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ON THE GORENSTEINNESS OF REES ALGEBRAS
OVER LOCAL RINGS

SHIN IKEDA

Introduction

Let (A, m, k) be a Noetherian local ring and I an ideal of A. We
set R(I) = @,>,I" and call this graded A-algebra the Rees algebra of I.
The importance of the Rees algebra R(I) is in the fact that Proj R(I) is
the blowing up of Spec A with center in V(I). The Cohen-Macaulayness
of Rees algebras was studied by many mathematicians. In [GS] S. Goto
any Y. Shimoda gave a criterion for R(m) to be Cohen-Macaulay under
the assumption that A is Cohen-Macaulay. Their results have been
generalized to R(I) in [HI].

Let grade (I) > 2. The purpose of this paper is to characterize the
Gorensteinness of R(I) in terms of canonical modules of A and the asso-
ciated graded ring G(I) = @,», [*/I"*'. The notion of canonical modules
of local rings plays an important role in the homological theory of local
rings, cf. [HK]. The canonical modules of graded rings defined over a
field were introduced and studied extensively in [GW]. In Section 1 we
introduce the notion of canonical modules of graded rings defined over
a local ring. Our definition of canonical modules coincides with that of
[GW] if the local ring is a field. In Section 2 we collect several facts
about the behaviour of the local cohomology modules of Rees algebras.
Section 3 will be devoted to the proof of our criterion of the Gorensteinness
of R(I) and to the construction of an example of a local ring (A4, m, k)
such that R(m) is Gorenstein but A is not Cohen-Macaulay.

§1. Local cohomology of graded rings

In this section we give a brief summary of the theory of local co-
homology and duality of graded rings.
Let R = @,z R. be a Noetherian graded ring and let M, N be graded
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R-modules. Let us denote the category of graded R-modules by M(R).
A morphism in M4(R) f: M- N is an R-linear map such that f(M,) C N,
for all neZ Let neZ We denote by M(n) the graded R-module whose
grading is defined by M(n), = M,., for all meZ. Let #Homz(M, N), be
the abelian group of all homomorphisms from M into N(n) in M,(R). Let
Homg(M, N) = @reg Homg(M, N),. Then Homy(M, N) is a graded R-
module whose homogeneous component of degree n is Homz(M, N),. A
graded R-module E is injective (resp. projective) in M,(R) if the functor
Homz( , E) (resp. Homy(E, )) from My(R) into itself is an exact functor.

The tensor product M ®z N is a graded R-module whose n-th homo-
geneous component is the abelian group generated by the elements of
the form x®y with xe M,, ye N, and i + j = n.

The category M,(R) is an abelian category with enough injectives
(cf. [Gr,], (1, 10)). A homomorphism f: M — N in My(R) is called essential
if f is an injection and for any non-trivial graded R-submodule L of N
we have f(M)NL =+ 0. The injective envelope of a graded R-module M
is an injective object &x (M) of M,(R) with an essential homomorphism
M — &x(M) in My(R).

The following proposition describes the structure of injective objects
in My(R).

ProposiTiON (1.1). (1) Let M be a graded R-module. Then
Ass (€ (M) = Ass,(M).

(2) Let E be an injective object of My(R). Then E is indecomposable
if and only if E = &x(R/p)(n) for some homogeneous prime ideal of R and
for some neZ.

(3) Every injective object of My(R) can be decomposed into o direct
sum of indecomposable injective objects of My(R). This decomposition is
unique up to isomorphism.

Proof. This is [GW], (1.2.1).

For i > 0 the functor &xt%( , ) is defined to be the i-th derived functor
of the functor #omz( , ). Suppose that M is a finitely generated graded
R-module. Then #omz(M, N) = Homy(M, N) as underlying R-modules.
Hence &xii(M, N) = Exti(M, N) for all i > 0. For any p e Spec (R) and
for any R-module L we define

#(p, L) = dim,, Ext} (k(p), L),
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where k(p) = R,/pR,, and call this number the i-th Bass number of M
at p (cf. [B]).

ProposiTION (1.2). Let M be a graded R-module and let
O- M-I ... 5" ...

be a minimal injective resolution of M in M (R). Then for any homogeneous
prime ideal p and for any integer i > 0, p(p, M) is equal to the number
of the graded R-modules of the form & (R[p)(n) which appear in I' as
direct summands.

Proof. This is [GW], (1.2.4).

In this paper a Noetherian graded R is called defined over a local
ring if B,is a Noetherian local ring and R, = 0 for n < 0. If R is defined
over a local ring we denote the graded ring R g, }%0 by R, where R, is
the completion of R,. In the rest of this section R denotes a graded
ring defined over a local ring (R, m, k) and M denotes the maximal
homogeneous ideal of R. R can be regarded as a graded R;module in
a natural way. Let Ej, be the injective envelope of 2 as an R;-module.
We denote by &, the graded R-module whose underlying R;module is
E;, and whose grading is given by [£,], = Ez, and [6z], = 0 for n + 0.

DEeFINITION (1.3). & i(k) = Homp (R, &)

PropositioN (1.4). (1) &x(k) is the injective envelope of R[M in
M (R).

(2) Homp(Er(R), Ex(R) = RQp, R,, where R, is the completion of R,

Proof. (1) As in the non-graded case, in order to show that &(k)
is injective in My(R) it is enough to show that for any homogeneous
ideal of R and for any integer n every homomorphism f: I(n) — & (k)
can be extended to a homomorphism f’: R(n) — & (k). Since

L7fomRo('l%’ gRo) - HomRa(Ry 'ERQ) - H HomRo(Ri’ ERD) )
i€z

and since Hom, (R, E,) is an injective R-module f can be extended to
an R-homomorphism f”: R— Hom,(R, E;,).

Let f”(1) = (8.)icz, Where g, € Hom, (R_,, Ez). Since fis homogeneous
for any homogeneous element xel we have xg, =0 for j+—n. This
shows that the homomorphism [/ in My(R) defined by f(1)=g_,¢
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Homy(R,, Er,) extends f. It is not difficult to show that Supp (¢:(k)) = M.
Moreover we have

fomn (R/M9 @@R(k)) = JfomR(R/M, %OWLRQ(R7 gRo))
= JfomRO(R/M, @@Ro)
= k.

This shows that &;(k) is the injective envelope of R/M in M (R).

(2) fomR(gﬂ(k), g}z(k)) = %OMR(gR(k)’ '%omRo(R7 éaRo))
= fomm(‘gk(k), éazzo)
= Homp(Homp(R, € ry)s € ry)
= @ Homg(Hom(R,, Ez,), Ez,)

neZ

= @ Rn ®RORO

neZ

=R®guR,.

ProrositioN (1.5). Let R be a graded ring defined over a complete
local ring R, and N a graded R-module. Then, we have:
(1) If N is Noetherian (resp. Artinian) #omgz(N, & x(k)) is Artinian
(resp. Noetherian).
(2) If N is Noetherian or Artinian
%UWR(%O’"R(Ns éBR(k)): (9@R(k)) = N.
Proof. Using Proposition (1.4) this can be proved as in [M].

For every integer i > 0 we put
Hy( ) = lim Exte(RIM™, )

and call it the i-th local cohomology functor, where R is a graded iring
defined over a local ring and M is the maximal homogeneous ideal of R.
Hi( ) is the i-th derived functor of s#%( ) (cf. [Gr,] and [HK]).

DerFiNITION (1.6). Suppose that R, is complete. We put
f}z = Jfomk(!f%{(R), éazz(k)) )

where d = dim R, and call this graded R-module the canonical module
of R.

If R, is not complete a graded R-module £, is a canonical module
of R if there is an isomorphism in M,(R) # s = & » R, R.
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ProposiTion (1.7). If there is a canonical module of R it is a finitely
generated R-module and unique up to isomorphisms.

Proof. Since R is faithfully flat over R it is sufficient to show that
A5 is finitely generated. But this follows from Proposition (1.5). For
the proof of the uniqueness it is enough to show that if K and L are
finitely generated graded R-modules such that K® R = L& » R then
K=L. Let fe omp(KR RI%,L@ = R), be an isomorphism. Since R is
flat over R and K is finitely generated over R one gets

Homi(K®r R, LR, R) = #omn(K, L)@, R
= J/KOWR(K, L) ®Ro éo

which implies that #oms(K Qz R, L ®» R), is the completion of #om (K, L),
since Homy(K, L), is a finitely generated R,-module. Let #omz(K, L); be
the mgadic completion of #omx(K, L), For any integer n > 0 there is
a homomorphism f, € #omz(K, L), such that f— f, e mis#omx(K, L);. By
assumption f, induces an isomorphism f,: K/m:K — L/m:L. Hence f, is a
surjective homomorphism. Since K/MK and L/ML are isomorphic there
exist finitely generated graded free R-modules F and G of the same rank
dim,K/MK such that there are surjective homomorphisms in Mg(R)
g: F—-K and h: G—L. Let S=Ker(g) and T = Ker(h). We get a
commutative diagram with exact rows

0 S > F >K—>0

@ lbn lan l n

0—T—G——>L —0.

a, is an isomorphism since F and G are free R-modules of the same
rank. Since f, is an isomorphism from (I) we get

TCb,(S) +mGNT.
By Artin-Rees lemma there is an integer r > 0 such that
mGNT = mi~"(m;GNT) for n>r.

Therefore we get T C b,(S) + m,T for n>r. By Nakayama’s lemma
T = b,(S). From (I) one knows that f, is an isomorphism.

Let us recall that R is Cohen-Macaulay (resp. Gorenstein) if and
only if R, is Cohen-Macaulay (resp. Gorenstein), see [AG], [MR] and
[GW].
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PropositTiON (1.8). Let d = dim R and assume that R, is complete.
Then R is Cohen-Macaulay if and only if for any finitely generate graded
R-module N and for all i >0 we have

Homp(H4(N), 6 (k) = ExtiT (N, A 5).

Proof. Suppose that R is Cohen-Macaulay. We will show that
the functor T ) = Homz(#%( ), £x(k)) is the i-th derived functor of
Homp( , # ). We must show that

(1) from the short exact sequence 0 —- N’ —- N-— N”—0 we obtain
the long exact sequence

0 — T(N") — TN) — TYN") — TN") — TN) — TN) > - - -

(2) TY(R)=0 for i >0.

Since &x(k) is an injective object in M (R) (1) follows from the long
exact sequence of the local cohomology. (2) follows from the fact that
for any graded R-module N #omy(N, &z(k)) = 0 if and only if N =0.
The converse is immediate.

ProrositioN (1.9). Suppose that R is Cohen-Macaulay. Then R is
Gorenstein if and only if R has o canonical module # , and X , = R(n)
for some neZ.

Proof. Recall that R is Gorenstein if and only if

R/IM for i ==dim R

Sui(RIM, R) =
W(E[M, B) {0 for i = dim R .

If R is Gorenstein we have #%(R) = &x(k)(n) for some neZ Hence
Ay = ft’(—n) by Proposition (1.3). By the uniqueness of canonical modules
we have X4, = R(—n). Conversely assume that ¢, = R(—n) for some
neZ. By Proposition (1.8) we get

Exti(RIM, R) = Homa(#%5 (RIM, & 4(R))(n)

for all i >0, where M is the maximal homogeneous ideal of R. Hence
R is Gorenstein since #%(R/M) = R/M and #4(R/M) =0 for i> 0.
Since R 1is faithfully flat over R it follows that R is Gorenstein.

Remark. Let a = max {n|#%(R), + 0}. If R is Gorenstein we have
A n = R(a). In the sequel we denote this number by a(R) and call it
the ag-invariant of R.
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ProposITION (1.10). Let R— S be a finite homomorphism of graded
rings defined over local rings. Assume that R is Cohen-Macaulay and
has a canonical module. Then

%‘S = gxt%(s, JX/‘R)y

where r = dim R — dim S.

Proof. Let n, be the maximal ideal of S, and S, be the ne-adic com-
pletion of S,. Since S, is finite over R, we have S, = Sy @y, Ry Let N
be the maximal homogeneous ideal of S and N=N® wB,. Let §=
S &z, ﬁ’o. Note that .}fomg(é, &3(R)) is the injective envelope of S‘/N in
M(S).

Hs = Homs(#5(S), ESIN) (s = dim )
= Hons(H4(8), Homa(S, & s(#)))
= Hona(H4(S), & 4(R)
= é"’xt},(é, A 3)
= &S, X )RR R.

Since S is finite over R it follows that # 5 = &xt%(S, A ).

CoroLLARY (1.11). If moreover R is Gorenstein in Proposition (1.10)
we get A g = Ext’y(S, R)(n) for some ne Z.

From Corollary (1.11) one knows that for any p € Supp (X '5) (#s), is
a canonical module of the local ring S, in the sense of [HK].

§2. Preliminaries

In this section we collect fundamental facts about the local coho-
mology of Rees algebras over Noetherian local rings.

Let (A, m, k) be a local ring and I an ideal of A. We put R(I) =
@nsoI™ and call this graded A-algebra the Rees algebra of I. Let I =
(a, --+,a,). Then R(I) can be identified with the subalgebra AleX, -- -,
a,X] of the polynomial ring A[X] in one variable. Throughout this
paper we use this identification without mentioning. Let M = mR(I) +
(aX, -+, a,X)R(I) be the maximal homogeneous ideal of R(I). Let G(I)
= @usoL[*/I"** be the associated graded ring of I. Note that

G(I) = R(D/IR(I) and A = R(I)/R).,

where R(I), = @,s,I". Let 4(I) = dim R(I)/mR(I); we call this number
the analytic spread of I. The analytic spread 4(I) of I is equal to the
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minimum number of generators of a minimal reduction of I if the residue
field % is infinite (cf. [NR]).

ProPOSITION (2.1). Let (A, m, k) be a local ring and I an ideal of A
with ht(I) > 0. If R(I) is Cohen-Macaulay then

a) a(GI)) <0 and

b) for i <dim A we have

H(A -
e, = {5

Proof. For b) see the proof of [HI], Proposition (1.5). Let J = R(I),.
From the exact sequences

0—>dJ—>R(I)—>A—0
and
0—>J1)—> R(I)—> GI) —>0

we obtain the exact sequences of local cohomology

0 —> Hi(A) —> #5()) —L> A4 (RI) —> 0
and

0 —> #YGI) —> #4I)D) > A4 (RI) —> 0,
where d = dim A. From this one gets the isomorphisms

fur H5NT) —> H5(RU)),  for n£0
and surjective homomorphisms
8t KGN, —> 5 (R)), for all n.

Since #%(J) and #%(R(I)) are Artinian R(I)-modules their homogeneous
components of sufficiently large degree are zero. By an easy diagram
chase we know that #%'(J), = 0 for n > 1 and #%*(R(I)), = 0 for n > 0.
Now it is easy to see that a(G(I)) < 0.

COROLLARY (2.2). Let A and I be the same as in Proposition (2.2).
Then #%4*(R(I)), = 0 for n > 0.

Proof. This follows from the proof of Proposition (2.1).
If, inparticular, I = m we have the following result.

ProrosiTioN (2.3). If d =dim A >0 the following conditions are
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equivalent.
(1) R(@m) is Cohen-Macaulay.
(2) a) a(Gm)) <0 and
b) for i < d we have
) Hi(A) for n = —1
Hi(G(m)), =
(Glm)) {0 for n = —1.

In this case A and G(m) are Buchsbaum.

Proof. See [1].
For the technical simplicity in the rest of this paper we assume that
every local ring has an infinite residue field.

LemMmA (24). Let A and I be the same as above and let q be a minimal
reduction of I. We put r(q) =min{re Z|I"*' = qI"}. If ht(I) = 4I) we
have r(g) > o(G(I)) + ht(I).

Proof. See [HI], Lemma (2.3).
LEmma (2.5). Let A and I be the same as above. We put
n, = max {n e Z|#(G)), + 0} for 0<i<d=dmA.

If I is m-primary we have r(q) < max, {n; + i} for any minimal reduction
q of L
Proof. Let xe A. We denote by x* the initial form of x with respect
to"l. Let g =(a, -, a,) and ¢* = (af, - - -, af). Then
r(g) = max{re Z|(G(I)/q*), + 0}.

If dim G(I ) = 0 the assertion is clear. Let dim G(I) > 0. Since the residue
field is infinite we may assume that 1;,,/((0: af)) < . From the exact
sequences

0—> G(D/(0: a¥*)(—1) —> GI) —> G(I)[a}GI) —> 0
and
0—>(0: a¥) —> GI) —> G)/(0: a}) —> 0

we get the exact sequence
Hiy(GI)) —> #'(G(D)]a¥ G(I)) —> #(GUDN—1)

for 0<i<d. Let n,=max{necZ|#HGI)a}G(I)), + 0}. Then n]<
max {n,, n;,; + 1}. By induction we have r(q) < max {n, + i}.
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§3. The Gorensteinness of Rees algebras

This section is devoted to the proof of the following theorem.

THEOREM (3.1). Let (A, m, k) be a local ring and I an ideal of A.
Suppose that R(I) is Cohen-Macaulay and grade (I) > 2. Then the follow-
ing conditions are equivalent.

(1) R() is Gorenstein.

@2 K,= A and X gy = GUI)-2).

Remark. Since A and G(I) are homomorphic images of R(I), A and
G(I) have canonical modules if R(I) is Gorenstein.
We need several preliminaries to prove this theorem.

LemmA (3.2). Let A be a local ring which has a canonical module
K,. Then the following conditions are equivalent.

(1) A satisfies (S,).

@) A satisfies (S,).

(8) Homj (K, K, = A.

Proof. See [A], (4.4) and (4.5).

LEMMA (3.3). Let A and I be the same as in Theorem (3.1). Let ae
I — I? be an element whose initial form in G(I) is a non zero-divisor. We
put R = R(D/(a,aX). If R(I) is Gorenstein and grade (I) > 2 we have
H#Y(R) = 0, where dim A = d.

Proof. Let R = R(I) and G = G(I). Since a is a non zero divisor,
by Propositions (1.8) and (1.9), it is enough to show that &xty,, (R, R/aR)
=0. Let I=(a,---,a,). Then we have the exact sequence

(R/aR)"(—1) > R/aR(—1) — RjaR—> R —>0.
an
Applying the functor #omyz,z( , R/aR) to this sequence, we see
Exteson(R, RlaR) = (aR: IR)/(a, aX).
Let f~e(aR: IR), where feI™ and m > 0. Then we have
fe@A: DN :I)C(@A: )N IT™*:a).

Since grade (I) > 2 we have (a¢A:I) = aA. That a* is a non zero-divisor
of G(I) is equivalent to that (I™:a) = I™"' for all m > 0. Hence we
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have (I™*':a) = I™. Therefore fe I"NaA = al™'. This means (aR:IR)
= (a, aX), which completes the proof.

LeEmMA (3.4). Let A and I be the same as in Theorem (3.1). Assume
that R(I) is Cohen-Macaulay and # s, = GUI)(—2). Then

Hompay(ky K5 (R(I))), =0 for n# —1,
where d = dim A and k = R(I)/M.

Proof. Let R and G be as in the proof of Lemma (3.3). Put J =
@.>c R.. Then we get the exact sequence (cf. the proof of Proposition

2.1)

D 0—> Homullk, HL(A) —> Homalk, %5 (D) > Hom o, 23 1(R))
—> Exti(k, H(A))

and

@) 0> Homulk, #:(G) —> Homnlk, H D)D) —E> Homulk, #%(R))
——> Exty(k, ().

Since #omz(k, H%(A)) is concentrated in degree 0 and since &xt(k, HL(A)),
=0 for n < —2 from (I) we get isomorphisms

fur Homu(k, K5 HI))y —> Homg(k, #5(R)),

for n < —2. By assumption #omz(k, #%(G)), = 0 for n = —2. (II) yields
injective homomorphisms

8nt Homp(k, H5H(T))n —> Homa(k, 5 (R)),
for n < —2. Since #%Y(J) and #%(R) are Artinian
Homu(k, HGHT)) = Homp(k, #4Y(R), =0  for n<O0.
Now, it is easy to see that
Homp(k, #5(R)), = 0

for n < —2. On the other hand, by Corollary (2.2) we have #%"(R), =0
for n > 0. This completes the proof.

LemmaA (3.5). Let (A, m, k) be a local ring and I an ideal of A such
that R(I) is Cohen-Macaulay. Suppose that grade(I) >n>0, Then A
and G(I) satisfy (S,).
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Proof. We may assume that A is complete. Let G = G(I). Let B
be a Gorenstein local ring such that A is a homomorphic image of B
and d = dim A = dim B. Let n be the maximal ideal of B. By the local
duality we have

Exti(A, B) = Homy(HZ “(A), Ex(B/n)) for i >0,

where Ey(B/n) is the injective envelope of B/n as B-module. By Proposi-
tion (2.1) we see that Exti(A, B) is annihilated by I for i > 0. Let pe
Spec (A) and P be the inverse image of p in B. Then if p 7 I we have

Exti,.(A,, Br) =0 for i > 0.

Hence A, is Cohen-Macaulay. If p DI we have depth A, > n by assump-
tion. Therefore A satisfies (S,).

To prove the assertion on G we use induction on dim A/I. Let
dim A/I = 0. By Proposition (2.1) we know that [,(o£%(G)) < oo for i < d
and depth Gy > n, where N is the maximal homogeneous ideal of G.
Hence G satisfies (S,) because G, is Cohen-Macaulay for @ € Spec(G)
— {N}. Let dim A/I > 0. Note that G can be written as a homomorphic
image of a Gorenstein graded ring of the same dimension. By Proposition
(1.8) we see that G, is Cohen-Macaulay if p » G,, where G, = @,-,G,.
Assume that p D G, and p = N. Then p N A/I = P/I for some P e Spec (A)
— {m}. Since R(I), is Cohen-Macaulay and dim A/l > dim A,/IA, one
knows that G, satisfies (S,) by induction on dim A/IL

Proof of Theorem (3.1). First we show that if ht(I) > 0 and R(I) is
Cohen-Macaulay then there is an element a € I — I* whose initial form
in G(I) is a non zero-divisor. Since ht(IR(I)) > 0 one can choose an
element b € I which is a non zero-divisor on R(I). Noting that R()/IR(I)
+ IXR(I) = A/I, we have ht (IR(I) + IXR(I)) = dim R(I) — dim A/l = d +
1 — dim A/I > 2. Since the residue field of A is infinite we can choose an
element ¢ + aX of IR(I) + IXR(I) such that b, ¢ + aX is an R(I)-sequence
and ael— I*. Since b is also a non zero-divisor on A one can easily
verify that (bR(I):5X) = IR(I). This implies that there exists an exact
sequence

0 —> G(I)(—1) —> R(I)/bR(I) —> R(I)/(b, bX)R(I) —> 0.

By the choice of ¢ 4+ aX we see that ¢ 4+ aX is a non zero-divisor on
G(I). The canonical image of ¢ + aX in G(I) = R(I)/IR(I) is nothing but
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the initial form of @ because ce Il Therefore the initial form ¢* of ¢ in
G(I) is a non zero-divisor on G(I).

1> (@): Let R=R({I) and G = G{I). Let ael— I* be as above.
Since a is a non zero-divisor on A there are two exact sequences

#) 0—>A—> R/aXR—> R/(a, ax) —> 0
and

) 0 —— G(—1)—> RlaR—> R/(a, aX) —> 0.

These exact sequences induce the exact sequences by Lemma (3.3)
(+) 0—> A5(A) —> #5(R[aXR) —> #5(R/(a, aX)) —> 0
and

(+4+) 00— #YUGCN—1) —> #%(R/aR) — #W(R/(a, aX)) —> 0,

where d = dim A and M is the maximal homogeneous ideal of R as before.
Since R is Gorenstein # , = R(n) for some ne Z. Since a¢X is a non zero
divisor of degree 1 we have X .y, = R/aXR(n 4+ 1). From the exact
sequence (+) we know that n = —1 and K, = A/J for some ideal J of A.
From (++) we have &', = G/L(—2) for some homogeneous ideal L of G. By
Lemma (3.5) A and G satisfy (S,), hence by Lemma (3.2) we have J =0
and L = 0.

(2= (1): From the exact sequences (#) and (##) we get two injections
HEUR/(a, aX)) — #4(A) and #%(R/(a, aX)) — #4G)Y(—1) since R is
Cohen-Macaulay. From the first one we know that #%4YR/(a, aX)) is
concentrated in degree 0. The assumption ', = G(—2) shows that #%(G),
= 0 for n> —1. From the second injection we see that #%(R/(a, aX))
= 0. Hence we have the exact sequences (+) and (++). By Lemma (3.4)
we know that #omp(k, #4(R/aXR)) is concentrated in degree 0. By (+)
we get

S'fomﬁ(k, Jf‘j,(R/aXR)) = HomA(ky an(A))

since #%4(R/aR), = #%4(R[/(a, aX)), = 0 for n >0 by Corollary (2.2). By
the assumption K, = A we have Hom,(k, H.(A)) = k. This shows that
R is Gorenstein.

Let I be an ideal of a local ring and ¢ a minimal reduction of I
We put r(@) = min{r|I""' = qI'}. We call r(q) the reduction exponent
of q.
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COROLLARY (3.6) Let A be a local ring and I an ideal of A such that
ht(I) = ¢4(I) > 0 and R(I) is Cohen-Macaulay. Then we have:

(1) Suppose that a(G(I)) > —2. Then we have r(q) = ht(I) — 1 or
ht (I) — 2 for any minimal reduction q of I

(2) Suppose moreover that grade (I) > 2 and R(I) is Gorenstein. Then
for any minimal reduction q of I we have r(q) = ht(I) — 2 if and only if
depth A > dim A/I + 2.

Proof. (1) By induction on dim A/I. If dim A/I = 0 this follows from
Lemmas (2.4) and (2.5). Let dim A/ > 0. Choose an element b ¢ A whose
image in A/I is a part of system of parameters of A/I. By Proposition
(1.5) b is a non zero-divisor on G(I) and R(I) and we have R(I)/bR(I)
= R{I(A/bA)) and G(I) = G(I(A/bA)). It is easy to see that the ideal
I(A/bA) in A/bA satisfies the same assumption on I. By induction
hypothesis we have r(g(A/bA)) = ht(I) — 1 or ht(I) — 2. By Nakayama’s
lemma we have r(q(A/bA)) = r(q).

(2) First we assume that depth A >dim A/l + 2. If dim A/I = 0 we
have r(q) = ht(I) — 2 by Proposition (2.1), Lemmas (2.4) and (2.5). We
proceed by induction on dim A/I. Let dim A/I > 0. Then by assumption
depth A > 3. Let a,, a, be a regular sequence in I. One can choose an
element bem so that a,, a,, b is a regular sequence and the image of
b in A/l is a part of system of parameters of A/I. Then grade (I(A/bA))
> 2 and R(I(A/bA)) is Gorenstein. Since depth A/bA > dim A/(b, I) + 2
we have r(q) = ht(I) — 2 by induction hypothesis.

Conversely assume that r(q) = ht(I) — 2. Let b, ---,b,em be a
system of parameters of A/I. We set A = A/(b,, -+, b,). Since b,, ---, b,
is a regular sequence we have only to show that depth A >2. Let I =
IA and g = gA. Since r(@) = ht(I) — 2 we see that #%(G(I)), = 0 for
n > —1 by Lemma (2.4), where A = ht(I). By [HI], Proposition (1.5) we
know that b,, - - -, b, is a G(I)-sequence. Let g, = (b, ---, b)) for 1 <i <s.
Then we see that G(I)/q.G(I) = G(I(A/q)). We set G, = G(I)/q,G(I) for
1 <i<s. Then we have an exact sequence

HAHG, ) 2> HHG, ) —> HIH(G) —> #H G

Since r(q(4/q,)) = ht(I) — 2 we know that #%*G,), =0 for n> —1 by
Lemma (2.4). By Proposition (2.1) we see that H% (A/q,_,) = b,H% (Alg;_,)
for 1<i<s.
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This implies that K,,,, = A/q; for 0 <i <s, where g, = 0. In partic-
ular, K; = A. One sees that depth A >2 by [A]l. The following is a
generalization of a result in [GS].

CororLLARY (3.7). Let A be a Cohen-Macaulay local ring and I an

ideal of A with ht(I) = ¢(I) > 2. Then the following conditions are equiv-
alent.

(1) R({) is Gorenstein.

(2) G(I) is Gorenstein and ao(G(I)) = —2.

(3 GW) is Gorenstein and there exists a minimal reduction q of I
such that r(q) = ht(I) — 2.
In this case A is Gorenstein.

Proof. This follows from Theorem (3.1), Corollary (3.6) and the fact
that the Gorensteinness of G(I) implies that of A.

CoroLLARY (3.8). Let A and I be the same as in Corollary (3.6).
Suppose that

(1) R() is Gorenstein,

2 1L(Hi(A) < oo for i<d=dim A and

B) 2ht() < dim A.
Then A is Gorenstein.

Proof. By Corollary (3.7) it is sufficient to prove that A is Cohen-
Macaulay. Let b, ---,b, be a system of parameters of A/I. We put
q. = (b, ---,b) and G, = GI)/q.GI) for 1<i<s. Let q, --,a, h=
ht(I), be a minimal generators of a minimal reduction of I. Then
@, vy Ay, by, -, b, 1s a system of parameters of A. Since [,(H%(A)) < oo
for i < d we know that if ¢ < depth A then any ¢ elements of a system
of parameters of A form a regular sequence by [CST], (3.3). Hence we
have grade (I(A/g,) > 2 for 1 < i <s by [HI], Proposition (1.5). We are
going to show that H%**'(Afg,.) =0for 2<j<s—2and 1<i<j—1
by induction on j. Let j = 2. From the exact sequence

A G, ) 2 A G, ) > A G
we get H4 %Y (Alq,.,) = b,_ H%**'(Alq,_,) by Theorem (3.1) and Proposition
(2.1) since R(I(A/q,.,)) is Gorenstein. By the assumption (2) we get
Hi*(Alq,.) = 0. Let us assume that our assertion is true for j <s— 2
and we will prove that the assertion is true for j + 1. Since b, ; is a
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non zero-divisor on A/q,_;,_; we obtain the exact sequence

Hi (Alq, )~ Hi(Alq, ;) —> Hi*(Alg, )
for i > 0. By the induction hypothesis H% **%(A/q,_) =0 for 1 <i<j— 1.
Therefore H**'(Alg,_;,.) =0 for 1<i<j—1 by assumption (2). It
remains to prove that H%**/(A/g,_,.,) = 0. But this can be proved by
the same method used for j = 2. Hence, in particular, we get H:(A) =0
for h +1<i<d. By assumption (3) we get depth A >dim A/l +1>h
+ 1 cf. [HI]. Therefore A is Cohen-Macaulay.

§4. Example

In this section we construct a local ring (A, m, k) such that R(m) is
Gorenstein but A is not Cohen-Macaulay. For a local ring A we denote
the multiplicity of A by e(A).

LemMMA (4.1). Let (A, m, k) be a local ring with dim A = 3 and q =
(a,, a,, a;) be a minimal reduction of m. Let

I=((a,a):a) + ((az, a)): a) + ((a;, @) : @) + m*.

Then R(m) is Cohen-Macaulay if and only if m* = qgm* and 1 (I/m* =
3(l.(Alg) — e(A)) + 3.

Proof. See [I,], Theorem 5.

LEMMA (4.2). Let A be the same as in Lemma (4.1). Suppose that
R(m) is Cohen-Macaulay and A is not Cohen-Macaulay. If 1, (m/m*) = 6
we have

(1) A is a Buchsbaum ring with depth A = 2 and [, (H%(A)) =1,

(2) m?® = gm for any minimal reduction q of m and
B) e(A) = 3.

Proof. See [I,], Corollary 11.

ExampLE (1). Let % be a field and X, Y; (1 < i < 3) be indeterminates
over k. We put

A =k[[X, X;, X, Y, Y, Y]I/(X Y, + XY, + XY, (Y, Y, Vo)),

Then A is not Cohen-Macaulay but R(m) is Cohen-Macaulay. By Lemma
(4.2) e(A) = 3 (cf. [I] and [L]).



REES ALGEBRAS 151

ExampLE (2). Let k be a field of ch(k) =2 and X, X,, X,, Y, Y, Y., Y,
indeterminates over k. Let

A = k[[‘Xl) X2, XS’ Yb Y'Z, Y:’n K]]/J
= k[[xh Xoy X3y Y1y° * *» y4]]

where oJ is the ideal generated by XY, + X,Y, + X,Y,, Y2 Y2, Y2 Y2 V)Y,
Y.y, V.Y, V'Y, - X.Y, V.Y, — XY, and VY, — X,Y..
Then A is not Cohen-Macaulay but R(m) is Gorenstein.

To prove this we need the following lemma.

Lemma (4.3). (0:y) = (v, -+, 2)

Proof. Let R=k[[X, X, X, Y,Y,Y, Y] and let fe(J:Y,). Since

(J:Y) = (XY, + X.Y, + X,Y, VY, - X)Y, .Y, — XY, VY, — X;Y)):
Y.+, -, Y)

we may assume that f belongs to the first ideal on the right side. Let
us write

fY4 = (gl + g{Y4)(X1Y1 + XZYZ + Xays) + (gz + g;Y4)(Y1Y2 - X3Y4)
+ (g + g:Y)(Y,Y, — X\Y) + (g, + giY)YY, — X,)Y),

where g, e R[[X,, X,, X,, Y,, Y,, Y;]]. From this we see that

) XY, + XY, + X\)Y) + &Y. Y, + & L.Y, + Y.V, =0
and
I f=—-8X —gX —gX, mod(Y,:--, Y).

From (I) we have
Yi(gX + &Y, + gY) + Y(gX, + gY)=0.
Since Y, Y, is a regular sequence in R we have

g1X1 + ngz + g4Y3 == hYz
gX; + &Y, = —hY,
for some he R. Since X, Y, Y, and X,, Y,, Y, are regular sequences in R

there are elements q,, a,, a,, b,, b,, b, of R such that

0 a, a,

(III) (gly 8 — h" g4) = (-X'l’ I’27 Ys) —a, 0 a,
—a, —a; 0
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0 b, b,
(IV) (gl’ h’ g3) = (Xb Yb Ya) _‘bl O b3 .
—b, —=b, 0

Hence
g =—aY, —aY =-5bYY —bY,.
Since ch (k) = 2 we have

a,+ b,=0
¢, =0 mod(Y, ---,Y).
b,=0

By (II), (II) and (IV) we obtain

f=aXX, + 0XX, + (a, + )X X,
=0 mod(Y,- ---,Y).

Proof of Example (2). By Lemma (4.3) we have (0:y,) = (y,, - -+, y.).
From the exact sequence

0—>A/0:y)—>A—>Aly, A —>0

we get e(A) = e(A/(0:y,)) + e(Aly,A). Since A/y,A is isomorphic to the
local ring in Example (1) and since A/(0:y,) is a regular local ring we
have e(A) = 4. It is easy to see that x,, x,, x, is a system of parameters of
A and that ((x,, ;) : %) = (%, X5, ¥5), (%2, X5) 1 %) = (%3, %, 1) and (%5, X;) : x,)
= (x,, X5, ¥»). This shows that A is not Cohen-Macaulay. It is easy to
verify that m? = (x,, x,, x,)m. By Lemma (4.1) we see that R(m) is Cohen-
Macaulay. By Theorem (3.1) it is enough to show that /¢, = G(m)(—2).
Since A is defined by homogeneous polynomials

G(m) = k[X;U XZ: Xi) K’ YZ’ Y3a Y4]/J* = k[xu Xoy * * ',y4],

where J* is generated by the polynomials generating J. Let S = k[x,, x,, x,].
Then S is a polynomial ring with dim S = 3 and G(m) is generated by 1,
Y1 Yoy ¥s» ¥. as an S-module. Since G(m) has rank 4 as an S-module and
depth G(m) = 2 we get a finite free resolution of G(m) as S-module
0—>S(—2)————>S®S‘(—1)—d> G(m) —> 0,

[O’ X1, X2, X3, 0]

where d is given by d(e,) = 1 and d(e;) = y, for 1 < i < 4, with suitable
free basis e, e, -+, e, of S@® S*(—1) with deg (e)) = 0 and deg(e;) = 1 for
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1< i< 4. By Corollary (1.11) X g¢m = Homs(G(m), S(—3)).
The G(m)-structure of #';,, is given by

(xf)y) = flxy)  for fe Hom(G(m), S(—3)) and x,y e G(m).

H oo is generated by ef, x.ef — xef, xef — xef, xef — xef and ef as an
S-module, where e¥ is the dual base of e, with deg(ef) = 3 and deg(ef) = 2
for 1< i< 4. Using the fact that ch(k) = 2 we can easily verify the
following relations as G(m)-module.

yer = ef
yief = xef — xef
el = xef — xef

yel = xef — xef
Hence # ;,y = G(m)(—2) and hence R(m) is Gorenstein by Theorem (3.1).

ExAMPLE (3). Let A be same as in Example (2). We put B =
AllT, ---, T,]], where T, ---, T, are indeterminates over A. Let I = mB.
Then R(I) = R(m)®,B is Gorenstein since B is faithfully flat over A.
If n >3 we have 2ht(I) = 6<dim B. But B is not Gorenstein.

Remark. a) If in Example (2) ch(k) = 2 A is not Buchsbaum. This
can be seen as follows. If A is Buchsbaum we have

e(A) = L(A/(x;, %2 %)) — Li((xy, %) ¢ %of(Xy, X))
= 5 _ ]. = 4.

On the other hand one can easily see (0:y) 2D (¥, -+, ¥y %iX) and
dim A/(0:y,) < 3. This implies e(A) = e(A4/y,A) = 3, a contradiction.

b) Example (3) shows that Corollary (3.8) is false without any
restriction on the local cohomology modules of A.
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