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HOMOTOPY GROUPS OF FULLBACKS OF VARIETIES

ANDREW JOHN SOMMESE AND A. VAN DE VEN

In [2, § 9] there is a general result of Fulton and Lazarsfeld relating
the homotopy groups of a subvariety of Pc in a certain range of dimen-
sions with those of its pullback under a holomorphic map in the corre-
sponding range of dimensions. It is asked in [2, § 10] whether here is a
corresponding result with Pn

c replaced by a general rational homogeneous
manifold, Y, and with the range of dimensions alluded to above shifted
by the ampleness of the holomorphic tangent bundle of Y in the sense of
[4]. In this paper we use the techniques of [4, 5, 6, 7] to answer this
question in the affirmative.

Let us first recall the notion of ^-ampleness for holomorphic vector
bundles [4; see 1 also]. When k — 0 this notion coincides with ampleness
in the sense of Grothendieck-Hartshorne. Since all the bundles for which
we need this notion are spanned, the definition takes a very simple form.
Let £ be a holomorphic vector bundle on a compact complex manifold
that is spanned at all points by global holomorphic sections. E is k-ample
if for each subvariety Z ci X such that E\z has a trivial quotient bundle,
it is true that dim Z < k.

(2.2) THEOREM. Let f: W—> Y be a holomorphic map from a connected
compact complex manifold W to a connected rational homogeneous projective
manifold Y. Assume that /* Tγ, the pullback of the holomorphic tangent
bundle of Y, is k ample. Let Z be a connected complex submanifold of Y.
Let d = dim W — codZ — k. If d > 0 then f~\Z) is connected and for all
aef'\Z)

/*: *AW, fΛZ\ a) —> */Y, Z, f(a))

is an isomorphism if j < d, and a surjectίon if j = d + 1.

A few remarks are in order.
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In the case when d = 0, the proof of the above theorem shows that
f~\Z) is non-empty.

The number k that occurs in the above theorem is very computable.
Let t denote the ampleness of Tγ and let m denote the maximum of the
fibre dimensions of the map /. Then k < t + m. For the Grassmannian,
Gr (n, r), of the quotient Cr's of Cn, t = r(n — r) — n + 1 and for the any
smooth quadric t = 1 (see [5, 7]). For the general formula see [3].

Since the ampleness of / * Tγ takes more of the geometry of the map
/ into account, it is often more useful than simply using the bound t + m.
For example let E be a k ample bundle on a compact connected complex
manifold W that is spanned at all points by a vector space V of global
sections. Let dim V = n and let /: W-> Gr (rc, rk E) be the map associated
to the evaluation map

(#) WxV >E >0.

Then/* Tγ « E®F* where Fis the kernel of the evaluation map(#).
From this we can conclude that f*Tγ is k ample; this is usually much
better than the k estimated by t + m above. For more details on this
example and for an application to the Gauss mapping, see Section 3.

There is a whole literature on connectedness results (see [2]). In
particular for general Y as above, Faltings [1] has a connectedness result
that allows W to be singular; there is a discussion of this in [3].

Let us go over the contents of this paper in detail.
In Section 1 we consider a very general setup. We have a connected

Lie group G acting on a not necessarily compact complex manifold, X.
We have two complex manifolds B and A on X. We assume that B is
compact and has a k ample normal bundle. Except that X is not neces-
sarily homogeneous, this is the setup studied in [6; §3]. Let B denote
the family of intersections of B with G translates of A:

B = {(g,a)eG x A\ageB}.

Using the results in [6] we show that the map B -> G induced by the
product projection G X A —> G has a long exact homotopy sequence like
that of a fibre bundle in a certain range of dimensions. From this and
elementary homotopy theory we get Theorem (1.1) which asserts that the
map:

πj(A, A Π B, a) > π}(G X A, B, a')
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induced by the inclusion A —> (iάG, A), is an isomorphism for j < dim A —
coάB — k, and a surjection for j = dim A — codB — k + 1 for any α 6
A ίΊ JB and its image α' in B. This is the basic technical result of the
paper.

We then add the condition that the map G X A -> X induced by the
group action is a fibre bundle. Under this additional condition we con-
clude from the result of the last paragraph that for all ae AΠ B,

π/A, A Π B, a) > τr,(X, B, a)

and

τr/£, A Π B, α) > TΓ/X, A, α)

are isomorphisms for j < dim A — codB — k and surjections for j = dim A
- cod B - k + 1.

Let /: W-+ Y be a holomorphic map from a connected compact com-
plex manifold W to a homogeneous complex manifold Y. Let Z be a
closed complex submanifold of Y. In Section 2 we apply the above by
taking X = W X Y, A = W X Z, and B equal to the graph of /. In this
case the normal bundle of B in X is isomorphic to /* Tγ. The result we
obtain applies to not necessarily compact homogeneous manifolds. Special-
izing this result to a rational homogeneous projective manifold W, we
obtain the result described at the beginning of this paper.

In the last section we give some examples including an application
to the Gauss mapping.

We would like to thank the Max Planck Institut fur Mathematik for
their support. The first author would like to also thank the National
Science Foundation [MCS 8200 629] for their support.

§1. General results

In this section we recall definitions and results that we need. We
also prove a variant of the main result of [6] that is useful for our
application.

We need the notion of £-ampleness in the sense of [4] for holomorphic
vector bundles. Since our bundles are always spanned by global sections
this notion takes a particularly simple form. Let E be a holomorphic
vector bundle on a compact complex manifold that is spanned at all
points by global holomorphic sections. E is β-ample if for each subvariety
Z c l such that E\z has a trivial quotient bundle, it is true that dimZ < k.
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Throughout the rest of this section it is assumed that

a) p: G x X-+ X is a. real analytic action of a connected Lie group

G on a connected not necessarily compact complex manifold X where for

any ge G, p(g, j c ) : { g } χ l - > l ί s a biholomorphism. To conform to the

notion of [6; §3], we write xg for p(g, x).

b) A and B are connected complex submanifolds of X which have a

non-empty intersection.

c) B is compact and that the normal bundle of B is both spanned

by global sections at all points and k ample for some k < dim A — cod B.

(1.1) THEOREM. Let G, X, B and A be as above. Then for all geG,

Ag Π B is non-empty. Let B denote the family of intersections of B with

G-translations of A:

B = {(g,a)eG x A\ageB}.

If k < dim A — cod B then the number of connected components of Ag (Ί B

is independent of geG. Further the map:

πs(A, A Π B, a) > TΓ/G x A, J3, α')

induced by the inclusion A —• (idG, A), is an isomorphism for j < dim A —

cod B — k, and a surjection for j = dim A — cod B — k + 1 for any a e A

Π ΰ and its image a' in B.

Proof To simplify notation, basepoints are suppressed. Our notation

is chosen compatibly with [6; §3]. We let p:JB->G denote the map

induced by the product projection p: G X A —> G.

Since B is compact and the normal bundle of B is spanned at all

points by global sections and k ample it follows from the main theorems

of [5, § 7] that X — B is cod B + k convex in the sense of Andreotti-

Grauert. We now use the main results of [6]. Our notation has been

set up to agree with that of [6; Lemma (3.1.3), pg. 123]. The argument of

that lemma applies here, except that instead of assuming that G acts

transitively, we assumed explicitly that A Π B is non-empty. From this

argument we draw the conclusions that p(B) = G if dim A > cod B + k

and that p is a dim A — cod B — k quasi-fibration if dim A > cod B +

k + 1. Note that p(B) = G implies that Ag (Ί B is non-empty for each

geG and that the definition [6; (2.1)] of a dim A — codJB — k quasi-

fibration implies that the number of connected components of Ag Π B is

independent of g e G.
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From [6; Proposition (2.3)], we conclude that under the inclusion of

A Π B in B given by A -* (idG, A):

(*)

: π3(B, AΠB) > TΓ/G) is an isomorphism

for j < dim A — codB — k and a surjection

for j = dim A — cod J5 — k + 1.

Associated to the commutative square:

A Π B >B

A >G xA

we have two exact sequences of homotopy groups:

πj(B, AΠB) > πj(G X A, A ΓΊ B) > τr/G X A, B) > n^B, AΠB)

πj(A, AΠB) > πj(G X A, A Π B) • πs(G X A, A) > π^A, A Π B)

From (*) above we conclude that the composition:

(**) π,(B, A OB) > πj(G X A, A) ^ π^G)

of

πj(B, A OB) > πj(G X A, A Π B)

and

πj(G x A, A Π B) — • πό(G x A, A)

is an isomorphism for j < dim A — codΰ — k and a surjection for j —

dim A — cod B — k + 1.

A standard diagram chase on the above exact sequences combined

with the (**) implies that the composition

πj(A, A OB) • πj(G X A, B)

of

π3(A, A OB) > πj(G x A, A Π B)

and

π;(G X A, A Π B) > π/β X A, B)

is an isomorphism for j < dim A — cod B — k and a surjection for j =

dim A — cod J5 — /2 + 1. This finished the proof of the theorem. •
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(1.1.1) Remark. Proposition (1.1) of [6] applied to our situation shows

that if dim A > cod B + k, then the map B -> G is either empty or onto,

i.e. if Ag Π B is non-empty for one g e G then it is non-empty for all g e G.

To proceed further we need some extra control over the group action.

Let pA: G X A -» X denote the restriction of to G X A.

(1.2) THEOREM. In addition to the hypotheses of Theorem (1.1) assume

that the map ρA: G X A —> X given by the group action is surjective and a

fibre bundle. Then for any a e A (Ί B:

πj(A, AΠJ5,α) > πj(X, B, a)

and

πj(B, AΠB,a) > πj(X, A, a)

are isomorphisms for j < dim A — cod B — k and surjectίons for j = dim A

- cod B - k + 1.

Proof. Note that B = p~A\B). Thus B -> B is a pullback of the fibre

bundle pA under the inclusion of B into X. From this we conclude by

a standard argument that the map

τr,(G X A, B) > πj(X, B)

induced by pA is an isomorphism for all j > 0. Combined with the con-

clusion of the last theorem we have that:

( t ) ff,(A, A Π B) — • πj(X, B)

is an isomorphism for j < dim A — cod B — k and a surjection for j =

dim A — cod B — k + 1.

This is half of the theorem. To get the other half, write down the

homotopy exact sequences associated to the commutative diagram:

AΠB >B

A >X

Using (#) the argument proceeds exactly as in Theorem (1.1). •

§2. The main theorem

(2.1) THEOREM. Let f:W-+Ybea holomorphic map from a connected

compact complex manifold W to a connected homogeneous not necessarily
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compact complex manifold Y. Assume that Y is of the form G/V where G

is a simply connected group of biholomorphisms of Y and V is a connected

subgroup of G. Assume that / * Tγ, the pullback to W of the holomorphic

tangent bundle of Y, is k ample (in the sense of [4] see § 1). Let Z be a

connected closed complex submanίfold of Y. Let d = dim W — cod B — k.

If d > 0 then f~\Z) is connected and for all a e f~\Z)

, f~\Z\ a) — > */Y, Z, f(a))

is an isomorphism if j < df and a surjectίon if j — d + 1.

Proof. In the following proof we suppress basepoints for simplicity

of notation.

Let X and A denote the manifolds W X Y and W X Z respectively.

Let B denote the graph of / in X. Note that the normal bundle of B in

X is isomorphic to f*(Tγ) where Tγ is the holomorphic tangent bundle

of Y. Since Y is homogeneous it follows that Tγ and hence f*(Tγ) is

spanned by global holomorphic sections. Therefore the normal bundle of

B in X is k ample for some k. From the homogeneity of Y and the defi-

nition of A and B it follows that Ag Π B is non-empty for some g e G.

Note that map pA: G χ A - > X given by the group action p is a fibre

bundle. Note further that the fibre, F, of this map is a fibre bundle over

Z with isotropy group V as fibre.

Since G X A —> X is a fibre bundle, we conclude for Theorem (1.2)

that

is an isomorphism for j < dim A — cod B — k and surjection for j — dim A

- cod B - k + 1. Note that dim A - cod B - k = dim W + dim Z -

dim Y — k. Since

π£B, AΓ\B) = πj(W, f-\Z)\ πj(X, A) = π}(Y, Z) ,

and the homomorphism (*) corresponds to

(**) U:^W9f-\Z))—>πj(Y,Z)

we conclude that /* is an isomorphism for j < d, and a surjection for

j = d + 1.

All that remains is to show that f~\Z) is connected. Since pA is a

fibre bundle, so also is the map B = p2\B) -> £? given by the restriction
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of pA to B. Since the both fibre F of pA and B are connected, it follows

that B is connected. Assuming that dim Z > d it follows from Theorem

(1.1) that B->G factors as B->M and M-+G where B -> M has con-

nected fibres and M -> G is a covering. Since G is simply connected

and A Π B is the fibre if B -» G over idG, we conclude that A Π B is con-

nected. •

(2.1.1) Remark. It follows from Remark (1.1.1) that f'\Z) is non-

empty if d > 0.

The following proposition is an immediate corollary of the above

theorem. We designate it a theorem because it is the main result of this

paper.

(2.2) THEOREM. Let f: W-> Y be a holomorphίc map from a connected

compact complex manifold W to be a connected rational homogeneous pro-

jectίve manifold Y. Assume that f*Tγ, the pullback of the holomorphic

tangent bundle of Y, is k ample. Let Z be a connected complex submanifold

of Y. Let d = dim W — codZ — k. If d > 0 then f~\Z) is connected and

for all aef-\Z)

U: πj(W, f~\Z\ a) — * τr,(Y, Z, f(a))

is an isomorphism if j < d, and a surjectίon if j = d + 1.

(2.1.2) Remark. If the holomorphic tangent bundle, Tγ, is t ample,

and if m — max {dim Z " 1 ^ ) ^ e Y), then k < t + m. This is an immediate

consequence of the definition of k ampleness.

§ 3. Examples

In this section we show how to use the results of this paper. Through-

out this section we suppress basepoints.

The following is a restatement of Theorem (2.2) that follows from

an elementary diagram chase.

(3.1) THEOREM. Let f, W, Y, Z, and d be as in Theorem (2.2). Assume

that d > 0. Let i denote the inclusion of f~ι(Z) in W and let j denote the

inclusion of Z in Y. Then there is an exact sequence:

πd(f-\Z)) - 1 > πd(W) Θ πΛ{Z) -A>

Here a = ί* + /* and b = /* - j * .
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The above is very useful for constructing examples of projective

varieties with unusual homotopy groups. To illustrate this we restrict

for simplicity to the previously known case of the theorem [2] when Y = P 4

and Z is a smooth surface. We assume that dim W = 4 and / is a finite

to one surjection. The above exact sequence becomes:

π2(W) ® π2(Z) -> *2(P4) -> πx{f'\Z)) - *,(W) Θ ^(Z) - 0.

(3.1.1) EXAMPLE. Let W be an arbitrary 4 dimensional Abelian

variety. There exists a smooth surface S ^ W with the properties:

a) the canonical bundle of S is ample and cl(S)lc2(S) = 5/3,

b) there is an exact sequence

0 > Z > πt(S) > Z12 > 0

where Z12 denotes the direct sum of 12 copies of the integers, Z.

To construct this example let /: W-^P* be any finite to one surjec-

tion. Let ZeP* be a general translate under the projective linear group

of the famous Horrocks-Mumford Abelian surface of degree 10. The

assertion b) is immediate from (3.1) above. The assertion of a) is a direct

calculation.

There are many other interesting manifolds to pullback, e.g. P 2 embed-

ded into P 5 by the Veronese embedding.

In Theorems (2.1) and (2.2) we use the ampleness of f*Tγ instead of

simply using the sum of the ampleness of Tγ plus the maximum fibre

dimension of /. To show that this is a true improvement we conclude

with a new type of Lefschetz theorem. Let Gr(n, r) denote the Grassman-

nian of quotient Cr>s of Cn.

(3.2) THEOREM. Let E be a holomorphic vector bundle on a compact

complex manifold, W. Assume that E is spanned at all points by an

dimensional vector space V of global section. Let F be the kernel of the

surjectίve bundle map

(#) WxV >E >0

given by evaluation. Let f: W—> Gr(n, rk E) be the map associated to (#).

Let Z be any compact connected complex submanίfold of Gr(n, rkZ?) and

assume that J B ® F * is k ample. Then

πj(W, f-\Z)) > TΓ/GΓ(n, rk E), Z)
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is an isomorphism for j < dim W — cod Z — k and a surjection for j = dim W

- c o d Z - k + 1.

Proof Let Y = Gr (n, rk E) and note that f*(Tγ) ~ F* ® E. The

theorem now follows from Theorem (2.2).

(3.2.1) Remark. Let E be & k ample vector bundle on a compact

complex manifold W. Assume that E is spanned by global sections and that

B is the zero set of a holomorphic section of E. The standard Lefschetz

Theorem for a k ample vector bundle spanned at all points by global

sections (which follows for example from the main theorem of [7]) asserts

that

(*) πj(W, B) = 0 for all j < dim W - rk E - k.

This follows also from the above result. To see this let E, W and B be

as in this remark and let V, F, and / be as in the above theorem. For

an appropriate codimension one subspace of V, B = /~1(Gr(τι — 1, rk £)).

Note that τr/Gr (n, rk E), Gr (n - 1, rk E)) = 0 for j < 2(n - rk JE) - 1.

Noting that n > dim W + rk E — k we see that π/Gr (ra, rk 22), Gr (n — 1,

rk E)) = 0 for j < dim W — rk E — k. Combining this with the above

theorem gives (*).

The above has an interesting application to the Gauss mapping. Let

W be an r codimensional projective submanifold of Pn~ι not contained

in any linear Pn~\ Then the Gauss mapping f: W-> Gτ(n, r) is the map

associated to the evaluation mapping

(#) Wx V >E >0

where

V=Γ(Pn-\Θpn-1(ϊ))*\w

and E = Nw(-ΐ), the normal bundle of If in Γ " 1 twisted by Θpn-ι(-l).

The kernel of (#) is J,(W, <9WQ))*, the dual of the first jet bundle of the

restriction to W of the hyperplane section bundle Φpn-i(ϊ). Therefore for

this map

/*rG r ( n, r ) « jχw9 Θw(l)) ® Nw(-l)

which is k ample if either J^W, (9w(ΐ)) or iVV(—1) is k ample. We thus

get a first result towards answering the question posed in [2; 10.5].
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(3.3) THEOREM. Let f: W-+ Gr(n, r) be the Gauss mapping associated

to an r codimensional projectίve submanifold of Pn~\ Assume that

Ji(W, tfV(l)) or Nw(-Ϊ) or more generally JX(W, ΘWQ)) ® Nw( — Ϊ) is k ample.

Let Z be a connected complex submanifold of Gr(n, r). // dim W > coάZ

k, f'1(Z) is non-empty. If dim W > cod Z + k, then f~ι(Z) is connected

and

U . πj(W, f-\Z)) — * */Gr(n, r), Z)

is an isomorphism for j < dim W — cod Z — k and a surjectίon for j =

dim W - cod Z - k + 1.

It is easy to check that JX{W, L) is ample if L is the square of a very

ample line bundle. It is not hard to check that unless W is projective

space and L = 0(1), it follows that J^W, L) is dim W — 1 ample.

The theorem analogous to (3.3) holds for the Gauss mapping associated

to a codimension r submanifold, W, of an n dimensional Abelian variety,

A. Here the k ampleness hypothesis is changed to

Assume that T$9 or NW9 or more generally T% ® Nw is k ample, where

Nw is the normal bundle of W in A.

Since there is an easy criterion [4] for the k ampleness of Nw based on

a result of Hartshorne, this result is easily applied.
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