(R) = 0$$
 for $i > 0$.

Since $\mathscr{E}_R(k)$ is an injective object in $M_H(R)$ (1) follows from the long exact sequence of the local cohomology. (2) follows from the fact that for any graded R-module N $\mathscr{H}_{om_R}(N,\mathscr{E}_R(k))=0$ if and only if N=0. The converse is immediate.

PROPOSITION (1.9). Suppose that R is Cohen-Macaulay. Then R is Gorenstein if and only if R has a canonical module \mathscr{K}_R and $\mathscr{K}_R = R(n)$ for some $n \in \mathbb{Z}$.

Proof. Recall that R is Gorenstein if and only if

$$\mathscr{E}_{ imes t^i_R}\!(R/M,\,R) = egin{cases} R/M & ext{ for } i = \dim R \ 0 & ext{ for } i
eq \dim R \ . \end{cases}$$

If R is Gorenstein we have $\mathscr{H}_{M}^{d}(R) = \mathscr{E}_{R}(k)(n)$ for some $n \in \mathbb{Z}$. Hence $\mathscr{K}_{\hat{R}} = \hat{R}(-n)$ by Proposition (1.3). By the uniqueness of canonical modules we have $\mathscr{K}_{R} = R(-n)$. Conversely assume that $\mathscr{K}_{R} = R(-n)$ for some $n \in \mathbb{Z}$. By Proposition (1.8) we get

$$\mathscr{E}$$
x $t^i_{\hat{R}}(\hat{R}/\hat{M},\hat{R})=\mathscr{H}$ om $_{\hat{R}}(\mathscr{H}^{d-i}_{\hat{M}}(\hat{R}/\hat{M},\mathscr{E}_{\hat{R}}(k))(n)$

for all $i \geq 0$, where \hat{M} is the maximal homogeneous ideal of \hat{R} . Hence \hat{R} is Gorenstein since $\mathscr{H}^{0}_{\hat{M}}(\hat{R}/\hat{M}) = \hat{R}/\hat{M}$ and $\mathscr{H}^{i}_{\hat{M}}(\hat{R}/\hat{M}) = 0$ for i > 0. Since \hat{R} is faithfully flat over R it follows that R is Gorenstein.

Remark. Let $a = \max\{n \mid \mathcal{H}_{M}^{d}(R)_{n} \neq 0\}$. If R is Gorenstein we have $\mathcal{H}_{R} = R(a)$. In the sequel we denote this number by a(R) and call it the a-invariant of R.

Proposition (1.10). Let $R \to S$ be a finite homomorphism of graded rings defined over local rings. Assume that R is Cohen-Macaulay and has a canonical module. Then

$$\mathscr{K}_{S} = \mathscr{E}_{X} t_{R}^{r}(S, \mathscr{K}_{R}),$$

where $r = \dim R - \dim S$.

Proof. Let n_0 be the maximal ideal of S_0 and \hat{S}_0 be the n_0 -adic completion of S_0 . Since S_0 is finite over R_0 we have $\hat{S}_0 = S_0 \bigotimes_{R_0} \hat{R}_0$. Let N be the maximal homogeneous ideal of S and $\hat{N} = N \bigotimes_{R_0} \hat{R}_0$. Let $\hat{S} = S \bigotimes_{R_0} \hat{R}_0$. Note that $\mathscr{H}_{OM_{\hat{R}}}(\hat{S}, \mathscr{E}_{\hat{R}}(k))$ is the injective envelope of \hat{S}/\hat{N} in $M_H(\hat{S})$.

$$egin{aligned} \mathscr{K}_{\hat{S}} &= \mathscr{H}om_{\hat{S}}(\mathscr{H}^s_{\hat{R}}(\hat{S}),\mathscr{E}_{\hat{S}}(\hat{S}/\hat{N})) & (s = \dim S) \ &= \mathscr{H}om_{\hat{S}}(\mathscr{H}^s_{\hat{R}}(\hat{S}),\mathscr{H}om_{\hat{R}}(\hat{S},\mathscr{E}_{\hat{R}}(k))) \ &= \mathscr{H}om_{\hat{R}}(\mathscr{H}^s_{\hat{R}}(\hat{S}),\mathscr{E}_{\hat{R}}(k)) \ &= \mathscr{E}_{\mathsf{X}}t^s_{\hat{R}}(\hat{S},\mathscr{K}_{\hat{R}}) \ &= \mathscr{E}_{\mathsf{X}}t^s_{\hat{R}}(S,\mathscr{K}_{\hat{R}}) \otimes_{R} \hat{R} \,. \end{aligned}$$

Since S is finite over R it follows that $\mathscr{K}_S = \mathscr{E}_{xt_R}(S, \mathscr{K}_R)$.

COROLLARY (1.11). If moreover R is Gorenstein in Proposition (1.10) we get $\mathcal{K}_S = \mathscr{E}_{xt_R^r}(S, R)(n)$ for some $n \in \mathbb{Z}$.

From Corollary (1.11) one knows that for any $p \in \operatorname{Supp}(\mathcal{K}_s)$ (\mathcal{K}_s)_p is a canonical module of the local ring S_p in the sense of [HK].

§ 2. Preliminaries

In this section we collect fundamental facts about the local cohomology of Rees algebras over Noetherian local rings.

Let (A, m, k) be a local ring and I an ideal of A. We put $R(I) = \bigoplus_{n\geq 0} I^n$ and call this graded A-algebra the Rees algebra of I. Let $I = (a_1, \dots, a_n)$. Then R(I) can be identified with the subalgebra $A[a_1X, \dots, a_nX]$ of the polynomial ring A[X] in one variable. Throughout this paper we use this identification without mentioning. Let $M = mR(I) + (a_1X, \dots, a_nX)R(I)$ be the maximal homogeneous ideal of R(I). Let $G(I) = \bigoplus_{n\geq 0} I^n/I^{n+1}$ be the associated graded ring of I. Note that

$$G(I) = R(I)/IR(I)$$
 and $A = R(I)/R(I)_+$,

where $R(I)_+ = \bigoplus_{n>0} I^n$. Let $\ell(I) = \dim R(I)/mR(I)$; we call this number the analytic spread of I. The analytic spread $\ell(I)$ of I is equal to the

minimum number of generators of a minimal reduction of I if the residue field k is infinite (cf. [NR]).

PROPOSITION (2.1). Let (A, m, k) be a local ring and I an ideal of A with ht(I) > 0. If R(I) is Cohen-Macaulay then

- a) a(G(I)) < 0 and
- b) for $i < \dim A$ we have

$$\mathscr{H}_{\scriptscriptstyle M}^{i}(G(I))_{\scriptscriptstyle n} = egin{cases} H_{\scriptscriptstyle m}^{i}(A) & & \textit{for } n = -1 \ 0 & & \textit{for } n \neq -1 \ . \end{cases}$$

Proof. For b) see the proof of [HI], Proposition (1.5). Let $J = R(I)_+$. From the exact sequences

$$0 \longrightarrow J \longrightarrow R(I) \longrightarrow A \longrightarrow 0$$

and

$$0 \longrightarrow J(1) \longrightarrow R(I) \longrightarrow G(I) \longrightarrow 0$$

we obtain the exact sequences of local cohomology

$$0 \longrightarrow H^d_m(A) \longrightarrow \mathcal{H}^{d+1}_M(J) \stackrel{f}{\longrightarrow} \mathcal{H}^{d+1}_M(R(I)) \longrightarrow 0$$

and

$$0 \longrightarrow \mathcal{H}^d_M(G(I)) \longrightarrow \mathcal{H}^{d+1}_M(J)(1) \stackrel{g}{\longrightarrow} \mathcal{H}^{d+1}_M(R(I)) \longrightarrow 0$$
.

where $d = \dim A$. From this one gets the isomorphisms

$$f_n: \mathcal{H}_M^{d+1}(J)_n \longrightarrow \mathcal{H}_M^{d+1}(R(I))_n \quad \text{for } n \neq 0$$

and surjective homomorphisms

$$g_n: \mathcal{H}_M^{d+1}(J)_n \longrightarrow \mathcal{H}_M^{d+1}(R(I))_{n-1}$$
 for all n .

Since $\mathscr{H}_{M}^{d+1}(J)$ and $\mathscr{H}_{M}^{d+1}(R(I))$ are Artinian R(I)-modules their homogeneous components of sufficiently large degree are zero. By an easy diagram chase we know that $\mathscr{H}_{M}^{d+1}(J)_{n}=0$ for $n\geq 1$ and $\mathscr{H}_{M}^{d+1}(R(I))_{n}=0$ for $n\geq 0$. Now it is easy to see that a(G(I))<0.

COROLLARY (2.2). Let A and I be the same as in Proposition (2.2). Then $\mathcal{H}_{M}^{d+1}(R(I))_{n}=0$ for $n\geq 0$.

Proof. This follows from the proof of Proposition (2.1).

If, inparticular, I = m we have the following result.

Proposition (2.3). If $d = \dim A > 0$ the following conditions are

equivalent.

- (1) R(m) is Cohen-Macaulay.
- (2) a) a(G(m)) < 0 and
 - b) for i < d we have

$$\mathscr{H}^i_{\scriptscriptstyle M}(G(m))_{\scriptscriptstyle n} = egin{cases} H^i_{\scriptscriptstyle m}(A) & \textit{for } n = -1 \ 0 & \textit{for } n
eq -1 \end{cases}.$$

In this case A and G(m) are Buchsbaum.

Proof. See [I,].

For the technical simplicity in the rest of this paper we assume that every local ring has an infinite residue field.

LEMMA (2.4). Let A and I be the same as above and let q be a minimal reduction of I. We put $r(q) = \min \{r \in \mathbb{Z} | I^{r+1} = qI^r\}$. If $\operatorname{ht}(I) = \ell(I)$ we have $r(q) \geq a(G(I)) + \operatorname{ht}(I)$.

Proof. See [HI], Lemma (2.3).

LEMMA (2.5). Let A and I be the same as above. We put

$$n_i = \max \{n \in \mathbb{Z} | \mathscr{H}_M^i(G(I))_n \neq 0\}$$
 for $0 \le i \le d = \dim A$.

If I is m-primary we have $r(q) \leq \max_i \{n_i + i\}$ for any minimal reduction q of I.

Proof. Let $x \in A$. We denote by x^* the initial form of x with respect to I. Let $q = (a_1, \dots, a_d)$ and $q^* = (a_1^*, \dots, a_d^*)$. Then

$$r(q) = \max\{r \in Z | (G(I)/q^*)_r \neq 0\}.$$

If dim G(I) = 0 the assertion is clear. Let dim G(I) > 0. Since the residue field is infinite we may assume that $l_{G(I)}((0:a_1^*)) < \infty$. From the exact sequences

$$0 \longrightarrow G(I)/(0:a_1^*)(-1) \longrightarrow G(I) \longrightarrow G(I)/a_1^*G(I) \longrightarrow 0$$

and

$$0 \longrightarrow (0:a_1^*) \longrightarrow G(I) \longrightarrow G(I)/(0:a_1^*) \longrightarrow 0$$

we get the exact sequence

$$\mathscr{H}^{i}_{M}(G(I)) \longrightarrow \mathscr{H}^{i}_{M}(G(I)/a_{1}^{*}G(I)) \longrightarrow \mathscr{H}^{i+1}_{M}(G(I))(-1)$$

for $0 \le i \le d$. Let $n_i' = \max\{n \in \mathbb{Z} | \mathscr{H}_{M}^{i}(G(I)/a_1^*G(I))_n \ne 0\}$. Then $n_i' \le \max\{n_i, n_{i+1} + 1\}$. By induction we have $r(q) \le \max\{n_i + i\}$.

§ 3. The Gorensteinness of Rees algebras

This section is devoted to the proof of the following theorem.

Theorem (3.1). Let (A, m, k) be a local ring and I an ideal of A. Suppose that R(I) is Cohen-Macaulay and grade $(I) \geq 2$. Then the following conditions are equivalent.

- (1) R(I) is Gorenstein.
- (2) $K_A = A \text{ and } \mathscr{K}_{G(I)} = G(I)(-2).$

Remark. Since A and G(I) are homomorphic images of R(I), A and G(I) have canonical modules if R(I) is Gorenstein.

We need several preliminaries to prove this theorem.

Lemma (3.2). Let A be a local ring which has a canonical module K_A . Then the following conditions are equivalent.

- (1) A satisfies (S_2) .
- (2) \hat{A} satisfies (S_2) .
- (3) $\operatorname{Hom}_{A}(K_{A}, K_{A}) = A.$

Proof. See [A], (4.4) and (4.5).

LEMMA (3.3). Let A and I be the same as in Theorem (3.1). Let $a \in I - I^2$ be an element whose initial form in G(I) is a non zero-divisor. We put $\overline{R} = R(I)/(a, aX)$. If R(I) is Gorenstein and grade $(I) \geq 2$ we have $\mathscr{H}_M^{d-1}(\overline{R}) = 0$, where dim A = d.

Proof. Let R=R(I) and G=G(I). Since a is a non zero divisor, by Propositions (1.8) and (1.9), it is enough to show that $\mathscr{E}_{xt_{R/a}R}(\overline{R}, R/aR)$ = 0. Let $I=(a_1, \dots, a_n)$. Then we have the exact sequence

$$(R/aR)^n(-1) \xrightarrow{\begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix}} R/aR(-1) \xrightarrow{aX} R/aR \longrightarrow \overline{R} \longrightarrow 0.$$

Applying the functor $\mathcal{H}_{Om_{R/aR}}($, R/aR) to this sequence, we see

$$\operatorname{\mathscr{E}xt}^1_{R/a\,R}(\overline{R},\,R/aR)=(aR\colon IR)/(a,\,aX)$$
 .

Let $f^m \in (aR : IR)$, where $f \in I^m$ and $m \ge 0$. Then we have

$$f \in (aA:I) \cap (I^{m+1}:I) \subset (aA:I) \cap (I^{m+1}:a)$$
.

Since grade $(I) \ge 2$ we have (aA:I) = aA. That a^* is a non zero-divisor of G(I) is equivalent to that $(I^m:a) = I^{m-1}$ for all m > 0. Hence we

have $(I^{m+1}:a)=I^m$. Therefore $f\in I^m\cap aA=aI^{m-1}$. This means (aR:IR)=(a,aX), which completes the proof.

LEMMA (3.4). Let A and I be the same as in Theorem (3.1). Assume that R(I) is Cohen-Macaulay and $\mathcal{K}_{G(I)} = G(I)(-2)$. Then

$$\mathscr{H}_{om_{R(I)}}(k, \mathscr{H}_{M}^{d+1}(R(I)))_{n} = 0$$
 for $n \neq -1$,

where $d = \dim A$ and k = R(I)/M.

Proof. Let R and G be as in the proof of Lemma (3.3). Put $J = \bigoplus_{n>0} R_n$. Then we get the exact sequence (cf. the proof of Proposition (2.1))

(I)
$$0 \longrightarrow \mathscr{H}om_R(k, H^d_m(A)) \longrightarrow \mathscr{H}om_R(k, \mathscr{H}^{d+1}_M(J)) \xrightarrow{f} \mathscr{H}om_R(k, \mathscr{H}^{d+1}_M(R))$$

 $\longrightarrow \mathscr{E}xt^1_R(k, H^d_m(A))$

and

(II)
$$0 \longrightarrow \mathcal{H}om_R(k, \mathcal{H}_M(G)) \longrightarrow \mathcal{H}om_R(k, \mathcal{H}_M^{d+1}(J))(1) \stackrel{g}{\longrightarrow} \mathcal{H}om_R(k, \mathcal{H}_M^{d+1}(R))$$

 $\longrightarrow \mathcal{E}_{xl_R^1}(k, \mathcal{H}_M^d(G)).$

Since $\mathscr{H}_{om_R}(k, H_m^d(A))$ is concentrated in degree 0 and since $\mathscr{E}_{xt_R^1}(k, H_m^d(A))_n$ = 0 for $n \leq -2$ from (I) we get isomorphisms

$$f_n: \mathcal{H}_{om_R}(k, \mathcal{H}_M^{d+1}(J))_n \longrightarrow \mathcal{H}_{om_R}(k, \mathcal{H}_M^{d+1}(R))_n$$

for $n \leq -2$. By assumption $\mathcal{H}_{\mathcal{O}_{R}}(k, \mathcal{H}^{d}_{M}(G))_{n} = 0$ for $n \neq -2$. (II) yields injective homomorphisms

$$g_n: \mathcal{H}om_R(k, \mathcal{H}_M^{d+1}(J))_n \longrightarrow \mathcal{H}om_R(k, \mathcal{H}_M^{d+1}(R))_{n-1}$$

for $n \leq -2$. Since $\mathcal{H}_{M}^{d+1}(J)$ and $\mathcal{H}_{M}^{d+1}(R)$ are Artinian

$$\mathscr{H}_{om_R}(k, \mathscr{H}_M^{d+1}(J))_n = \mathscr{H}_{om_R}(k, \mathscr{H}_M^{d+1}(R))_n = 0 \quad \text{for } n \ll 0.$$

Now, it is easy to see that

$$\mathcal{H}_{om_R}(k, \mathcal{H}_M^{d+1}(R))_n = 0$$

for $n \leq -2$. On the other hand, by Corollary (2.2) we have $\mathscr{H}_{M}^{d+1}(R)_{n} = 0$ for $n \geq 0$. This completes the proof.

LEMMA (3.5). Let (A, m, k) be a local ring and I an ideal of A such that R(I) is Cohen-Macaulay. Suppose that $\operatorname{grade}(I) \geq n > 0$, Then A and G(I) satisfy (S_n) .

Proof. We may assume that A is complete. Let G = G(I). Let B be a Gorenstein local ring such that A is a homomorphic image of B and $d = \dim A = \dim B$. Let n be the maximal ideal of B. By the local duality we have

$$\operatorname{Ext}_{B}^{i}(A, B) = \operatorname{Hom}_{B}(H_{n}^{d-i}(A), E_{B}(B/n)) \quad \text{for } i \geq 0,$$

where $E_B(B/n)$ is the injective envelope of B/n as B-module. By Proposition (2.1) we see that $\operatorname{Ext}_B^i(A, B)$ is annihilated by I for i > 0. Let $p \in \operatorname{Spec}(A)$ and P be the inverse image of p in B. Then if $p \not\supset I$ we have

$$\operatorname{Ext}_{B_P}^i(A_p, B_P) = 0$$
 for $i > 0$.

Hence A_p is Cohen-Macaulay. If $p \supset I$ we have depth $A_p \geq n$ by assumption. Therefore A satisfies (S_n) .

To prove the assertion on G we use induction on $\dim A/I$. Let $\dim A/I=0$. By Proposition (2.1) we know that $l_G(\mathscr{H}_M^i(G))<\infty$ for i< d and depth $G_N\geq n$, where N is the maximal homogeneous ideal of G. Hence G satisfies (S_n) because G_Q is Cohen-Macaulay for $Q\in \operatorname{Spec}(G)-\{N\}$. Let $\dim A/I>0$. Note that G can be written as a homomorphic image of a Gorenstein graded ring of the same dimension. By Proposition (1.8) we see that G_p is Cohen-Macaulay if $p\not\supset G_+$, where $G_+=\bigoplus_{n>0}G_n$. Assume that $p\supset G_+$ and $p\neq N$. Then $p\cap A/I=P/I$ for some $P\in\operatorname{Spec}(A)-\{m\}$. Since $R(I)_P$ is Cohen-Macaulay and $\dim A/I>\dim A_P/IA_P$ one knows that G_P satisfies (S_n) by induction on $\dim A/I$.

Proof of Theorem (3.1). First we show that if $\operatorname{ht}(I)>0$ and R(I) is Cohen-Macaulay then there is an element $a\in I-I^2$ whose initial form in G(I) is a non zero-divisor. Since $\operatorname{ht}(IR(I))>0$ one can choose an element $b\in I$ which is a non zero-divisor on R(I). Noting that R(I)/IR(I)+IXR(I)=A/I, we have $\operatorname{ht}(IR(I)+IXR(I))=\dim R(I)-\dim A/I=d+1-\dim A/I\geq 2$. Since the residue field of A is infinite we can choose an element c+aX of IR(I)+IXR(I) such that b,c+aX is an R(I)-sequence and $a\in I-I^2$. Since b is also a non zero-divisor on A one can easily verify that (bR(I):bX)=IR(I). This implies that there exists an exact sequence

$$0 \longrightarrow G(I)(-1) \longrightarrow R(I)/bR(I) \longrightarrow R(I)/(b, bX)R(I) \longrightarrow 0$$
.

By the choice of c + aX we see that c + aX is a non zero-divisor on G(I). The canonical image of c + aX in G(I) = R(I)/IR(I) is nothing but

the initial form of a because $c \in I$. Therefore the initial form a^* of a in G(I) is a non zero-divisor on G(I).

(1) \Rightarrow (2): Let R = R(I) and G = G(I). Let $a \in I - I^2$ be as above. Since a is a non zero-divisor on A there are two exact sequences

$$(\sharp) 0 \longrightarrow A \longrightarrow R/aXR \longrightarrow R/(a, ax) \longrightarrow 0$$

and

$$(\sharp\sharp) 0 \longrightarrow G(-1) \longrightarrow R/aR \longrightarrow R/(a, aX) \longrightarrow 0.$$

These exact sequences induce the exact sequences by Lemma (3.3)

$$(+) \qquad 0 \longrightarrow \mathcal{H}^{d}_{M}(A) \longrightarrow \mathcal{H}^{d}_{M}(R/aXR) \longrightarrow \mathcal{H}^{d}_{M}(R/(a, aX)) \longrightarrow 0$$

and

$$(++) \qquad 0 \longrightarrow \mathcal{H}_{M}^{d}(G)(-1) \longrightarrow \mathcal{H}_{M}^{d}(R/aR) \longrightarrow \mathcal{H}_{M}^{d}(R/(a, aX)) \longrightarrow 0,$$

where $d = \dim A$ and M is the maximal homogeneous ideal of R as before. Since R is Gorenstein $\mathscr{K}_R = R(n)$ for some $n \in \mathbb{Z}$. Since aX is a non zero divisor of degree 1 we have $\mathscr{K}_{R/aXR} = R/aXR(n+1)$. From the exact sequence (+) we know that n = -1 and $K_A = A/J$ for some ideal J of A. From (++) we have $\mathscr{K}_G = G/L(-2)$ for some homogeneous ideal L of G. By Lemma (3.5) A and G satisfy (S_2), hence by Lemma (3.2) we have J = 0 and L = 0.

 $(2) \Rightarrow (1)$: From the exact sequences (\sharp) and $(\sharp\sharp)$ we get two injections $\mathscr{H}_{M}^{d-1}(R/(a, aX)) \to \mathscr{H}_{M}^{d}(A)$ and $\mathscr{H}_{M}^{d-1}(R/(a, aX)) \to \mathscr{H}_{M}^{d}(G)(-1)$ since R is Cohen-Macaulay. From the first one we know that $\mathscr{H}_{M}^{d-1}(R/(a, aX))$ is concentrated in degree 0. The assumption $\mathscr{K}_{G} = G(-2)$ shows that $\mathscr{H}_{M}^{d-1}(R/(a, aX))$ = 0 for $n \geq -1$. From the second injection we see that $\mathscr{H}_{M}^{d-1}(R/(a, aX))$ = 0. Hence we have the exact sequences (+) and (++). By Lemma (3.4) we know that $\mathscr{H}_{Om_{R}}(k, \mathscr{H}_{M}^{d}(R/aXR))$ is concentrated in degree 0. By (+) we get

$$\mathscr{H}_{OM_R}(k, \mathscr{H}_M^d(R/aXR)) = \operatorname{Hom}_A(k, H_m^d(A))$$

since $\mathscr{H}^d_M(R/aR)_n = \mathscr{H}^d_M(R/(a,aX))_n = 0$ for $n \geq 0$ by Corollary (2.2). By the assumption $K_A = A$ we have $\operatorname{Hom}_A(k,H^d_m(A)) = k$. This shows that R is Gorenstein.

Let I be an ideal of a local ring and q a minimal reduction of I. We put $r(q) = \min\{r | I^{r+1} = qI^r\}$. We call r(q) the reduction exponent of q.

COROLLARY (3.6) Let A be a local ring and I an ideal of A such that $\operatorname{ht}(I) = \ell(I) > 0$ and R(I) is Cohen-Macaulay. Then we have:

- (1) Suppose that $a(G(I)) \ge -2$. Then we have $r(q) = \operatorname{ht}(I) 1$ or $\operatorname{ht}(I) 2$ for any minimal reduction q of I.
- (2) Suppose moreover that grade $(I) \ge 2$ and R(I) is Gorenstein. Then for any minimal reduction q of I we have $r(q) = \operatorname{ht}(I) 2$ if and only if depth $A \ge \dim A/I + 2$.
- *Proof.* (1) By induction on dim A/I. If dim A/I = 0 this follows from Lemmas (2.4) and (2.5). Let dim A/I > 0. Choose an element $b \in A$ whose image in A/I is a part of system of parameters of A/I. By Proposition (1.5) b is a non zero-divisor on G(I) and R(I) and we have R(I)/bR(I) = R(I(A/bA)) and G(I) = G(I(A/bA)). It is easy to see that the ideal I(A/bA) in A/bA satisfies the same assumption on I. By induction hypothesis we have r(q(A/bA)) = ht(I) 1 or ht(I) 2. By Nakayama's lemma we have r(q(A/bA)) = r(q).
- (2) First we assume that depth $A \ge \dim A/I + 2$. If $\dim A/I = 0$ we have $r(q) = \operatorname{ht}(I) 2$ by Proposition (2.1), Lemmas (2.4) and (2.5). We proceed by induction on $\dim A/I$. Let $\dim A/I > 0$. Then by assumption depth $A \ge 3$. Let a_1 , a_2 be a regular sequence in I. One can choose an element $b \in m$ so that a_1 , a_2 , b is a regular sequence and the image of b in A/I is a part of system of parameters of A/I. Then grade $(I(A/bA)) \ge 2$ and R(I(A/bA)) is Gorenstein. Since depth $A/bA \ge \dim A/(b, I) + 2$ we have $r(q) = \operatorname{ht}(I) 2$ by induction hypothesis.

Conversely assume that $r(q) = \operatorname{ht}(I) - 2$. Let $b_1, \dots, b_s \in m$ be a system of parameters of A/I. We set $\overline{A} = A/(b_1, \dots, b_s)$. Since b_1, \dots, b_s is a regular sequence we have only to show that depth $\overline{A} \geq 2$. Let $\overline{I} = I\overline{A}$ and $\overline{q} = q\overline{A}$. Since $r(\overline{q}) = \operatorname{ht}(\overline{I}) - 2$ we see that $\mathscr{H}^h_M(G(\overline{I}))_n = 0$ for $n \geq -1$ by Lemma (2.4), where $h = \operatorname{ht}(I)$. By [HI], Proposition (1.5) we know that b_1, \dots, b_s is a G(I)-sequence. Let $q_i = (b_1, \dots, b_i)$ for $1 \leq i \leq s$. Then we see that $G(I)/q_iG(I) = G(I(A/q_i))$. We set $G_i = G(I)/q_iG(I)$ for $1 \leq i \leq s$. Then we have an exact sequence

$$\mathscr{H}^{d-i}_{M}(G_{i-1}) \xrightarrow{b_{i}} \mathscr{H}^{d-i}_{M}(G_{i-1}) \longrightarrow \mathscr{H}^{d-i}_{M}(G_{i}) \longrightarrow \mathscr{H}^{d-i+1}_{M}(G_{i-1}).$$

Since $r(q(A/q_i)) = \operatorname{ht}(I) - 2$ we know that $\mathcal{H}_{M}^{d-i}(G_i)_n = 0$ for $n \ge -1$ by Lemma (2.4). By Proposition (2.1) we see that $H_{m}^{d-i}(A/q_{i-1}) = b_i H_{m}^{d-i}(A/q_{i-1})$ for $1 \le i \le s$.

This implies that $K_{A/q_i} = A/q_i$ for $0 \le i \le s$, where $q_0 = 0$. In particular, $K_{\overline{A}} = \overline{A}$. One sees that depth $\overline{A} \ge 2$ by [A]. The following is a generalization of a result in [GS].

COROLLARY (3.7). Let A be a Cohen-Macaulay local ring and I an ideal of A with $\operatorname{ht}(I) = \ell(I) \geq 2$. Then the following conditions are equivalent.

- (1) R(I) is Gorenstein.
- (2) G(I) is Gorenstein and a(G(I)) = -2.
- (3) G(I) is Gorenstein and there exists a minimal reduction q of I such that $r(q) = \operatorname{ht}(I) 2$.

In this case A is Gorenstein.

Proof. This follows from Theorem (3.1), Corollary (3.6) and the fact that the Gorensteinness of G(I) implies that of A.

Corollary (3.8). Let A and I be the same as in Corollary (3.6). Suppose that

- (1) R(I) is Gorenstein,
- (2) $l_A(H_m^i(A)) < \infty$ for $i < d = \dim A$ and
- (3) $2 \operatorname{ht}(I) \leq \dim A$.

Then A is Gorenstein.

Proof. By Corollary (3.7) it is sufficient to prove that A is Cohen-Macaulay. Let b_1, \dots, b_s be a system of parameters of A/I. We put $q_i = (b_1, \dots, b_i)$ and $G_i = G(I)/q_iG(I)$ for $1 \le i \le s$. Let a_1, \dots, a_h , $h = \operatorname{ht}(I)$, be a minimal generators of a minimal reduction of I. Then $a_1, \dots, a_h, b_1, \dots, b_s$ is a system of parameters of A. Since $l_A(H_m^i(A)) < \infty$ for i < d we know that if $t \le \operatorname{depth} A$ then any t elements of a system of parameters of A form a regular sequence by [CST], (3.3). Hence we have grade $(I(A/q_i)) \ge 2$ for $1 \le i < s$ by [HI], Proposition (1.5). We are going to show that $H_m^{d-s+i}(A/q_{s-j}) = 0$ for $2 \le j \le s-2$ and $1 \le i \le j-1$ by induction on j. Let j=2. From the exact sequence

$$\mathscr{H}_{M}^{d-s+1}(G_{s-2}) \xrightarrow{b_{s-1}} \mathscr{H}_{M}^{d-s+1}(G_{s-2}) \longrightarrow \mathscr{H}_{M}^{d-s+1}(G_{s-1})$$

we get $H_m^{d-s+1}(A/q_{s-2}) = b_{s-1}H_m^{d-s+1}(A/q_{s-2})$ by Theorem (3.1) and Proposition (2.1) since $R(I(A/q_{s-1}))$ is Gorenstein. By the assumption (2) we get $H_m^{d-s+1}(A/q_{s-2}) = 0$. Let us assume that our assertion is true for j < s-2 and we will prove that the assertion is true for j+1. Since b_{s-j} is a

non zero-divisor on A/q_{s-j-i} we obtain the exact sequence

$$H_m^{d-s+i}(A/q_{s-j-1}) \xrightarrow{b_{s-j}} H_m^{d-s+i}(A/q_{s-j-1}) \longrightarrow H_m^{d-s+i}(A/q_{s-j})$$

for i>0. By the induction hypothesis $H_m^{d-s+i}(A/q_{s-j})=0$ for $1\leq i\leq j-1$. Therefore $H_m^{d-s+i}(A/q_{s-j-1})=0$ for $1\leq i\leq j-1$ by assumption (2). It remains to prove that $H_m^{d-s+j}(A/q_{s-j-1})=0$. But this can be proved by the same method used for j=2. Hence, in particular, we get $H_m^i(A)=0$ for $h+1\leq i\leq d$. By assumption (3) we get depth $A\geq \dim A/I+1\geq h+1$ cf. [HI]. Therefore A is Cohen-Macaulay.

§ 4. Example

In this section we construct a local ring (A, m, k) such that R(m) is Gorenstein but A is not Cohen-Macaulay. For a local ring A we denote the multiplicity of A by e(A).

LEMMA (4.1). Let (A, m, k) be a local ring with dim A = 3 and $q = (a_1, a_2, a_3)$ be a minimal reduction of m. Let

$$I = ((a_1, a_2) : a_3) + ((a_2, a_3) : a_1) + ((a_1, a_3) : a_2) + m^2$$
.

Then R(m) is Cohen-Macaulay if and only if $m^3 = qm^2$ and $l_A(I/m^2) = 3(l_A(A/q) - e(A)) + 3$.

Proof. See $[I_2]$, Theorem 5.

Lemma (4.2). Let A be the same as in Lemma (4.1). Suppose that R(m) is Cohen-Macaulay and A is not Cohen-Macaulay. If $l_A(m/m^2)=6$ we have

- (1) A is a Buchsbaum ring with depth A=2 and $l_A(H_m^2(A))=1$,
- (2) $m^2 = qm$ for any minimal reduction q of m and
- (3) e(A) = 3.

Proof. See $[I_2]$, Corollary 11.

Example (1). Let k be a field and X_i , Y_i ($1 \le i \le 3$) be indeterminates over k. We put

$$A = k[[X_1, X_2, X_3, Y_1, Y_2, Y_3]]/(X_1Y_1 + X_2Y_2 + X_3Y_3, (Y_1, Y_2, Y_3)^2)$$

Then A is not Cohen-Macaulay but R(m) is Cohen-Macaulay. By Lemma (4.2) e(A) = 3 (cf. $[I_1]$ and $[I_2]$).

Example (2). Let k be a field of ch(k) = 2 and $X_1, X_2, X_3, Y_1, Y_2, Y_3, Y_4$ indeterminates over k. Let

$$A = k[[X_1, X_2, X_3, Y_1, Y_2, Y_3, Y_4]]/J$$

= $k[[X_1, X_2, X_3, y_1, \dots, y_4]]$

where J is the ideal generated by $X_1Y_1 + X_2Y_2 + X_3Y_3$, Y_1^2 , Y_2^2 , Y_3^2 , Y_4^2 , Y_1Y_4 , Y_2Y_4 , Y_3Y_4 , $Y_1Y_2 - X_3Y_4$, $Y_2Y_3 - X_1Y_4$ and $Y_1Y_3 - X_2Y_4$.

Then A is not Cohen-Macaulay but R(m) is Gorenstein.

To prove this we need the following lemma.

Lemma (4.3).
$$(0: y_4) = (y_1, \dots, y_4)$$

Proof. Let $R = k[[X_1, X_2, X_3, Y_1, Y_2, Y_3, Y_4]]$ and let $f \in (J: Y_4)$. Since

$$(J: Y_4) = (X_1Y_1 + X_2Y_2 + X_3Y_3, Y_1Y_2 - X_3Y_4, Y_2Y_3 - X_1Y_4, Y_1Y_3 - X_2Y_4):$$

 $Y_4 + (Y_1, \dots, Y_4)$

we may assume that f belongs to the first ideal on the right side. Let us write

$$fY_4 = (g_1 + g_1'Y_4)(X_1Y_1 + X_2Y_2 + X_3Y_3) + (g_2 + g_2'Y_4)(Y_1Y_2 - X_3Y_4) \ + (g_3 + g_3'Y_4)(Y_2Y_3 - X_1Y_4) + (g_4 + g_4'Y_4)(Y_1Y_3 - X_2Y_4),$$

where $g_i \in k[[X_1, X_2, X_3, Y_1, Y_2, Y_3]]$. From this we see that

(I)
$$g_1(X_1Y_1+X_2Y_2+X_3Y_3)+g_2Y_1Y_2+g_3Y_2Y_3+g_4Y_1Y_3=0$$
 and

(II)
$$f \equiv -g_2 X_3 - g_3 X_1 - g_4 X_4 \mod (Y_1, \dots, Y_4)$$

From (I) we have

$$Y_1(g_1X_1 + g_2Y_2 + g_4Y_3) + Y_2(g_1X_2 + g_3Y_3) = 0.$$

Since Y_1 , Y_2 is a regular sequence in R we have

$$g_1X_1 + g_2Y_2 + g_4Y_3 = hY_2$$

 $g_1X_2 + g_3Y_3 = -hY_1$

for some $h \in R$. Since X_1 , Y_2 , Y_3 and X_2 , Y_1 , Y_3 are regular sequences in R there are elements a_1 , a_2 , a_3 , b_1 , b_2 , b_3 of R such that

(III)
$$(g_1, g_2 - h, g_4) = (X_1, Y_2, Y_3) \begin{pmatrix} 0 & a_1 & a_2 \\ -a_1 & 0 & a_3 \\ -a_2 & -a_3 & 0 \end{pmatrix}$$

(IV)
$$(g_1, h, g_3) = (X_2, Y_1, Y_3) \begin{pmatrix} 0 & b_1 & b_2 \\ -b_1 & 0 & b_3 \\ -b_2 & -b_3 & 0 \end{pmatrix}.$$

Hence

$$g_1 = -a_1Y_2 - a_2Y_3 = -b_1Y_1 - b_2Y_3$$
.

Since ch(k) = 2 we have

$$egin{aligned} a_2 + b_2 &\equiv 0 \ a_1 &\equiv 0 \ b_1 &\equiv 0 \end{aligned} \mod (Y_1, \, \cdots, \, Y_4) \, .$$

By (II), (III) and (IV) we obtain

$$f \equiv a_1 X_1 X_3 + b_1 X_2 X_3 + (a_2 + b_2) X_1 X_2$$

 $\equiv 0 \mod (Y_1, \dots, Y_4).$

Proof of Example (2). By Lemma (4.3) we have $(0:y_4)=(y_1, \dots, y_4)$. From the exact sequence

$$0 \longrightarrow A/(0: y_4) \longrightarrow A \longrightarrow A/y_4A \longrightarrow 0$$

we get $e(A) = e(A/(0:y_4)) + e(A/y_4A)$. Since A/y_4A is isomorphic to the local ring in Example (1) and since $A/(0:y_4)$ is a regular local ring we have e(A) = 4. It is easy to see that x_1, x_2, x_3 is a system of parameters of A and that $((x_1, x_2): x_3) = (x_1, x_2, y_3)$, $((x_2, x_3): x_1) = (x_2, x_3, y_1)$ and $((x_1, x_3): x_2) = (x_1, x_3, y_2)$. This shows that A is not Cohen-Macaulay. It is easy to verify that $m^2 = (x_1, x_2, x_3)m$. By Lemma (4.1) we see that R(m) is Cohen-Macaulay. By Theorem (3.1) it is enough to show that $\mathcal{K}_{G(m)} = G(m)(-2)$. Since A is defined by homogeneous polynomials

$$G(m) = k[X_1, X_2, X_3, Y_1, Y_2, Y_3, Y_4]/J^* = k[x_1, x_2, \cdots, y_4],$$

where J^* is generated by the polynomials generating J. Let $S = k[x_1, x_2, x_3]$. Then S is a polynomial ring with dim S = 3 and G(m) is generated by 1, y_1, y_2, y_3, y_4 as an S-module. Since G(m) has rank 4 as an S-module and depth G(m) = 2 we get a finite free resolution of G(m) as S-module

$$0 \longrightarrow S(-2) \xrightarrow{[0, x_1, x_2, x_3, 0]} S \oplus S^4(-1) \xrightarrow{d} G(m) \longrightarrow 0,$$

where d is given by $d(e_0) = 1$ and $d(e_i) = y_i$ for $1 \le i \le 4$, with suitable free basis e_0, e_1, \dots, e_4 of $S \oplus S^4(-1)$ with $\deg(e_0) = 0$ and $\deg(e_i) = 1$ for

 $1 \leq i \leq 4$. By Corollary (1.11) $\mathscr{K}_{G(m)} = \mathscr{H}_{OM_S}(G(m), S(-3))$. The G(m)-structure of $\mathscr{K}_{G(m)}$ is given by

$$(xf)(y) = f(xy)$$
 for $f \in \mathcal{H}_{oms}(G(m), S(-3))$ and $x, y \in G(m)$.

 $\mathcal{K}_{G(m)}$ is generated by e_0^* , $x_2e_3^* - x_3e_2^*$, $x_3e_1^* - x_1e_3^*$, $x_1e_2^* - x_2e_1^*$ and e_4^* as an S-module, where e_i^* is the dual base of e_i with $\deg(e_0^*) = 3$ and $\deg(e_i^*) = 2$ for $1 \le i \le 4$. Using the fact that $\operatorname{ch}(k) = 2$ we can easily verify the following relations as G(m)-module.

$$y_4 e_4^* = e_0^*$$

$$y_1 e_4^* = x_2 e_3^* - x_3 e_2^*$$

$$y_2 e_4^* = x_3 e_1^* - x_1 e_3^*$$

$$y_3 e_4^* = x_1 e_2^* - x_2 e_1^*$$

Hence $\mathcal{K}_{G(m)} = G(m)(-2)$ and hence R(m) is Gorenstein by Theorem (3.1).

EXAMPLE (3). Let A be same as in Example (2). We put $B = A[[T_1, \dots, T_n]]$, where T_1, \dots, T_n are indeterminates over A. Let I = mB. Then $R(I) = R(m) \bigotimes_A B$ is Gorenstein since B is faithfully flat over A. If $n \geq 3$ we have $2 \operatorname{ht}(I) = 6 \leq \dim B$. But B is not Gorenstein.

Remark. a) If in Example (2) $ch(k) \neq 2$ A is not Buchsbaum. This can be seen as follows. If A is Buchsbaum we have

$$e(A) = l_A(A/(x_1, x_2, x_3)) - l_A((x_1, x_2) : x_3/(x_1, x_2))$$

= 5 - 1 = 4.

On the other hand one can easily see $(0:y_4) \supset (y_1, \dots, y_4, x_1x_2)$ and $\dim A/(0:y_4) < 3$. This implies $e(A) = e(A/y_4A) = 3$, a contradiction.

b) Example (3) shows that Corollary (3.8) is false without any restriction on the local cohomology modules of A.

REFERENCES

- [A] Y. Aoyama, Some basic results on canonical modules, J. Math. Kyoto Univ., 23 (1983), 85-94.
- [AG] Y. Aoyama and S. Goto, On the type of graded Cohen-Macaulay rings, J. Math. Kyoto Univ., 15 (1975), 275-284.
- [B] H. Bass, On the ubiquity of Gorenstein rings, Math. Z., 82 (1963), 8-28.
- [Gr₁] A. Grothendieck, Sur quelque points d'algebre homologique, Tohoku Math. J., IX (1957), 119-221.
- [Gr₂] —, Local cohomology, Lect. Notes in Math., 41, Berlin-Heidelberg-New York, 1967.

- [GS] S. Goto and Y. Shimoda, On the Rees algebras of Cohen-Macaulay local rings, Commutative algebra (analytic methods), Lecture Notes in Pure and Applied Mathematics, 68 (1982), 201-231.
- [GW] S. Goto and K. Watanabe, On graded rings I, J. Math. Soc. Japan, 30 (1978), 179-213.
- [HI] M. Herrmann and S. Ikeda, Remarks on lifting of Cohen-Macaulay property, Nagoya Math. J., 92 (1983), 121-132.
- [HK] J. Herzog and E. Kunz, Der kanonische Modul eines Cohen-Macaulay Rings, Springer Lect. Notes in Math., 238 (1971).
- [I₁] S. Ikeda, The Cohen-Macaulayness of the Rees algebras of local rings, Nagoya Math. J., 89 (1983), 47-63.
- [I2] —, Remarks on Rees algebras and graded rings with multiplicity 3, Preprint.
- [M] E. Matlis, Injective modules over Noetherian rings, Pacific J. Math., 8 (1958), 511-528.
- [MR] J. Matijevic and P. Roberts, A conjecture of Nagata on graded Cohen-Macaulay rings, J. Math. Kyoto Univ., 14 (1974) 125-128.
- [NR] D. G. Northcott and D. Rees, Reductions of ideals in local rings, Proc. Camb. Phil. Soc., 50 (1954), 145-158.
- [CST] N. T. Cuong, P. Schenzel and N. V. Trung, Verallgemeinerte Cohen-Macaulay-Moduln, Math. Nachr., 85 (1978), 57-73.