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IMAGINARY BICYCLIC BIQUADRATIC FIELDS
WITH THE REAL QUADRATIC SUBFIELD

OF CLASS-NUMBER ONE

HIDEO YOKOI

It has been proved by A. Baker [1] and H. M. Stark [7] that there
exist exactly 9 imaginary quadratic fields of class-number one. On the
other hand, G.F. Gauss has conjectured that there exist infinitely many
real quadratic fields of class-number one, and the conjecture is now still
unsolved.

In connection with this Gauss' conjecture, we shall consider, in this
paper, a real quadratic field Q(V p) (prime p = imodA) as a subfield of
the imaginary bicyclic biquadratic field K = Q(Vp, V—#), which is a
composite field of Q{*J p) with an imaginary quadratic field Q(V — q) of
class number one, and give various conditions for the class-number of
QWP) to be equal to one by using invariants of the relatively cyclic
unramified extension K/F over imaginary quadratic field F = Q(V—pq).

After notation in Section 1, we shall summarize in Section 2 well-
known properties of a relatively cyclic extension and an unramified ex-
tension respectively, which we shall use in this paper. In Section 3 we
shall consider the ideal class group of a cyclic unramified extension over
a finite algebraic number field. Finally, we shall investigate in Section
4 the imaginary bicyclic biquadratic field K = Q(V—q, \l p), and give
some conditions for the class-number of real quadratic subfield Q(V p)
to be equal to 1.

§ 1. Notation

Generally, for an arbitrary finite abelian group B and its subgroup B\
the order of B and the index of Bf in B are denoted by \B\ and \B : B'\
respectively.

For an arbitrary number field k, the following notation is used
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throughout this paper:

Ek: the group of units of k

Ck: the group of ideal classes of k

hk = \Ck\: the class-number of k

k: the absolute or Hubert class field of k.

For a finite Galois extension KjF of a finite algebraic number field

F and the Galois group G = Gal{KjF), we shall denote by Hr(G, B) the

r-dimensional Galois cohomology group of G acting on an abelian group B,

and by Q(B) the Herbrand quotient of B, i.e. Q(B) = \H°(G, B)\/\H\G, B)\.

Furthermore, we shall use the following notation:

Πe(p): the product of ramification exponents of all finite prime divisors

p oΐ F with respect to K/F

Πe(pJ): the product of ramification exponents of all infinite prime

divisors pM of F with respect to K\F

Πe(p) = Πe(p)-Πe(pJ): the product of ramification exponents of all

finite and infinite prime divisors of F with respect to K/F

(ε): the group of units of F

(η): the group of those units of F which are norms of number of K

A: the group of ambiguous classes of Cκ with respect to K/F

a = \A\: the ambiguous class number of K/F

Ao: the group of classes of Cκ represented by ambiguous ideals with

respect to KjF

α0 = IΛI
AF\ the group of classes of Cκ represented by ideals of F

aF = \AF\

CF\ the group of those classes of CF whose ideals become principal

in K

ho = \C°F\

Nκ/F: the norm mapping with respect to K/F, and simultaneously

the homomorphism from Cκ to CF induced by the norm mapping

j = 3K/F the homomorphism from CF to Cκ induced by extension of

ideals

N = j o Nκ/F: the endomorphism of Cκ defined as composed mapping

of Nκ/F and j .

% 2. Preliminary results

In this section, we shall summarize several almost well-known
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results on a cyclic or an unramified extension, which we shall use in this
paper.

LEMMA 1.1} Let K/F be a finite Galois extension of a finite algebraic

number field F, then

( 1 ) a ° k F \H\G,EK)\

( 2 ) HHG, Eκ) ^ (A0)l(a) and \H\G, Eκ)\ = 0 (mod h0),

where (Ao) is the group of ambiguous principal ideals of K with respect to

K/F and (a) is the group of principal ideals of F.

LEMMA 2.2) Let K\F be a finite cyclic extension of a finite algebraic

number field F, then

( 3 )
[K :

( 4 ) a = I[^
[K :

( K \ a -\vN (EV α°
a0 aF

( 6 ) Πe(p) Ξ O (mod [ε: η\)

LEMMA 3.3) Let KjF be a finite Galois unramified extension of a finite

algebraic number field F, then

( 7 ) H\G,EK)^CF

(8) H*(G, Eκ) g* A/AF

( 9 ) α = Λ,MM,

§3. Cyclic unramified extension

Let F be a finite algebraic number field, and if be a finite cyclic
unramified (in all finite and infinite prime divisors) extension field. For
such extension KjF, we shall consider, in this section, the structure of
the ideal class group Cκ of K as Galois module.

PROPOSITION 1. Let K/F be a finite cyclic unramified extension of a

finite algebraic number field F, then

1) For proofs, see Iwasawa [3], Yokoi [10],
2) For proofs, see Takagi [8, pp. 192-195], Yokoi [10].
3) For proofs, see Iwasawa [3].
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( i ) '-wwi u- *=κ'
where K* is the genus field with respect to K/F.

(ii) Λo = IH\G, Eκ)\ = [K:F].[v NK/F(EK)]

(iii) I H%G9 Cκ) \ = I CF Π NK/F(CK) \

(iv) \H\G, Cκ)\ = 0 (mod\H%G, Eκ)\),

and \H\G, Cκ)\ = \H°(G, Eκ)\ if and only if NCK = AF

(v) any ambiguous class ideal of KjF becomes principal in F.

Proof,

( i ) , (ii) See Yokoi [10]

(iii) See Kisilevsky [4]

(iv) By Lemma 2, (5), [A: A,} is equal to [η: NK/F(EK)].

On the other hand, since [ε: rj\ = 1 by Lemma 2, (6), it holds \H°(G, Eκ)\

= [y' NK/F(EK)], and so [A: Ao] = \H°(G, Eκ)\. Hence it is clear from [Ao:

AF] = 1 that

\H\G, Cκ)\ = U: Λ] [Λ: AF]-[AF: NCK]

= \H%G,EK)\ [AF:NCK],

which implies easily assertion (iv).

(v) See Terada [9], and cf (i).

PROPOSITION 2. In the extension KjF, any two conditions of the fol-

lowing (i) — (iii) are equivalent to each other:

( i ) hκ = α , i.e. Cκ = A

(ii) ίt = K*, i.e. CJf = l ,

where σ is a generator of the cyclic Galois group G — Gal (K/F).

(iii) Ker(Nκ/F) = 1, i.e. iV^,: C*->CV is monomorphic.

Proof. Since [CV: NK/F(CK)] = [if: ί1] and α = ^/[K: F] hold by class

field theory and Proposition 1, (i) respectively, we get the following:

Ker (Nx/F) = 1 <=Φ IΛΓ^C^I = hκ

κ = hF/[K; F]

On the other hand, it follows from CK\A = C1£a that

hκ = α <=> Cκ = A

PROPOSITION 3. /^ ί/ie extension K/F, any two conditions of the fol-

lowing (i) — (iv) are equivalent to each other:
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( i ) a=a0, i.e. A = Ao

(ii) [η: NK/F(EK)] = 1

(iii)

(iv)

Proof, (i) <=Φ (ii) It is evident by Lemma 2, (5) that (i) is equivalent

to (ii).

(ii) <£=> (iϋ) Since K/F is a cyclic unramiίied extension, we get [ε: η]

= 1 immediately by Lemma 2, (6), and so

\H%G, Eκ)\ = [e: ?]•[?: ^ / p ( ^ ) ] = .fo: N w ( ^ ) ] .

Hence

\H%G, Eκ)\ = l if and only if [,: NK/F{EK)] = 1.

(ii) 4=φ (iv) It is clear by Proposition 1, (ii) that (ii) is equivalent to

(iv).

PROPOSITION 4. In the extension K/F, any two conditions of the fol-

lowing (i) — (iii) are equivalent to each other:

( i ) CF = C°F X NK/F(CK)

(ii) Ker(N) = Ker(Nκ/F)

(iii) i?°(G,C*) = l

Proof (i) = φ (ii) Since N=j o Nκ/F, it holds Ker (Nκ/F) c iίer (iV) in

general. If CV = CF X NK/F(CK), then C^ ΓΊ NK/F(CK) = 1 holds, and hence

for any C in Ker(N) we get NK/F(C) e CFΠNK/F(CK), and so CeKer(Nκ/F).

Therefore we get Ker(N) c Ker(Nκ/F).

(ii) = φ (iii) If Ker(Nκ/F) = Ker(N), then for any C" in C^ Π NK/F(CK),

it holds

0 ^ JNfcMCO € iVίWCΪ ) = ΛΓβr(iV) = Ker(Nκ/F\ and s o C ' ^ 1 .

Hence we get CF Π NK/F(CK) = 1, from which follows H°(G, C*) - 1 by

Proposition 1, (iii).

(iii) = φ (i) If H°(G, Cκ) = 1, then CJ. Π NK/F(CK) = 1 holds by Propo-

sition 1, (iii). On the other hand, by class field theory \NK/F(CK)\ = hF/[K: F]

holds, and also by Proposition 1, (ii),

\C°F\ = h0 = 0 (mod[K: F])

holds. Hence we get CF = CF X NK/F(CK).
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COROLLARY. In the extension K/F, if any one of 3 conditions in Propo-

sition 4 is satisfied, then each of 4 conditions in Proposition 3 is also

satisfied.

Proof This assertion is an immediate consequence of Proposition 1,

(iv), Proposition 3 and Proposition 4.

§4. Imaginary bicyclic biquadratic field

Let p be a prime congruent to 1 mod 4, and q be 1, 2 or a prime

congruent to —1 mod A. Put kλ = Q(V — q), k2 = Q(Vp), F = Qi^ — pq)

and K = Q(V — q, V p). Then, applying the results of Section 3, we shall

consider, in this section, the structure of the ideal class group Cκ of K

as Galois module with respect to KjF, and under the assumption that the

class-number hx of kx is equal to 1, we shall give some kinds of conditions

for the class-number h2 of k2 to be equal to 1.

THEOREM 1. Let p be a prime congruent to 1 mod 4, and q be 1, 2 or

a prime congruent to —1 mod 4. Put F=Q(V — pq) and K= Q(V — q, Vp~).

Then, K\F is a cyclic unramίfied extension of degree 2, and moreover the

following (i) — (v) hold:

(π)

(iii) H°(G,Eκ) = l

(iv) a = α0, i.e. A = Ao

(v) Λ0 = 2

Here, hx and h2 are the class-number of quadratic number fields kx — Q(Λ/ — q)

and k2 = Q(Vp) respectively.

Proof. In the imaginary bicyclic biquadratic field K = Q(V — #, Vp),

the ramified finite primes are onlyp and q (or 24)), and their ramification

exponents with respect to KjQ are equal to theirs with respect to KjF

respectively (all of them are equal to 2). Hence K\F is unramified.

( i ) F = K* follows immediately from Proposition 1.

(ii) Since p = 1 (mod A), the fundamental unit εp of k2 has norm —1.

Hence, we know first

hκ = hi'h*'hF (see, for example, Brown and Parry [2]).

4) In the special case of q = 1, there is choosen 2 instead of q.
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(iii) Since Nκ/F(εp) = Nk2(εp) = - 1 , we get

(e) = ± 1 = NκίF{Eκ) .

Hence

H\G, Eκ) s (e)INκ/F(Eκ) = 1.

(iv), (v) Both a = a0 and h0 = 2 are immediate consequences of

Proposition 3 and the above assertion (iii).

COROLLARY. Let K/F be as in Theorem 1, then

( i ) α = a0 = ΛF/2

(ii) £P(G, #*) is α c ydic group of order 2.

Proof. These two assertions are immediate consequences of Theorem

1 and Proposition 1,

THEOREM 2. If the class-number hx of Q(V — q) is equal to 1, then any

two conditions of the following (i) ~ (v) are equivalent to each other:

( i ) the class-number h2 of Q(V p) is equal to 1

(ii) hκ = α, i.e. C* = Λi

(iii) X - K*, i.e. Cλ£° - 1

(iv) Nκ/F: CK->CF is monomorphic, i.e. Ker(Nκ/F) = 1

(v) y. CF —>CK is epimorphic, i.e. j(CF) = C*.

Proo/. (i) <=> (ii) By Theorem 1, it follows from the assumption that

h2 = 1 if and only if hκ = hFj2 .

On the other hand, since a — hF\2 by Proposition 1, (i), we have that

h2 = 1 if and only if hκ = a .

(ii) φ=> (iii) Since CK\A s CJrσ and [Cκ; C^"] = [if*: if], it is clear

that

Cκ = ^ φ=» Cifσ - 1 4=Φ X = if * .

(ii) φ=φ (iv) Since Cκ is finite,

Ker(NκίF) = 1 if and only if |i\k/F(C*)| = ^ .

On the other hand, since [CF: NK/F(CK)] = 2 by class field theory,

\NK/F(CK)\ = hκ if and only if hκ = hF\2 ,

which is equivalent to hκ — a.
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(ii)<=φ(v) Since CF/CF =j(CF) and \C°F\ = 2 by Theorem 1, we get

\KCF)\=[CF:C°F] = hFl2.

Hence, for Cκ D j(CF) we have

Cκ = j(CF) 4=5 hκ = hFj2 <=φ hκ — a.

Consequently, j is epimorphic if and only if hκ — a.

PROPOSITION 5. // the class-number ht of Q(V — q) is equal to 1, then

it is necessary for the class-number h2 of Q(V p) to be equal to 1 that the

following conditions (i) ~ (iii) are satisfied:

( i ) H°(G, Cκ) = 1 or cyclic group of order 2

(ii) 2 rα?ι& s of the ideal class group Cκ of K is equal to 0 or 1

(iii) all ideals of K become principal in F.

Proof ( i ) By Theorem 1, (v), it follows from CQ

F^CFf] NK/F(CK)

that

\CFΠNK/F(CK)\ = 1 or 2,

and hence we know by Proposition 1, (iii)

jii (Or, C/JI = I or Δ .

(ii) By Theorem 2 it holds C π = A, which implies

NΓ = 7VΛ = /f2 = Γ'2,

Thus we get

\H\G, Cκ)\ = [A: NCK) = [Cκ: C\\ = 2 s ,

and hence the assertion (ii) implies s = 0 or 1.

(iii) The assertion (iv) follows immediately from Cκ — A by Propo-

sition 1, (v).

PROPOSITION 6. Under the assumption hx = 1, if we assume moreover

h2 — 1, then any two conditions of the following (i) ~ (iv) are equivalent to

each other:

(i) (£) = - i ,

\p/

where (—) is the Legendre-Jacobi-Kronecker symbol.

(ii) hF =έ 0 (mod 4), i.e. 2\\hF

(iii) 2 rατι& 8 of Cκ is equal to 0, i.e. (/i*, 2) = 1
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(iv) Hn(G, Cκ) = 1 for any integer n.

Proof. ( i ) Φ=Φ (ii) It is an immediate consequence of Redei and

Reichardt's theorem that

hF=£0 (mod 4) if and only if (?-) = - 1

(see Redei and Reichardt [6]) .

(ii) <=φ (ϋi) Since assumption hx = h2 = 1 implies hκ == hF/2 by

Theorem 1, (ii), it is clear that

(hκ, 2) = 1 if and only if hF ^ 0 (mod 4).

(iii) <£=φ (iv) By Theorem 2, assumption ht = h2 = 1 implies Cκ — A.

On the other hand,

(hκ, 2) = 1 if and only if C l = Cκ .

Hence, if (Λ ,̂ 2) = 1, then we get

NCK = NA = A2 = C2

K = Cκ = A,

which shows H°(G, Cκ) ^ ^/iVC^ = 1, and by Lemma 2, (3) Hn(G, Cκ) = 1

holds for any integer ra. Conversely, if Hn(G, Cκ) = 1 holds for any

integer n, then in particular H°(G, Cκ) = 1 implies 4̂ = NCK. Hence we

get

C2

K = A2 = NA = NCK = A = CK,

which shows (hκ, 2) = 1.

PROPOSITION 7. Under the assumption h: = 1, if the endomorphism N

of Cκ is epίmorphic or monomorphic, the following conditions (i) — (iii) are

satisfied:

( i ) Λ2 = l
(ii) i/n(G, Cjf) = 1 for any integer n

(iii) 2 ranβ s of Cκ is equal to 0,

i.e. (hK} 2) = 1

Proof. Since C^ is a finite abelian group, the following conditions

(1°) — (3°) for the endomorphism N of Cκ are equivalent to each other:

1°) N is epimorphic

2°) N is monomorphic

3°) N is automorphic.
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In this case, it follows from Cκ = NCK that Cκ = A = NCK holds,

which implies 2s = [Cκ: C2

K] = 1 because C2

K = A2 = NA = NCK = Cκ.

Thus we know s = 0, which is assertion (iii).

Moreover, by Theorem 2, Cκ = A implies h2 = 1, which is assertion (i).

On the other hand, A = ΛΓĈ  implies #°(G, C*) = A/NCK = 1, and

hence by Lemma 2, (3) we get Hn(G, Cκ) = 1 for any integer n. Thus,

we can complete the proof of Proposition 7.

Finally, we give some examples.

V

5

17

13

41

53

229

q

1

2

2

1

3

3

hi

1

1

1

1

1

1

1

1

1

1

1

3

hF

2

4

6

8

10

26

α

1

2

3

4

5

13

hκ

1

2

3

4

5

39
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