IMAGINARY BICYCLIC BIQUADRATIC FIELDS WITH THE REAL QUADRATIC SUBFIELD OF CLASS-NUMBER ONE

HIDEO YOKOI

It has been proved by A. Baker [1] and H. M. Stark [7] that there exist exactly 9 imaginary quadratic fields of class-number one. On the other hand, G.F. Gauss has conjectured that there exist infinitely many real quadratic fields of class-number one, and the conjecture is now still unsolved.

In connection with this Gauss' conjecture, we shall consider, in this paper, a real quadratic field $\boldsymbol{Q}(\sqrt{p})($ prime $p \equiv 1 \bmod 4)$ as a subfield of the imaginary bicyclic biquadratic field $K=\boldsymbol{Q}(\sqrt{p}, \sqrt{-q})$, which is a composite field of $\boldsymbol{Q}(\sqrt{p})$ with an imaginary quadratic field $\boldsymbol{Q}(\sqrt{-q})$ of class number one, and give various conditions for the class-number of $\boldsymbol{Q}(\sqrt{p})$ to be equal to one by using invariants of the relatively cyclic unramified extension K / F over imaginary quadratic field $F=\boldsymbol{Q}(\sqrt{-p q})$.

After notation in Section 1, we shall summarize in Section 2 wellknown properties of a relatively cyclic extension and an unramified extension respectively, which we shall use in this paper. In Section 3 we shall consider the ideal class group of a cyclic unramified extension over a finite algebraic number field. Finally, we shall investigate in Section 4 the imaginary bicyclic biquadratic field $K=\boldsymbol{Q}(\sqrt{-q}, \sqrt{p})$, and give some conditions for the class-number of real quadratic subfield $\boldsymbol{Q}(\sqrt{p})$ to be equal to 1 .

§ 1. Notation

Generally, for an arbitrary finite abelian group B and its subgroup B^{\prime}, the order of B and the index of B^{\prime} in B are denoted by $|B|$ and $\left[B: B^{\prime}\right]$ respectively.

For an arbitrary number field k, the following notation is used
throughout this paper:
E_{k} : the group of units of k
C_{k} : the group of ideal classes of k
$h_{k}=\left|C_{k}\right|$: the class-number of k
\tilde{k} : the absolute or Hilbert class field of k.
For a finite Galois extension K / F of a finite algebraic number field F and the Galois group $G=G a l(K / F)$, we shall denote by $H^{r}(G, B)$ the r-dimensional Galois cohomology group of G acting on an abelian group B, and by $Q(B)$ the Herbrand quotient of B, i.e. $Q(B)=\left|H^{0}(G, B)\right|| | H^{1}(G, B) \mid$.

Furthermore, we shall use the following notation:
$\Pi e(\mathfrak{p})$: the product of ramification exponents of all finite prime divisors \mathfrak{p} of F with respect to K / F
$\Pi e\left(\mathfrak{p}_{\infty}\right)$: the product of ramification exponents of all infinite prime divisors \mathfrak{p}_{∞} of F with respect to K / F
$\Pi \pi e(\mathfrak{p})=\Pi e(p) \cdot \Pi e\left(p_{\infty}\right):$ the product of ramification exponents of all finite and infinite prime divisors of F with respect to K / F
(ε) : the group of units of F
(η) : the group of those units of F which are norms of number of K
A : the group of ambiguous classes of C_{K} with respect to K / F
$a=|A|$: the ambiguous class number of K / F
A_{0} : the group of classes of C_{K} represented by ambiguous ideals with respect to K / F
$a_{0}=\left|A_{0}\right|$
A_{F} : the group of classes of C_{K} represented by ideals of F
$a_{F}=\left|A_{F}\right|$
C_{F}^{0} : the group of those classes of C_{F} whose ideals become principal in K
$h_{0}=\left|\boldsymbol{C}_{F}^{0}\right|$
$N_{K / F}$: the norm mapping with respect to K / F, and simultaneously the homomorphism from C_{K} to C_{F} induced by the norm mapping
$j=j_{K / F}$: the homomorphism from C_{F} to C_{K} induced by extension of ideals
$N=j \circ N_{K / F}$: the endomorphism of C_{K} defined as composed mapping of $N_{K / F}$ and j.

§ 2. Preliminary results

In this section, we shall summarize several almost well-known
results on a cyclic or an unramified extension, which we shall use in this paper.

Lemma 1. ${ }^{1)}$ Let K / F be a finite Galois extension of a finite algebraic number field F, then
(1) $a_{0}=h_{F} \cdot \frac{\Pi e(\mathfrak{p})}{\left|H^{1}\left(G, E_{K}\right)\right|}$
(2) $\quad H^{1}\left(G, E_{K}\right) \cong\left(A_{0}\right) /(\alpha) \quad$ and $\quad\left|H^{1}\left(G, E_{K}\right)\right| \equiv 0\left(\bmod h_{0}\right)$, where $\left(A_{0}\right)$ is the group of ambiguous principal ideals of K with respect to K / F and (α) is the group of principal ideals of F.

Lemma 2. ${ }^{2)}$ Let K / F be a finite cyclic extension of a finite algebraic number field F, then
(3) $\quad Q\left(C_{K}\right)=1, \quad Q\left(E_{K}\right)=\frac{\Pi e\left(\mathfrak{p}_{\infty}\right)}{[K: F]}$
(4) $\quad a=h_{F} \cdot \frac{\tilde{\Pi} e(\mathfrak{p})}{[K: F][\varepsilon: \eta]}=\left|N C_{K}\right| \cdot\left|H^{\circ}\left(G, C_{K}\right)\right|$
(5) $\frac{a}{a_{0}}=\left[\eta: N_{K / F}\left(E_{K}\right)\right], \quad \frac{a_{0}}{a_{F}}=\frac{h_{0} \cdot \Pi e(p)}{\left|H^{1}\left(G, E_{K}\right)\right|}$
(6) $\tilde{\Pi} e(p) \equiv 0 \quad(\bmod [\varepsilon: \eta])$

Lemma 3. ${ }^{3)}$ Let K / F be a finite Galois unramified extension of a finite algebraic number field F, then
(7) $H^{1}\left(G, E_{K}\right) \cong C_{F}^{0}$
(8) $H^{2}\left(G, E_{K}\right) \cong A \mid A_{F}$
(9) $\quad a=h_{F} \cdot \frac{\left|H^{2}\left(G, E_{K}\right)\right|}{\left|H^{1}\left(G, E_{K}\right)\right|}$.

§3. Cyclic unramified extension

Let F be a finite algebraic number field, and K be a finite cyclic unramified (in all finite and infinite prime divisors) extension field. For such extension K / F, we shall consider, in this section, the structure of the ideal class group C_{K} of K as Galois module.

Proposition 1. Let K / F be a finite cyclic unramified extension of a finite algebraic number field F, then

1) For proofs, see Iwasawa [3], Yokoi [10].
2) For proofs, see Takagi [8, pp. 192-195], Yokoi [10].
3) For proofs, see Iwasawa [3].
(i) $\quad a=\frac{h_{F}}{[K: F]}, \quad$ i.e. $\tilde{F}=K^{*}$,
where K^{*} is the genus field with respect to K / F.
(ii) $h_{0}=\left|H^{1}\left(G, E_{K}\right)\right|=[K: F] \cdot\left[\eta: N_{K / F}\left(E_{K}\right)\right]$
(iii) $\left|H^{0}\left(G, C_{K}\right)\right|=\left|C_{F}^{0} \cap N_{K / F}\left(C_{K}\right)\right|$
(iv) $\left|H^{\circ}\left(G, C_{K}\right)\right| \equiv 0\left(\bmod \left|H^{\circ}\left(G, E_{K}\right)\right|\right)$,
and $\left|H^{0}\left(G, C_{K}\right)\right|=\left|H^{0}\left(G, E_{K}\right)\right|$ if and only if $N C_{K}=A_{F}$
(v) any ambiguous class ideal of K / F becomes principal in \tilde{F}.

Proof.
(i), (ii) See Yokoi [10]
(iii) See Kisilevsky [4]
(iv) By Lemma 2, (5), $\left[A: A_{0}\right]$ is equal to $\left[\eta: N_{K / F}\left(E_{K}\right)\right]$.

On the other hand, since $[\varepsilon: \eta]=1$ by Lemma 2, (6), it holds $\left|H^{0}\left(G, E_{K}\right)\right|$ $=\left[\eta: N_{K / F}\left(E_{K}\right)\right]$, and so $\left[A: A_{0}\right]=\left|H^{\circ}\left(G, E_{K}\right)\right|$. Hence it is clear from $\left[A_{0}:\right.$ $\left.A_{F}\right]=1$ that

$$
\begin{aligned}
\left|H^{0}\left(G, C_{K}\right)\right| & =\left[A: A_{0}\right] \cdot\left[A_{0}: A_{F}\right] \cdot\left[A_{F}: N C_{K}\right] \\
& =\left|H^{0}\left(G, E_{K}\right)\right| \cdot\left[\boldsymbol{A}_{F}: N C_{K}\right],
\end{aligned}
$$

which implies easily assertion (iv).
(v) See Terada [9], and cf (i).

Proposition 2. In the extension K / F, any two conditions of the following (i) \sim (iii) are equivalent to each other:
(i) $h_{K}=a$, i.e. $C_{K}=A$
(ii) $\tilde{K}=K^{*}, \quad$ i.e. $C_{K}^{1-\sigma}=1$,
where σ is a generator of the cyclic Galois group $G=\operatorname{Gal}(K / F)$.
(iii) $\operatorname{Ker}\left(N_{K / F}\right)=1$, i.e. $N_{K / F}: C_{K} \rightarrow C_{F}$ is monomorphic.

Proof. Since $\left[C_{F}: N_{K / F}\left(C_{K}\right)\right]=[K: F]$ and $a=h_{F} /[K: F]$ hold by class field theory and Proposition 1, (i) respectively, we get the following:

$$
\begin{aligned}
\operatorname{Ker}\left(N_{K / F}\right)=1 & \Longleftrightarrow\left|N_{K / F}\left(C_{K}\right)\right|=h_{K} \\
& \Longleftrightarrow h_{K}=h_{F} /[K ; F] \Longleftrightarrow h_{K}=a .
\end{aligned}
$$

On the other hand, it follows from $C_{K} / A \cong C_{K}^{1-\sigma}$ that

$$
h_{K}=a \Longleftrightarrow C_{K}=A \Longleftrightarrow C_{K}^{1-\sigma}=1 \Longleftrightarrow \tilde{K}=K^{*} .
$$

Proposition 3. In the extension K / F, any two conditions of the following (i) \sim (iv) are equivalent to each other:
(i) $a=a_{0}$, i.e. $A=A_{0}$
(ii) $\left[\eta: N_{K / F}\left(E_{K}\right)\right]=1$
(iii) $H^{0}\left(G, E_{K}\right)=1$
(iv) $\left|H^{1}\left(G, E_{K}\right)\right|=h_{0}=[K: F]$

Proof. (i) \Longleftrightarrow (ii) It is evident by Lemma 2, (5) that (i) is equivalent to (ii).
(ii) \Longleftrightarrow (iii) Since K / F is a cyclic unramified extension, we get $[\varepsilon: \eta]$ $=1$ immediately by Lemma 2, (6), and so

$$
\left|H^{0}\left(G, E_{K}\right)\right|=[\varepsilon: \eta] \cdot\left[\eta: N_{K / F}\left(E_{K}\right)\right]=\left[\eta: N_{K / F}\left(E_{K}\right)\right] .
$$

Hence

$$
\left|H^{0}\left(G, E_{K}\right)\right|=1 \text { if and only if }\left[\eta: N_{K / F}\left(E_{K}\right)\right]=1 .
$$

(ii) \Longleftrightarrow (iv) It is clear by Proposition 1, (ii) that (ii) is equivalent to (iv).

Proposition 4. In the extension K / F, any two conditions of the following (i) \sim (iii) are equivalent to each other:
(i) $C_{F}=C_{F}^{0} \times N_{K / F}\left(C_{K}\right)$
(ii) $\operatorname{Ker}(N)=\operatorname{Ker}\left(N_{K / F}\right)$
(iii) $H^{0}\left(G, C_{K}\right)=1$

Proof. (i) \Longrightarrow (ii) Since $N=j \circ N_{K / F}$, it holds $\operatorname{Ker}\left(N_{K / F}\right) \subset \operatorname{Ker}(N)$ in general. If $C_{F}=C_{F}^{0} \times N_{K / F}\left(C_{K}\right)$, then $C_{F} \cap N_{K / F}\left(C_{K}\right)=1$ holds, and hence for any C in $\operatorname{Ker}(N)$ we get $N_{K / F}(C) \in C_{F}^{0} \cap N_{K / F}\left(C_{K}\right)$, and so $C \in \operatorname{Ker}\left(N_{K / F}\right)$. Therefore we get $\operatorname{Ker}(N) \subset \operatorname{Ker}\left(N_{K / F}\right)$.
(ii) \Longrightarrow (iii) If $\operatorname{Ker}\left(N_{K / F}\right)=\operatorname{Ker}(N)$, then for any C^{\prime} in $C_{F}^{0} \cap N_{K / F}\left(C_{K}\right)$, it holds

$$
\phi \neq N_{\bar{K} / F}^{-1}\left(C^{\prime}\right) \in N_{K / F}^{-1}\left(C_{F}^{0}\right)=\operatorname{Ker}(N)=\operatorname{Ker}\left(N_{K / F}\right), \text { and so } C^{\prime}=1
$$

Hence we get $C_{F}^{0} \cap N_{K / F}\left(C_{K}\right)=1$, from which follows $H^{0}\left(G, C_{K}\right)=1$ by Proposition 1, (iii).
(iii) \Longrightarrow (i) If $H^{0}\left(G, C_{K}\right)=1$, then $C_{F}^{0} \cap N_{K / F}\left(C_{K}\right)=1$ holds by Proposition 1, (iii). On the other hand, by class field theory $\left|N_{K / F}\left(C_{K}\right)\right|=h_{F} /[K: F]$ holds, and also by Proposition 1, (ii),

$$
\left|C_{F}^{0}\right|=h_{0} \equiv 0 \quad(\bmod [K: F])
$$

holds. Hence we get $C_{F}=C_{F}^{0} \times N_{K / F}\left(C_{K}\right)$.

Corollary. In the extension K / F, if any one of 3 conditions in Proposition 4 is satisfied, then each of 4 conditions in Proposition 3 is also satisfied.

Proof. This assertion is an immediate consequence of Proposition 1, (iv), Proposition 3 and Proposition 4.

§4. Imaginary bicyclic biquadratic field

Let p be a prime congruent to $1 \bmod 4$, and q be 1,2 or a prime congruent to $-1 \bmod 4$. Put $k_{1}=\boldsymbol{Q}(\sqrt{-q}), k_{2}=\boldsymbol{Q}(\sqrt{p}), F=\boldsymbol{Q}(\sqrt{-p q})$ and $K=\boldsymbol{Q}(\sqrt{-q}, \sqrt{p})$. Then, applying the results of Section 3, we shall consider, in this section, the structure of the ideal class group C_{K} of K as Galois module with respect to K / F, and under the assumption that the class-number h_{1} of k_{1} is equal to 1 , we shall give some kinds of conditions for the class-number h_{2} of k_{2} to be equal to 1 .

Theorem 1. Let p be a prime congruent to $1 \bmod 4$, and q be 1,2 or a prime congruent to $-1 \bmod 4$. Put $F=\boldsymbol{Q}(\sqrt{-p q})$ and $K=\boldsymbol{Q}(\sqrt{ }-q, \sqrt{p})$. Then, K / F is a cyclic unramified extension of degree 2, and moreover the following (i) $\sim(\mathrm{v})$ hold:
(i) $K^{*}=\tilde{F}$
(ii) $h_{K}=h_{F} \cdot \frac{h_{1} \cdot h_{2}}{2}$
(iii) $H^{0}\left(G, E_{K}\right)=1$
(iv) $a=a_{0}$, i.e. $A=A_{0}$
(v) $h_{0}=2$

Here, h_{1} and h_{2} are the class-number of quadratic number fields $k_{1}=\boldsymbol{Q}(\sqrt{-q})$ and $k_{2}=\boldsymbol{Q}(\sqrt{p})$ respectively.

Proof. In the imaginary bicyclic biquadratic field $K=\boldsymbol{Q}(\sqrt{-q}, \sqrt{p})$, the ramified finite primes are only p and q (or 2^{4}), and their ramification exponents with respect to K / \boldsymbol{Q} are equal to theirs with respect to K / F respectively (all of them are equal to 2). Hence K / F is unramified.
(i) $\tilde{F}=K^{*}$ follows immediately from Proposition 1.
(ii) Since $p \equiv 1(\bmod 4)$, the fundamental unit ε_{p} of k_{2} has norm -1 . Hence, we know first

$$
h_{K}=\frac{h_{1} \cdot h_{2} \cdot h_{F}}{2} \quad \text { (see, for example, Brown and Parry [2]). }
$$

[^0](iii) Since $N_{K / F}\left(\varepsilon_{p}\right)=N_{k_{2}}\left(\varepsilon_{p}\right)=-1$, we get
$$
(\varepsilon)= \pm 1=N_{K / F}\left(E_{K}\right) .
$$

Hence

$$
H^{0}\left(G, E_{K}\right) \cong(\varepsilon) / N_{K / F}\left(E_{K}\right)=1
$$

(iv), (v) Both $a=a_{0}$ and $h_{0}=2$ are immediate consequences of Proposition 3 and the above assertion (iii).

Corollary. Let K / F be as in Theorem 1, then
(i) $a=a_{0}=h_{F} / 2$
(ii) $H^{1}\left(G, E_{K}\right)$ is a cyclic group of order 2 .

Proof. These two assertions are immediate consequences of Theorem 1 and Proposition 1.

Theorem 2. If the class-number h_{1} of $\boldsymbol{Q}(\sqrt{-q})$ is equal to 1 , then any two conditions of the following (i) $\sim(\mathrm{v})$ are equivalent to each other:
(i) the class-number h_{2} of $\boldsymbol{Q}(\sqrt{p})$ is equal to 1
(ii) $h_{K}=a$, i.e. $C_{K}=A$
(iii) $\tilde{K}=K^{*}$, i.e. $C_{K}^{1-\sigma}=1$
(iv) $N_{K / F}: C_{K} \rightarrow C_{F}$ is monomorphic, i.e. $\operatorname{Ker}\left(N_{K / F}\right)=1$
(v) $j: \boldsymbol{C}_{F} \rightarrow \boldsymbol{C}_{K}$ is epimorphic, i.e. $j\left(\boldsymbol{C}_{F}\right)=\boldsymbol{C}_{K}$.

Proof. (i) \Longleftrightarrow (ii) By Theorem 1, it follows from the assumption that

$$
h_{2}=1 \quad \text { if and only if } \quad h_{K}=h_{F} / 2
$$

On the other hand, since $a=h_{F} / 2$ by Proposition 1, (i), we have that

$$
h_{2}=1 \quad \text { if and only if } h_{K}=a
$$

(ii) \Longleftrightarrow (iii) Since $\boldsymbol{C}_{K} / \boldsymbol{A} \cong \boldsymbol{C}_{K}^{1-\sigma}$ and $\left[\boldsymbol{C}_{K} ; \boldsymbol{C}_{K}^{1-\sigma}\right]=\left[K^{*}: K\right]$, it is clear that

$$
\boldsymbol{C}_{K}=A \Longleftrightarrow \boldsymbol{C}_{K}^{1-\sigma}=1 \Longleftrightarrow \tilde{K}=K^{*} .
$$

(ii) \Longleftrightarrow (iv) Since \boldsymbol{C}_{K} is finite,

$$
\operatorname{Ker}\left(N_{K / F}\right)=1 \quad \text { if and only if }\left|N_{K / F}\left(C_{K}\right)\right|=h_{K} .
$$

On the other hand, since $\left[C_{F}: N_{K / F}\left(C_{K}\right)\right]=2$ by class field theory,

$$
\left|N_{K / F}\left(C_{K}\right)\right|=h_{K} \quad \text { if and only if } \quad h_{K}=h_{F} / 2,
$$

which is equivalent to $h_{K}=a$.
(ii) \Longleftrightarrow (v) Since $C_{F} / C_{F}^{0} \cong j\left(C_{F}\right)$ and $\left|C_{F}^{0}\right|=2$ by Theorem 1, we get

$$
\left|j\left(\boldsymbol{C}_{F}\right)\right|=\left[\boldsymbol{C}_{F}: \boldsymbol{C}_{F}^{0}\right]=h_{F} / 2 .
$$

Hence, for $\boldsymbol{C}_{K} \supset j\left(\boldsymbol{C}_{F}\right)$ we have

$$
\boldsymbol{C}_{K}=j\left(\boldsymbol{C}_{F}\right) \Longleftrightarrow h_{K}=h_{F} / 2 \Longleftrightarrow h_{K}=a .
$$

Consequently, j is epimorphic if and only if $h_{K}=a$.
Proposition 5. If the class-number h_{1} of $\boldsymbol{Q}(\sqrt{-q})$ is equal to 1 , then it is necessary for the class-number h_{2} of $\boldsymbol{Q}(\sqrt{p})$ to be equal to 1 that the following conditions (i) \sim (iii) are satisfied:
(i) $H^{0}\left(G, C_{K}\right)=1$ or cyclic group of order 2
(ii) 2 rank s of the ideal class group C_{K} of K is equal to 0 or 1
(iii) all ideals of K become principal in \tilde{F}.

Proof. (i) By Theorem 1, (v), it follows from $C_{F}^{0} \supset C_{F}^{0} \cap N_{K / F}\left(C_{K}\right)$ that

$$
\left|C_{F}^{0} \cap N_{K / F}\left(\boldsymbol{C}_{K}\right)\right|=1 \text { or } 2,
$$

and hence we know by Proposition 1, (iii)

$$
\left|H^{0}\left(G, C_{K}\right)\right|=1 \text { or } 2 .
$$

(ii) By Theorem 2 it holds $C_{K}=A$, which implies

$$
N C_{K}=N A=A^{2}=C_{K}^{2}
$$

Thus we get

$$
\left|H^{\circ}\left(G, C_{K}\right)\right|=\left[A: N C_{K}\right]=\left[C_{K}: C_{K}^{2}\right]=2^{s},
$$

and hence the assertion (ii) implies $s=0$ or 1 .
(iii) The assertion (iv) follows immediately from $\boldsymbol{C}_{K}=\boldsymbol{A}$ by Proposition 1, (v).

Proposition 6. Under the assumption $h_{1}=1$, if we assume moreover $h_{2}=1$, then any two conditions of the following (i) \sim (iv) are equivalent to each other:
(i) $\left(\frac{q}{p}\right)=-1$,
where (-) is the Legendre-Jacobi-Kronecker symbol.
(ii) $h_{F} \not \equiv 0(\bmod 4)$, i.e. $2 \| h_{F}$
(iii) 2 rank s of C_{K} is equal to 0 , i.e. $\left(h_{K}, 2\right)=1$
(iv) $H^{n}\left(G, C_{K}\right)=1$ for any integer n.

Proof. (i) \Longleftrightarrow (ii) It is an immediate consequence of Rédei and Reichardt's theorem that

$$
\begin{gathered}
h_{F} \not \equiv 0(\bmod 4) \text { if and only if }\left(\frac{p}{q}\right)=-1 \\
\text { (see Rédei and Reichardt [6]). }
\end{gathered}
$$

(ii) \Longleftrightarrow (iii) Since assumption $h_{1}=h_{2}=1$ implies $h_{K}=h_{F} / 2$ by Theorem 1, (ii), it is clear that

$$
\left(h_{K}, 2\right)=1 \text { if and only if } h_{F} \not \equiv 0(\bmod 4) .
$$

(iii) \Longleftrightarrow (iv) By Theorem 2, assumption $h_{1}=h_{2}=1$ implies $\boldsymbol{C}_{K}=\boldsymbol{A}$. On the other hand,

$$
\left(h_{K}, 2\right)=1 \text { if and only if } C_{K}^{2}=\boldsymbol{C}_{K} .
$$

Hence, if $\left(h_{K}, 2\right)=1$, then we get

$$
N C_{K}=N A=A^{2}=C_{K}^{2}=C_{K}=A,
$$

which shows $H^{0}\left(G, C_{K}\right) \cong \boldsymbol{A} / N C_{K}=1$, and by Lemma 2, (3) $H^{n}\left(G, C_{K}\right)=1$ holds for any integer n. Conversely, if $H^{n}\left(G, C_{K}\right)=1$ holds for any integer n, then in particular $H^{0}\left(G, C_{K}\right)=1$ implies $A=N C_{K}$. Hence we get

$$
C_{K}^{2}=A^{2}=N A=N C_{K}=A=C_{K},
$$

which shows $\left(h_{K}, 2\right)=1$.
Proposition 7. Under the assumption $h_{1}=1$, if the endomorphism N of C_{K} is epimorphic or monomorphic, the following conditions (i) \sim (iii) are satisfied:
(i) $h_{2}=1$
(ii) $H^{n}\left(G, C_{K}\right)=1$ for any integer n
(iii) 2 rank s of C_{K} is equal to 0 ,

$$
\text { i.e. } \quad\left(h_{K}, 2\right)=1
$$

Proof. Since C_{K} is a finite abelian group, the following conditions $\left(1^{\circ}\right) \sim\left(3^{\circ}\right)$ for the endomorphism N of C_{K} are equivalent to each other:
$\left.1^{\circ}\right) \quad N$ is epimorphic
2°) N is monomorphic
3°) N is automorphic.

In this case, it follows from $C_{K}=N C_{K}$ that $C_{K}=A=N C_{K}$ holds, which implies $2^{s}=\left[C_{K}: C_{K}^{2}\right]=1$ because $C_{K}^{2}=A^{2}=N A=N C_{K}=C_{K}$. Thus we know $s=0$, which is assertion (iii).

Moreover, by Theorem 2, $C_{K}=A$ implies $h_{2}=1$, which is assertion (i).
On the other hand, $A=N C_{K}$ implies $H^{0}\left(G, C_{K}\right) \cong A / N C_{K}=1$, and hence by Lemma 2, (3) we get $H^{n}\left(G, \boldsymbol{C}_{K}\right)=1$ for any integer n. Thus, we can complete the proof of Proposition 7.

Finally, we give some examples.

p	q	h_{1}	h_{2}	h_{F}	a	h_{K}
5	1	1	1	2	1	1
17	2	1	1	4	2	2
13	2	1	1	6	3	3
41	1	1	1	8	4	4
53	3	1	1	10	5	5
229	3	1	3	26	13	39

References

[1] A. Baker, Linear forms in the logarithms of algebraic numbers, Mathematika, 13 (1966), 204-216.
[2] E. Brown and C. J. Parry, The imaginary bicyclic biquadratic fields with classnumber 1, J. Reine Angew. Math., 260 (1973), 118-120.
[3] K. Iwasawa, A note on the group of units of an algebraic number field, J. Math. Pures Appl., 35 (1956), 189-192.
[4] H. Kisilevsky, Some results related to Hilbert's Theorem 94, J. Number Theory, 2 (1970), 199-206.
[5] S. Kuroda, Über den Dirichletschen Körper, J. Fac. Sci. Imp. Univ. Tokyo, Sec. I, 4 (1943), 383-406.
[6] L. Rédei and H. Reichardt, Die Anzahl der durch 4 teilbaren Invarianten der Klassengruppe beliebigen quadratischen Zahlkörpers, J. Reine Angew. Math., 170 (1933), 69-74.
[7] H. M. Stark, A complete determination of the complex quadratic fields of classnumber one, Michigan Math. J., 14 (1967), 1-27.
[8] T. Takagi, Algebraic number Theory (Japanese), Iwanami, Tokyo (1948).
[9] F. Terada, A principal ideal theorem in the genus fields, Tôhoku Math. J., 23-4 (1971), 697-718.
[10] H. Yokoi, On the class number of a relatively cyclic number field, Nagoya Math. J., 29 (1967), 31-44.

Department of Mathematics
College of General Education
Nagoya University
Chikusa-ku, Nagoya 464
Japan

[^0]: 4) In the special case of $q=1$, there is choosen 2 instead of q.
