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ON THE GORENSTEINNESS OF REES ALGEBRAS

OVER LOCAL RINGS

SHIN IKEDA

Introduction

Let (A, m, k) be a Noetherian local ring and I an ideal of A. We
set R(I) = ®n>0 I

n and call this graded A-algebra the Rees algebra of I.
The importance of the Rees algebra R(I) is in the fact that Proj R(I) is
the blowing up of Spec A with center in V(I). The Cohen-Macaulayness
of Rees algebras was studied by many mathematicians. In [GS] S. Goto
any Y. Shimoda gave a criterion for R(m) to be Cohen-Macaulay under
the assumption that A is Cohen-Macaulay. Their results have been
generalized to R(I) in [HI].

Let grade (I) > 2. The purpose of this paper is to characterize the
Gorensteinness of R(I) in terms of canonical modules of A and the asso-
ciated graded ring G(I) = ®n>oInIIn+1- The notion of canonical modules
of local rings plays an important role in the homological theory of local
rings, cf. [HK]. The canonical modules of graded rings defined over a
field were introduced and studied extensively in [GW]. In Section 1 we
introduce the notion of canonical modules of graded rings defined over
a local ring. Our definition of canonical modules coincides with that of
[GW] if the local ring is a field. In Section 2 we collect several facts
about the behaviour of the local cohomology modules of Rees algebras.
Section 3 will be devoted to the proof of our criterion of the Gorensteinness
of R(I) and to the construction of an example of a local ring (A, m, k)
such that R(m) is Gorenstein but A is not Cohen-Macaulay.

§ 1. Local cohomology of graded rings

In this section we give a brief summary of the theory of local co-
homology and duality of graded rings.

Let R = ζ&neZ Rn be a Noetherian graded ring and let M, N be graded
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i?-modules. Let us denote the category of graded i?-modules by MH(R).

A morphism in MH(R) f: M-+N is an iMinear map such that f(Mn) C Nn

for all n e Z. Let n e Z. We denote by M(ή) the graded i?-module whose

grading is defined by M(n)m = Mn+m for all meZ. Let jPomB(M9 N)n be

the abelian group of all homomorphisms from M into N(n) in MH(R). Let

JfomB(M9N) = ®nez3fomR(M9N)n. Then j#ΌmB(M, N) is a graded R-

module whose homogeneous component of degree n is j^ΌmB(M9 N)n. A

graded i?-module E is injective (resp. projective) in MH(R) if the functor

JfomR( , E) (resp. J>fomR(E, )) from MH(R) into itself is an exact functor.

The tensor product M®RN is a graded jR-module whose τz-th homo-

geneous component is the abelian group generated by the elements of

the form x (x) y with x e Mu y eNj and i + j = n.

The category MH(R) is an abelian category with enough injectives

(cf. [GrJ, (1,10)). A homomorphism /: M-+N in MH(R) is called essential

if / is an injection and for any non-trivial graded iϋ-submodule L of N

we have f(M) (Ί L ψ 0. The injective envelope of a graded i?-module M

is an injective object SR{M) of MH(R) with an essential homomorphism

M-*(?Λ(M) in MH(R).

The following proposition describes the structure of injective objects

in MH{R).

PROPOSITION (1.1). (1) Let M be a graded R-module. Then

= A$sR(M).

(2) Let E be an injective object of MH(R). Then E is indecomposable

if and only if E = iR{Rjp)(ή) for some homogeneous prime ideal of R and

for some neZ.

(3) Every injective object of MH(R) can be decomposed into a direct

sum of indecomposable injective objects of MH(R). This decomposition is

unique up to isomorphism.

Proof This is [GW], (1.2.1).

For ί > 0 the functor iχtR{ , ) is defined to be the i-th derived functor

of the functor JfomR( , ). Suppose that M is a finitely generated graded

J?-module. Then J^omR(M, N) = HomΛ(M, N) as underlying .R-modules.

Hence &xtR(M9 N) = Ext^(M, N) for all i > 0. For any p e Spec (R) and

for any i?-module L we define

μ*(p9 L) = dim*,) ExtRp(k(p), Lp),
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where k(p) = Rp/pRp, and call this number the i-th Bass number of M

at p (cf. [B]).

PROPOSITION (1.2). Let M be a graded R-module and let

0 -> M-> P->P-> • P -> I * + 1 -> .

be a minimal injective resolution of M in MH(R). Then for any homogeneous

prime ideal p and for any integer ί > 0, μ\p, M) is equal to the number

of the graded R-modules of the form £ R(Rjp)(n) which appear in I1 as

direct summands.

Proof. This is [GW], (1.2.4).

In this paper a Noetherian graded R is called defined over a local

ring if Ro is a Noetherian local ring and Rn — 0 for n < 0. If R is defined

over a local ring we denote the graded ring R(X)RQR0 by i?, where RQ is

the completion of Ro. In the rest of this section R denotes a graded

ring defined over a local ring (Ro, mQ, k) and M denotes the maximal

homogeneous ideal of R. R can be regarded as a graded i?0-module in

a natural way. Let ERQ be the injective envelope of k as an i?0-module.

We denote by gRQ the graded jR-module whose underlying i?0-module is

ERo and whose grading is given by [<?Λo]0 = ERQ and [<?Λo]n = 0 for rc ̂  0.

DEFINITION (1.3). δR(k) - ^omRo(R, £R).

PROPOSITION (1.4). (1) SR{K) is the injective envelope of RIM in

MH{R).

(2) .y?omR(iR(k), iR{k)) = R(x)RoRo, where Ro is the completion of Ro.

Proof. (1) As in the non-graded case, in order to show that £R(Ji)

is injective in MH(R) it is enough to show that for any homogeneous

ideal of R and for any integer n every homomorphism /: I(ri) —> £R{k)

can be extended to a homomorphism / ' : R(ή) -> <eR(k). Since

JtromRo(R, £Ro) c ΐlomRo(R, ERo) = Π HomΛ o(fl t, ERo),
iez

and since HomRQ(R, ERo) is an injective i?-module / can be extended to

an jβ-homomorphism f"\ R -> HomRo(R, ERo).

Let /"(I) = (gi)iez, where ^ e Hom^/i?,^ J5Λo). Since / is homogeneous

for any homogeneous element x e I we have xgj — 0 for j Φ — n. This

shows that the homomorphism / ' in MH(R) defined by /7(1) = ^_n e
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HomRo(Rn, ER() extends /. It is not difficult to show that Supp {£R{k)) = M.

Moreover we have

, gR{k)) =

This shows that $B(k) is the injective envelope of R/M in MH(R).

(2) tf

= 0 HomΛ,(Homβ0(Λ», EJ, EJ

neZ

= ®Rn®*oRθ
nez

= R(g)RΰR0.

PROPOSITION (1.5). Let R be a graded ring defined over a complete

local ring Ro and N a graded R-module. Then, we have:

(1) If N is Noetherian (resp. Artinian) τfomR(N, $R{k)) is Artinian

(resp. Noetherian).

(2) If N is Noetherian or Artinian

= N.

Proof. Using Proposition (1.4) this can be proved as in [M].

For every integer ί > 0 we put

and call it the ι-th local cohomology functor, where R is a graded [ring

defined over a local ring and M is the maximal homogeneous ideal of R.

3«*u{ ) is the ί-th derived functor of Jf°M( ) (cf. [GrJ and [HK]).

DEFINITION (1.6). Suppose that Ro is complete. We put

where d = dim R, and call this graded i?-module the canonical module

of R.

If Ro is not complete a graded i?-module XR is a canonical module

of R if there is an isomorphism in MH{R) X'& = J f ' R ® R R .
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PROPOSITION (1.7). If there is a canonical module of R it is a finitely

generated R-module and unique up to isomorphisms.

Proof. Since R is faithfully flat over R it is sufficient to show that

JfR is finitely generated. But this follows from Proposition (1.5). For

the proof of the uniqueness it is enough to show that if K and L are

finitely generated graded i?-modules such that K(x)RR — L®RR then

K = L. Let fe^omR(K(^)RRyL(2)RR)0 be an isomorphism. Since R is

flat over R and K is finitely generated over R one gets

R, L(g)RR) = ^omR(K, L) 0R R

, L) (X)Λo R o

which implies that jfomR(K(^)R R, L (x)Λ R)o is the completion of J^omR(K, L)o

since J4?omR(K, L)o is a finitely generated i?0-module. Let £?omR(K, L)^ be

the mo-adic completion of 24?omR(K, L)o. For any integer n > 0 there is

a homomorphism /„ e 2fomR(K, L)o such that f — fne m"3#ΌmR(K, L)£. By

assumption fn induces an isomorphism fn: K/m^K -> L/m^L. Hence fn is a

surjective homomorphism. Since K/MK and LI ML are isomorphic there

exist finitely generated graded free i?-modules F and G of the same rank

dimkK/MK such that there are surjective homomorphisms in MH(R)

g: F-+K and h: G-+L. Let S = K e r ( ^ ) and Γ=Ker(Λ) . We get a

commutative diagram with exact rows

0 >S >F >K >0

(I) jfcn \an |/«

0 >T >G >L >0.

an is an isomorphism since F and G are free i?-modules of the same

rank. Since fn is an isomorphism from (I) we get

Tabn(S) + mn

0Gf)T.

By Artin-Rees lemma there is an integer r > 0 such that

mn,G ΠT= mn,-r(mlG Π T) for n > r.

Therefore we get Γ c bn(S) + m0T for n> r. By Nakayama's lemma

JΓ = bn(S). From (I) one knows that fn is an isomorphism.

Let us recall that R is Cohen-Macaulay (resp. Gorenstein) if and

only if RM is Cohen-Macaulay (resp. Gorenstein), see [AG], [MR] and

[GW].
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PROPOSITION (1.8). Let d — dim R and assume that Ro is complete.

Then R is Cohen-Macaulay if and only if for any finitely generate graded

R-module N and for all i>0 we have

Proof. Suppose that R is Cohen-Macaulay. We will show that

the functor T\ ) = XomR{Xdΰ\ ), δR(k)) is the i-th derived functor of

Xo)nR{ , XR). We must show that

(1) from the short exact sequence 0-^ N'-+N-+N" —>0 we obtain

the long exact sequence

0 -> T°(N") -+ T°(N) -> Γ°(iV0 -> T\N") -> T\N) -> T\N') -* .

(2) T\R) = 0 for i > 0.

Since ^(/O is an injective object in MH(R) (1) follows from the long

exact sequence of the local cohomology. (2) follows from the fact that

for any graded ^-module N XomR(N, £R(k)) = 0 if and only if N = 0.

The converse is immediate.

PROPOSITION (1.9). Suppose that R is Cohen-Macaulay. Then R is

Gorenstein if and only if R has a canonical module XR and XR = R(n)

for some neZ.

Proof Recall that R is Gorenstein if and only if

[RIM for i = dim R

0 for i Φ dim R .

If R is Gorenstein we have Xd

M(R) = £R(k)(ή) for some neZ. Hence

XR = R(—n) by Proposition (1.3). By the uniqueness of canonical modules

we have XR = R(—ή). Conversely assume that XR = R(—ή) for some

neZ. By Proposition (1.8) we get

, R) = Xom^XtKRIM, £R(k))(n)

for all i > 0, where M is the maximal homogeneous ideal of R. Hence

R is Gorenstein since X\(R\M) = β/M and X%(R/M) = 0 for i > 0.

Since R is faithfully flat over R it follows that i? is Gorenstein.

Remark. Let α = max {n | ̂ f^(12)n Φ 0}. If i? is Gorenstein we have

XR = J?(α). In the sequel we denote this number by a(R) and call it

the α-invariant of R.
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PROPOSITION (1.10). Let R~>S be a finite homomorphism of graded

rings defined over local rings. Assume that R is Cohen-Macaulay and

has a canonical module. Then

where r = dim R — dim S.

Proof. Let nQ be the maximal ideal of So and So be the τzo-adic com-

pletion of So. Since So is finite over RQ we have So = S0(g)RoR0. Let N

be the maximal homogeneous ideal of S and N = N®RoR0. Let S =

S@RoR0. Note that ^om^(S9 δR(k)) is the injective envelope of S/iV in

MH(S).

Φ (s = dim S)

A(k)))

Since S is finite over R it follows that Jf 5 = £χtr

B(S, XR\

COROLLARY (1.11). If moreover R is Gorenstein in Proposition (1.10)

we get Jfs = iχfR{S, R)(ή) for some neZ.

From Corollary (1.11) one knows that for any p e Supp (Jfs) (Jfs)p is

a canonical module of the local ring Sp in the sense of [HK],

§ 2. Preliminaries

In this section we collect fundamental facts about the local coho-

mology of Rees algebras over Noetherian local rings.

Let (A, m, k) be a local ring and / an ideal of A. We put R(I) =

®n^0I
n and call this graded A-algebra the Rees algebra of I. Let 7 =

(aί9 , an). Then R(I) can be identified with the subalgebra A[atX, ,

anX] of the polynomial ring A[X] in one variable. Throughout this

paper we use this identification without mentioning. Let M = mR(I) +

{axX, , anX)R(I) be the maximal homogeneous ideal of R(I). Let G(I)

= ®n>olnlln+1 be the associated graded ring of /. Note that

G(I) = R(I)IIR{I) and A = R(I)/R(I)+,

where R(I)+ = ®n>0I
n. Let ^(1) - dim R(I)/mR(I) we call this number

the analytic spread of I. The analytic spread £(I) of I is equal to the
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minimum number of generators of a minimal reduction of I if the residue

field k is infinite (cf. [NR]).

PROPOSITION (2.1). Let (A, m, k) be a local ring and I an ideal of A

with hi (I) > 0. If R(I) is Cohen-Macaulay then

a) a(G(I)) < 0 and

b) for i < dim A we have

for n Φ — 1.

Proof. For b) see the proof of [HI], Proposition (1.5). Let J = R(I)+.

From the exact sequences

0 >J >R(I) >A >0

and
0 > J(l) > R(I) > G(I) > 0

we obtain the exact sequences of local cohomology

and

where d — dim A. From this one gets the isomorphisms

U ' ^dM+\J)n > ̂ dM+\R(I))n for 71 ̂  0

and surjective homomorphisms

gn: Jed

M

+1(J)n >^ίi+1(R(I))n-ι for all n.

Since ^du\J) and ̂ ifd^\R{I)) are Artinian jR(I)-modules their homogeneous

components of sufficiently large degree are zero. By an easy diagram

chase we know that 3fd

M

+1(J)n = 0ΐoτn>l and 34fd

M

+1(R(I))n = 0ΐorn>0.

Now it is easy to see that a(G(I)) < 0.

COROLLARY (2.2). Let A and I be the same as in Proposition (2.2).

Then 3fd

M

+1(R(I))n = 0 for n > 0.

Proof. This follows from the proof of Proposition (2.1).

If, inparticular, I = m we have the following result.

PROPOSITION (2.3). If d = dim A > 0 the following conditions are
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equivalent.

(1) R(m) is Cohen-Macaulay.

(2) a) a(G(m)) < 0 and

b) for i < d we have

= (Hi(A) for Λ = - 1

|θ for nφ - 1 .

In £/MS case A awe? G(m) are Buchsbaum.

Proof. See [IJ.

For the technical simplicity in the rest of this paper we assume that

every local ring has an infinite residue field.

LEMMA (2.4). Let A and I be the same as above and let q be a minimal

reduction of I. We put r(q) = min {r e Z\ J r + 1 = qΓ}. If ht(J) = £(I) we

have r(q) > a(G(I)) + ht(I).

Proof See [HI], Lemma (2.3).

LEMMA (2.5). Let A and I be the same as above. We put

rti = max {n e Z\^fί

M(G(I))n Φ 0} for 0 < i < d = dim A.

If I is m-primary we have r(q) < max^ {nt + i} for any minimal reduction

qofl.

Proof. Let x e A. We denote by x* the initial form of x with respect

toJJ. Let q = (a19 , ad) and q* = (ax*, , af). Then

r(g) = max{r e Z\(G(I)lq*)r Φ 0}.

If dim G(7) = 0 the assertion is clear. Let dim G(I) > 0. Since the residue

field is infinite we may assume that lG(n((0: a?)) < oo. From the exact

sequences

and

0 > (0 : of) > G(I) > G(/)/(0 : of) > 0

we get the exact sequence

for 0 < i < d. Let n$ = max {n e Z 1^(0(1)IafG(I))n Φ 0}. Then n\ <

max {nί9 ni+ί + 1}. By induction we have r(q) < max {/lί + i}.
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§ 3. The Gorensteinness of Rees algebras

This section is devoted to the proof of the following theorem.

THEOREM (3.1). Let (A, m, k) be a local ring and I an ideal of A.

Suppose that R(I) is Cohen-Macaulay and grade (I) > 2. Then the follow-

ing conditions are equivalent

(1) R(I) is Gorensteίn.

(2) KA = A and XGkι)

Remark. Since A and G(I) are homomorphic images of R(I), A and

G(I) have canonical modules if R(I) is Gorenstein.

We need several preliminaries to prove this theorem.

LEMMA (3.2). Let A be a local ring which has a canonical module

KA. Then the following conditions are equivalent.

(1) A satisfies (S2).

(2) A satisfies (S2).

(3) H o m ^ , i θ = A.

Proof. See [A], (4.4) and (4.5).

LEMMA (3.3). Let A and I be the same as in Theorem (3.1). Let a e

I — P be an element whose initial form in G(I) is a non zero-divisor. We

put R = R(I)/(a, aX). If R(I) is Gorensteίn and grade (I) > 2 we have

^dπ\R) = 0, where dim A = d.

Proof. Let R = R(I) and G = G(I). Since a is a non zero divisor,

by Propositions (1.8) and (1.9), it is enough to show that <^χtR/aR(R, R/aR)

= 0. Let I = (au , an). Then we have the exact sequence

(RlaR)n(-l) • RlaR(-ϊ) — > R/aR > R > 0.
r ~* aX

Applying the functor ^omR/aR{ ,R/aR) to this sequence, we see

SχtR/aR(R, RjaR) = (aR: IR)/(a, aX).

Let fm e (aR : IR), where felm and m > 0. Then we have

fe (aA : I) Π (Im+1:1) c (aA : I) Π (/m+1: a).

Since grade (I) > 2 we have (aA : /) = aA. That α* is a non zero-divisor

of G(I) is equivalent to that (Im: a) = I171'1 for all m > 0. Hence we
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have (J m + 1 : a) = Im. Therefore fe Im Π aA = α/771"1. This means (αi? : IR)

= (α, αX), which completes the proof.

LEMMA (3.4). Let A and I be the same as in Theorem (3.1). Assume

that R(I) is Cohen-Macaulay and JfG(7) = G(J)(-2). Then

where d = dim A and k = R(I)/M.

Proof. Let R and G be as in the proof of Lemma (3.3). Put J =

®n>oRn Then we get the exact sequence (cf. the proof of Proposition

(2.1))

(I) 0 > ^omR(k, Hί(A))

and

(II) 0

Since j4?omR(k, H^(A)) is concentrated in degree 0 and since £χtι

R(k, Hd

m(A))n

= 0 for n < — 2 from (I) we get isomorphisms

fnl 3fomR(k, ^dMX{J))n > JfomR(k, ^dMl(R))n

for n < —2. By assumption 3fomR(k, ^i(G))n = 0 for n Φ — 2. (II) yields

injective homomorphisms

for n < - 2 . Since 2fd

M

+1(J) and J^d

M

+1(R) are Artinian

jfomR(k, Jfγτ(J))n = Jt>omB(k, JfltWn = 0 for n « 0 .

Now, it is easy to see that

& omR(k, yn+1(R))n = o

for n < — 2. On the other hand, by Corollary (2.2) we, have 3^\R)n = 0

for n > 0. This completes the proof.

LEMMA (3.5). Let (A, m, fe) be a local ring and I an ideal of A such

that R(I) is Cohen-Macaulay. Suppose that grade (I)>n> 0, Then A

and G(I) satisfy (Sn).
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Proof. We may assume that A is complete. Let G = G(I). Let B

be a Gorenstein local ring such that A is a homomorphic image of B

and d = dim A = dim B. Let TZ be the maximal ideal of B. By the local

duality we have

Ext^A, B) = ΉomB(H*-ϊA)9 EB(B/n)) for i > 0,

where EB(Bjri) is the injective envelope of Bjn as J3-module. By Proposi-

tion (2.1) we see that ExtB(A, B) is annihilated by I for i > 0. Let p e

Spec (A) and P be the inverse image of p in B. Then if p ~p I we have

ExtiP(Ap, βp) = 0 for i > 0.

Hence Ap is Cohen-Macaulay. If p D I we have depth Ap > TZ by assump-

tion. Therefore A satisfies (Sn).

To prove the assertion on G we use induction on dim A//. Let

dim AIΊ = 0. By Proposition (2.1) we know that lG{^l

M(G)) < oo for i < d

and depth GN > n, where iV is the maximal homogeneous ideal of G.

Hence G satisfies (Sn) because GQ is Cohen-Macaulay for Q e Spec (G)

— {N}. Let dim A/I > 0. Note that G can be written as a homomorphic

image of a Gorenstein graded ring of the same dimension. By Proposition

(1.8) we see that Gp is Cohen-Macaulay if p ~fi G+, where G+ = ξ&n>0Gn.

Assume that p 3 G+ and p φ N. Then p Π A/I = Pjl for some P e Spec (A)

— {m}. Since R(I)P is Cohen-Macaulay and dim A/I > dim APIIAP one

knows that GP satisfies (SJ by induction on dim A/I.

Proof of Theorem (3.1). First we show that if ht(I) > 0 and R(I) is

Cohen-Macaulay then there is an element aeI — P whose initial form

in G(I) is a non zero-divisor. Since ht (IR(I)) > 0 one can choose an

element b e I which is a non zero-divisor on R(I). Noting that R(I)[IR(I)

+ IXR(I) = A/1, we have ht (IR(I) + IXR(I)) = dim R(I) - dim A/I = d +
1 — dim A/I > 2. Since the residue field of A is infinite we can choose an

element c + aX of IR(I) + IXR(I) such that δ, c + aX is an i?(I)-sequence

and a el — I 2 . Since 6 is also a non zero-divisor on A one can easily

verify that (bR(I): bX) = IR(I). This implies that there exists an exact

sequence

0 > G(I)(-1) > R(I)lbR(I) • R(I)l(b9 bX)R(I) > 0.

By the choice of c + aX we see that c + aX is a non zero-divisor on

G(I). The canonical image of c + aX in G(I) = R(I)IIR(I) is nothing but
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the initial form of a because eel. Therefore the initial form α* of a in

G(I) is a non zero-divisor on G(I).

(l)c>(2): Let R = R(I) and G = G(I). Let ael-P be as above.

Since a is a non zero-divisor on A there are two exact sequences

(#) 0 > A • R/aXR • R/(a, ax) > 0

and

(##) 0 > G(-1) > R/aR > R/(a, aX) > 0.

These exact sequences induce the exact sequences by Lemma (3.3)

(+) 0 • ^d

M(A) -—> ̂ d

M{RjaXR) > yfURKa, aX)) > 0

and

(+ +) o • sn(GK-1) > JniR/aR) > Jn(RI(a, aX)) > 0,

where d = dim A and M is the maximal homogeneous ideal of R as before.

Since R is Gorenstein X'R — R(ή) for some ne Z. Since aX is a non zero

divisor of degree 1 we have 3f RlaXR = RlaXR(n + 1). From the exact

sequence (+) we know that n = — 1 and KA — AjJ for some ideal J of A.

From (++) we have JΓσ = G/L(—2) for some homogeneous ideal L of G. By

Lemma (3.5) A and G satisfy (S2), hence by Lemma (3.2) we have J = 0

and L = 0.

( 2 ) φ ( l ) : From the exact sequences (#) and (##) we get two injections

3PJF\RI(a9 aX))-+JPJiiA) and 3t£\RI(a, aX)) -> ^ ( G ) ( - l ) since i? is

Cohen-Macaulay. From the first one we know that 2ffdΰ\R\{a, aX)) is

concentrated in degree 0. The assumption XG = G( — 2) shows that ^1(G)W

= 0 for n > — 1. From the second injection we see that ^d^\R\{a, aX))

= 0. Hence we have the exact sequences (+) and (++). By Lemma (3.4)

we know that JfomR(k, ^^(R/aXR)) is concentrated in degree 0. By (+)

we get

tfom*(k, sn(RlaXR)) = Hom,(£, Hd

m(A))

since tfd

M(R\aR)n = ^(J2/(α, aX))n = 0 for n > 0 by Corollary (2.2). By

the assumption KA = A we have HomA(£, Hd

h(A)) = k. This shows that

i? is Gorenstein.

Let I be an ideal of a local ring and q a minimal reduction of 7.

We put r(g) = min{r|/ r + 1 = qlr). We call r(q) the reduction exponent

of q.
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COROLLARY (3.6) Let A be a local ring and I an ideal of A such that

hi (I) = ί(I) > 0 and R(I) is Cohen-Macaulay. Then we have:

(1) Suppose that a(G(I)) > - 2 . Then we have r(q) = ht(7) - 1 or

ht (7) — 2 for any minimal reduction q of 7.

(2) Suppose moreover that grade (7) > 2 and R(I) is Gorenstein. Then

for any minimal reduction q of I we have r(q) = ht (7) — 2 if and only if

depth A > dim Ajl + 2.

Proof. (1) By induction on dim AjL If dim All = 0 this follows from

Lemmas (2.4) and (2.5). Let dim Ajl > 0. Choose an element b e A whose

image in A/7 is a part of system of parameters of AjL By Proposition

(1.5) b is a non zero-divisor on G(L) and R(I) and we have R(I)jbR(I)

= R(I(AjbA)) and G(I) = G(I(A/bA)). It is easy to see that the ideal

I{AjbA) in A/bA satisfies the same assumption on L By induction

hypothesis we have r(q(A/bA)) = ht (7) — 1 or ht (7) — 2. By Nakayama's

lemma we have r(q(AlbA)) = r(q).

(2) First we assume that depth A > dim A/1 + 2. If dim A\I = 0 we

have r(q) = ht(I) - 2 by Proposition (2.1), Lemmas (2.4) and (2.5). We

proceed by induction on dim AjL. Let dim A/I > 0. Then by assumption

depth A > 3. Let ai9 a2 be a regular sequence in /. One can choose an

element b em so that au α2, b is a regular sequence and the image of

b in A\I is a part of system of parameters of A\L Then grade (J(A/6A))

> 2 and i?(J(A/6A)) is Gorenstein. Since depth A\bA > dim A/(6, J) + 2

we have r(g) = ht(J) — 2 by induction hypothesis.

Conversely assume that r(q) = ht(J) — 2. Let bίf - - -, bsem be a

system of parameters of A/7. We set A = A/(6X, , 6S). Since bu - - ,bs

is a regular sequence we have only to show that depth A > 2. Let I =

IA and q = ^A. Since r(5) = ht(J) - 2 we see that 2?h

M{G{Ί))n = 0 for

λi > — 1 by Lemma (2.4), where h = ht(7). By [HI], Proposition (1.5) we

know that bu , bs is a G(/)-sequence. Let <?< = (&i, , &i) for 1 < ί < 5.

Then we see that G(/)/g,G(7) = G(/(A/(^)). We set G, = G(7)/g,G(7) for

1 < £ < s. Then we have an exact sequence

Since r(g(A/^)) = ht(7) - 2 we know that ^^{GX = 0 for n > - 1 by
Lemma (2.4). By Proposition (2.1) we see that H
for 1 < j < s.
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This implies that KΛ/q. — A\qi for 0 < i < s, where q0 = 0. In partic-

ular, Kj = A. One sees that depth A > 2 by [A]. The following is a

generalization of a result in [GS],

COROLLARY (3.7). Let A be a Cohen-Macaulay local ring and I an

ideal of A with ht (I) = £(I) > 2. Then the following conditions are equiv-

alent.

(1) R(I) is Gorensteίn.

(2) G(I) is Gorenstein and a(G(I)) = - 2 .

(3) G(I) is Gorenstein and there exists a minimal reduction q of I

such that r(q) = ht (/) — 2.

In this case A is Gorenstein.

Proof. This follows from Theorem (3.1), Corollary (3.6) and the fact

that the Gorensteinness of G(I) implies that of A.

COROLLARY (3.8). Let A and I be the same as in Corollary (3.6).

Suppose that

(1) R(I) is Gorensteίn,

(2) lA(Hi(A)) < oo for ί < d = dim A and

(3) 2ht(I)<dimA.

Then A is Gorensteίn.

Proof. By Corollary (3.7) it is sufficient to prove that A is Cohen-

Macaulay. Let 61? •••,&, be a system of parameters of AjL We put

q. = (b19 '",bί) and G, = G^lqβil) for 1 < i < s. Let au - , ahy h =

ht(I), be a minimal generators of a minimal reduction of I. Then

ai9 - -, ak, bl9 - - , bs is a system of parameters of A. Since lA(Hι

m(A)) < oo

for i < d we know that if t < depth A then any t elements of a system

of parameters of A form a regular sequence by [CST], (3.3). Hence we

have grade (I(Ajqt)) > 2 for 1 < ί < s by [HI], Proposition (1.5). We are

going to show that Hd

m-s + ί(Alqs_j) = 0ΐoτ2<j<s-2 and 1 < ί <j - 1
by induction on j . Let j — 2. From the exact sequence

3^M s+1(Gs-2) - H ^n-S+1(GS_2) • ̂ - ^ ( G , . , )

we get Hd

m-s+ί(Alqs_2) = bs_,Hd

m-s+ί(Alqs_2) by Theorem (3.1) and Proposition

(2.1) since R(I(Alqs_J) is Gorenstein. By the assumption (2) we get

HdZs+\Alqs_2) = 0. Let us assume that our assertion is true for j < s — 2

and we will prove that the assertion is true for j + 1. Since bs_ό is a
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non zero-divisor on Ajq^^i we obtain the exact sequence

for ί > 0. By the induction hypothesis Hd

m-s+ί(Alqs_j) = 0 for 1 < ί < j - 1.

Therefore Hί-'+'iA/q,^^) = 0 f ° r 1 < £ < 7 — 1 by assumption (2). It

remains to prove that i3Γ™~β+ '(A/gβ_</_1) = 0. But this can be proved by

the same method used for j = 2. Hence, in particular, we get Hl

m(A) = 0

for h + 1 < i < d. By assumption (3) we get depth A > dim A// + 1 > h

+ 1 cf. [HI]. Therefore A is Cohen-Macaulay.

§ 4. Example

In this section we construct a local ring (A, m, k) such that R(m) is

Gorenstein but A is not Cohen-Macaulay. For a local ring A we denote

the multiplicity of A by β(A).

LEMMA (4.1). Let (A, m, k) be a local ring with dim A = 3 and q =

(au a2, α3) 6e a minimal reduction of m. Let

I = ((αt, α 2 ) : α3) + ((α2, α 3 ) : a,) + ((aί9 α 3 ) : α2) + m 2 .

Then R(m) is Cohen-Macaulay if and only if m? = qm2 and lA(I/m2) =

- e(A)) + 3.

Proo/. See [I2], Theorem 5.

LEMMA (4.2). Let A be the same as in Lemma (4.1). Suppose that

R(m) is Cohen-Macaulay and A is not Cohen-Macaulay. If IJjnjm2) = 6

we have

(1) A is a Buchsbaum ring with depth A = 2 and lA(H2

m(A)) = 1,

(2) m2 = qm for any minimal reduction q of m and

(3) e(A) = 3.

Proof See [I2], Corollary 11.

EXAMPLE (1). Let k be a field and Xi9 Yt (1 < i < 3) be indeterminates

over k. We put

A = k[[xlf x,, χ3, γu γa YMXXYI + XΆ + χ&, (Yu Y» y3)
2).

Then A is not Cohen-Macaulay but R(m) is Cohen-Macaulay. By Lemma

(4.2) e(A) = 3 (cf. [IJ and [I2]).
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EXAMPLE (2). Let k be a field of ch (k) = 2 and X, X2, X3, Y,, Y2, Yt, Y4

indeterminates over k. Let

A = k[[xu x2, x3, Y,, γt, γ3, yj

= £ [ | X , X2, X3, yu • • •, yt]]

where J is the ideal generated by XXYX + X2Y2 + Z3Y3, YL Y1, Yl, Y\, YιYi,

Y2Y<, ZYt, YJ2 - X3Yit Y2Y3 - XY< and F t73 - Z 2 F ,

Then A is not Cohen-Macaulay but R(m) is Gorenstein.

To prove this we need the following lemma.

LEMMA (4.3). (0: y4) = (yu • • •, yd

Proof. Let R = k[[Xu Xt, X3, Yu Y2, Y3, YJ] and let fe (J: Γ4). Since

(J: Y4) = (XΛ + X2Y2 + X3Y3, YtY2 - X3Y4, Y2Y3 - X&, Y,Y3 - X2Y<):

Y< + (YU ••-, Yd

we may assume that / belongs to the first ideal on the right side. Let

us write

X3Y3) + (g2 +

+ (g, + giYd(Y*Y3 - XxYd + (gt + gWXYiYt - XzYd,

where gt e k[[Xu X2, X3, Yu Y2, Y3]]. From this we see that

(I) g^Y, + X2Y2 + X3Y3) + giYίYi + g3Y2Y3 + gJiY* = 0

and

(II) / = -g2X3 - g^ - g,X, mod (Yu ., Y4).

From (I) we have

Y^X, + g2Y2 + giYz) + F2(^X2 + £3r3) = 0.

Since Yu Y2 is a regular sequence in R we have

gιX1 +g2Y2 + g,Y, = hY2

gίX2 + gsYs= -hY,

for some he R. Since Xl9 Y2, Y3 and X2, Ŷ  Y3 are regular sequences in R

there are elements al9 α2, α3, bu b2, 63 of i? such that

0 ax α2\

(III) (&, ̂ 2 - Λ, ί 4 ) = (Xlf Y2, Y3)| -a, 0 α3,

-α2 —α3 0,
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(IV) (g1,h,gd

Hence

gί = - β ] y 2 - α2γ3 = -6,y; - 62γ3.

Since ch (A) = 2 we have

α2 + 62 = Oj

α l Ξ 0 mocKY,, •••, Y4).

6i = θj

By (II), (III) and (IV) we obtain

/ = a^XxXi + btX2X3 + (σ2 + 62)X,X2

= 0 m o d ( Y 1 > . . . , y j .

Proof of Example (2). By Lemma (4.3) we have (0 : y4) = OΊ, , y4).

From the exact sequence

0 >AI(0:yi) >A >A/yAA >0

we get e(A) = e(A/(0: yj) + e(A/y4A). Since Ajy^A is isomorphic to the

local ring in Example (1) and since A/(0: y±) is a regular local ring we

have e(A) = 4. It is easy to see that xl9 x2, x3 is a system of parameters of

A and that ((xl9 x2) : x3) = (xu x2, y,), ((x2, xΛ): x,) = (x2, x3, yi) and ((xl9 x3): x2)

= (̂ u ̂ 3> 2̂)- This shows that A is not Cohen-Macaulay. It is easy to

verify that m2 = (xu x2, xs)m. By Lemma (4.1) we see that R(m) is Cohen-

Macaulay. By Theorem (3.1) it is enough to show that 3fG{m) = G(m)(—2).

Since A is defined by homogeneous polynomials

G(m) = k[Xu X2, X,, Yu Y2, y,, yj/c/* - k[xu x2, . , yj,

where J * is generated by the polynomials generating J. Let S = k[xu x2, x3].

Then S is a polynomial ring with dim S = 3 and G(m) is generated by 1,

JΊ* JΊ, 3̂? ̂ 4 as an S-module. Since G(m) has rank 4 as an S-module and

depth G(m) = 2 we get a finite free resolution of G(m) as S-module

0 > S(-2) > S Θ S 4 ( - l ) > G(m) > 0,

where d is given by d(β0) = 1 and d{eτ) = yt for 1 < i < 4, with suitable

free basis eo> £i> , e* of S φ S 4 ( —1) with deg(β0) = 0 and degfe) = 1 for
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1 < i < 4. By Corollary (1.11) JΓG(m) = jeOms(G(m\ S(-3)).

The G(m)-structure of XG(m) is given by

(xf)(y) = f{χy) for fe Jeoms(G(m\ S(-3)) and x,ye G(m) .

j f G(m) is generated by ef, x2ef - xze*, x,e* - xxef, x,e} - x2e? and ef as an

S-module, where ef is the dual base of et with deg (e?) = 3 and deg (βf) = 2

for 1 < i < 4. Using the fact that ch (k) = 2 we can easily verify the

following relations as G(/n)-module.

yAet = ef

y2ef =

— x2ef

Hence XG{m) = G(m)(-2) and hence R(m) is Gorenstein by Theorem (3.1).

EXAMPLE (3). Let A be same as in Example (2). We put B =

A[[T19 - -, Tn]]9 where Tl9 - -, Tn are indeterminates over Λ. Let I = τnJ3.

Then i?(I) = i?(m) (x)̂  S is Gorenstein since B is faithfully flat over A.

I{ n>3 we have 2 ht (/) = 6 < dim S. But B is not Gorenstein.

Remark, a) If in Example (2) ch (k)φ2 A is not Buchsbaum. This

can be seen as follows. If A is Buchsbaum we have

e(A) = lΛ(AI(xί9 x2, X*)) - lA((Xu ^ ) : xA*» xj)

= 5 - 1 = 4.

On the other hand one can easily see (0: j>4) z> (yL, , y4, x&) and

dim A/(0 : y4) < 3. This implies e(A) = e{Aly±A) = 3, a contradiction.

b) Example (3) shows that Corollary (3.8) is false without any

restriction on the local cohomology modules of A.
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