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MODULAR DESCENT OF SIEGEL MODULAR FORMS

OF HALF INTEGRAL WEIGHT AND AN ANALOGY

OF THE MAASS RELATION

YOSHIO TANIGAWA

Introduction

In [8], H. Maass introduced the 'Spezialschar' which is now called the
Maass space. It is defined by the relation of the Fourier coefficients of
modular forms as follows. Let /be a Siegel modular form on Sp(2,Z) of
weight k, and let f(Z) = J]a(T)e(tr TZ) be its Fourier expansion, where
e(z) — exp (2πίz) for zeC. Then / belongs to the Maass space if and
only if

( i )

In a series of papers [8]-[10], he studied the connection with Jacobi forms
of index 1 and the Dirichlet series of Andrianov type. In particular,
using the Hecke operators acting on Jacobi forms, he showed that there
is a lifting from the space of Jacobi forms of index 1 to the space of
Siegel modular forms on Sp(2, Z). (See also D. Zagier [13] and M. Eichler
and D. Zagier [2]).

On the other hand, Shimura's theory of Hecke operators on modular
forms of half integral weight was generalized to Siegel modular forms by
S. Hayakawa, K. Tanaka, T. Hina, and T. Ibukiyama. In this paper, we
consider the forms of degree 2 and define an analogy of the Maass relation.

Let /be a Siegel modular form on Γ(

0

2)(N) of half integral weight k/2
and character 1 and let f(Z) = J]α(T)β(tr TZ) be its Fourier expansion.

We also write α(Γ)= α(n, r, m) for Γ = f% rj£\ Then the analogy of the
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52 YOSHIO TANIGAWA

Maass relation can be written as

a(n, r, mp2) = a(np2, r, m)

for any prime number p such that (p, N) = 1. Here εd = 1 if d = 1 (mod

4) and εd = i if d = 3 (mod 4). We consider two kinds of Dirichlet series,

namely

(iii) Σ a(T[M])\detM\-\ where

@ = {Me M2(Z) Π GL(2, Q)|(det Af, AT) = 1}/GL(2, Z) ,

and

(iv) Σ a(p2v+2dT)xv for Γ^O (mod p\ d^O.

We will show that if / is a common eigenfunction of all the Hecke oper-

ators and / satisfies the Maass relation, the denominators of (iii) and (iv)

can be expressed by certain Dirichlet series of the form of integral weight

of one variable associated to /.

I would like to express my thanks to S. Hayakawa for the useful

discussion.

Notation and the definition of modular forms (G. Shimura [12], S.

Hayakawa [3]).

Let G{n) be the symplectic group of degree n and let G(7° be the

symplectic similitude group:

G ( n ) = {a 6 GL(2n, R)\ιala = v(a)I, v(a)>0\

where *a is the transpose of a and ί = ( i Λ/> 1* = the unit matrix

of order n. We denote the Siegel upper half plane by fyn\ The group

G ( n ) acts on ψn) by

a(Z) = (AZ + B)(CZ + D)-1 for a = ( ^ B) e G™.

Furthermore we define the group g(n) by
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aeG{n\ φ: non zero holomorphic function on ψn) )

such that φ(Z)2 = tv(a)~n/2 det(CZ + D) with t e C, \ t\ = lj

with a law of multiplication as

(a, φ(Z))(β, ψ(Z)) - (aβ, φ(β(Z))ψ(Z)) .

We denote the natural projection map by P: $(n) -» G(n).

Let N be a positive integer divisible by 4. Put

= 0 (mod iV)} ,

which is called the congruence subgroup of level N9 degree n. We define

the theta series θ by

0{Z) =

where e(z) = exp(2πίz). It is a holomorphic function on l){n) and has the

following transformation formula;

θ(a(Z)) = J(α,

J(a, Z) is called the theta-multiplier system. Let L be an imbedding of

Γίn>(4) to g w defined by

L(«) = (a, J(a, Z)).

We denote the image of /T>(iV) under L by 4B)(iV).

For any function / on §m and any integer k, we define an action of

ξ - (a, ψ) by {f\[ξ]k){Z) = ?<Z)-*/(α(Z)). It is easily seen that fl[£,]t =

From now on, let £ be an odd integer and 1 a Dirichlet character

modulo N.

DEFINITION. A holomorphic function / on ψn) is called a Siegel mod-

ular form on Πn)(iV) of weight k/2 and character X if and only if

( i ) f\ [?L = X(det D)f for any ξ e J^(N\ P(ξ) = (* ^ ,

(ii) if n = 1, /|[fL is bounded on {Ze ϊ ) w | ImZ > εl.} for any

ξ e P'^Spin, Z)) and any positive real number ε.
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The space of all such forms is denoted by Gk/2(Γ(

Q

n)(N), X). Furthermore

fe Gm(Γ(

o

n)(N), X) is called a cusp form if

(iii) Φ(f\[ξ]k) = 0 for any ξ e P-'iSpin, Z)\

where Φ is the Siegel operator. The space of all cusp forms is denoted

by Sm(

We also use the following notation;

= Γl if d ΞΞ 1 (mod 4)
Bd \i if d ΞΞ 3 (mod 4),

(—) = the Legendre symbol in the sense of G. Shimura [12],

V z = \z\ί/2 exp( | argz), with — π < s.τgz ^ π ,

z k / 2 = (y/~z)k f o r a n y k e Z .

When n = 1, we always omit the superscript (1). For matrices M and

L, M[L] = <LML.

§ 1. Jacobi forms of half integral weight

As above, let N be a positive integer divisible by 4, X a Dirichlet

character modulo ΛΓ and k an odd positive integer. Let Γ(

Q

2)(N) be a con-

gruence subgroup of level N, degree 2 and Γ0(N) be an usual elliptic

congruence subgroup of level N. Let / be a Siegel modular form of degree

2 on Γ^2)(N) of weight k/2 and character X. f has a Fourier expansion

where T runs over the set Λ2 of half integral semi positive definite sym-

metric matrices. We also write a(T) = a(n, r, m) for T = ( n,o

 r' ) e Az. If

Z = (τ zλ, then tγ(TZ) = nv + rz + mτ\ Therefore, rearranging the ex-

pansion (1.1) with respect to τ', we get

where

(1.3) Φm,f(τ, z) = Σ a(n> r> m)e(nτ + rz).
?l 3:0,7*

For any pair of rational integers λ, μ, we put
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1
λ

0
1

0

0
μ

1 -
0

μ
0

-λ

1

This belongs to Γ^(N), so we have

f(UλJZ)) = J(ϋi,,, Z)*/(Z) = /(Z).

This implies that

φmtf(τ, z + λτ + μ) = e(- m(λ2τ + 2λz))φmtf(τ, z)

On the other hand, for any ϊ = (^ ^\ e Γ0(N), we put

a
0

c
0

0
1

0
0

b
0

d
0

0
0

0
1

which also belongs to Γ^2)(N). Then, by noting that

J(Mr, Z) =

we get

^ 4 -4^-
+ d cτ + d

Now we set the following definition.

d

DEFINITION 1. A holomorphic function φ(τ, z) on ζ X C is called a

Jacobi form on Γ0(N) of weight A/2, index m and character Z if it satisfies

the following conditions:

( i ) φ(τ, z + λτ + μ) = e(- m(λ2τ + 2λz))φ(τ, z) for any (λ, μ) 6 Z2,

(iii) for each σ—(a \\ eSL(2, Z), there is an integer dσ such that the

function defined by
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w _Λ ,( aτ + b z \ i———- k I mcz2 \

\cτ + b cτ + d J \ cτ + d /

has a Fourier expansion of the form

aσ(n, r)e(nτ + rz).
^ 2

The space of all Jacobi forms is denoted by Jk/2im(Γ0(N), X). If φ e

Jk/2ί7ίl(Γ0(N), X) satisfies the further condition:

(iv) aσ(n, r) = 0 if 4mn == r\

it is called a (Jacobi's) cusp form, and we denote the space of all cusp

forms by J°k/2,m(Γ0(N), X).

By the above argument we get the following proposition.

PROPOSITION 1. Let f be a Siegel modular form on Γ^2)(N) of weight

k/2 and character X. For each m^>0, define a function φm,f(τ, z) on ζ x C

by

φm,f(τ, z) = Σ a(n> r> m)e(nτ + rz) .

Then φm,f(τ, z) is a Jacobi form on Γ0(N) of weight k/2, index m and

character X. Furthermore if f is a cusp form, then φmif is also a cusp form

for each m.

The condition (iii) or (iv) is clear by the definition of Siegel modular

forms.

§ 2. Transformation formula of ca(τ)

We suppose that m is a positive integer. As is well known, a func-

tion satisfying (i) of the Definition 1, is a theta function. In fact, the

following theta functions

Θa(τ, z) = θa,0(2mτ, 2mz)
(2.1) 1

= Σ Φ + u)2™ + 2(/ + a)mz), for a e —Z\Z
ιez 2m

form a basis of the space of such functions (cf. J. Igusa [6]). Therefore

we have

(2.2) φ(v, z)= Σ ca(τ)Θa(τ, z)
aeθ-/2m)Z/Z

for any Jacobi form φ(τ, z) e Jk/2tm(Γ0(N), X). In particular, if φm,s(τ, z) is
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obtained from fe Gk/2(Γ{Q2)(N), X) by Proposition 1, we have

(2.3) & > > , * ) = Σ cβf/(r)θβ(τ, z)
«e(l/2m)Z/Z

with

(2.4) c β t / (τ)= Σ α(n,r>m)

for a = r/2m.

We study the transformation formula of ca(τ) under ΓQ(N). It is also

well-known that there are constants uaβ(σ) which do not depend on τ and

z, and

(2.5) θJm±* — 4 — ) = e(-™*-)(cτ + d)^ £ uaβ(σ)θβ(τ, z)
\cτ + d cτ + d I \cτ + d ) β

for any σ— ί τ)eSL(2, Z). The matrix (uaβ(σ)) is unitary (cf. J. Igusa

[6]).

LEMMA 1. The functions ca(τ) in (2.2) satisfy the following transforma-

tion formula:

(2.6)

Proof. It is easily proved by (ii) of Definition 1, (2.2) and (2.5).

By changing the variable, (2.6) is equivalent to

ι2.7) c/^44) = χ(d)
c + /

LEMMA 2. Lei ω = L ~~A

^α^(ω) = - | = exp ( -

Proof. We recall the well-known theta formula:

S e ( i ( x + l ) zz+w(x + f)) = (~ izyiβΊ?A~ \{w~ ξγz~ι + ξx)
for w eC, x e R, and Ze§. We put x = a, Z = — 2m/r, and M; = 2mz/τ.
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Then the left hand side is equal to Θa(— l/τ, z/τ). On the other hand,

the right hand side is equal to

y
\2ιm/

Put η = —ξ/2m. Then the above sum becomes

2] e(2mzτ] + mτη2 — 2marj)
V

Σ e(2mz(β + /) + mτ(β + If - 2ma(β + I))
βe(i/2m)Z/z,ιez

= Σ <~ 2maβ)Θβ(τ, z).
βe(l/2m)Z/Z

This completes the proof.

LEMMA 3. The following formulas hold for cα(τ).

( i ) c_α(τ) = Z ( - l)cβ(τ),

(ii) ca(τ + b)e(a2mb) = cα(τ) /or any b e Z,

(iii) (iVτ + i y f c ^ % ( r )

- i - Σ β ( - Nr2m)e(2mϊ(β - a)).
2m e(i/2)Z/z

Proof. These formulas are derived from (2.6) by the concrete values

of uaβ((^ AY uaβ(— 12) and uaβ I(^ J . In fact, it is easily seen from

(2.1) that

/Yl b\\ _ (e(a2mb) if a = β
Mlo J;~lO if a Φ β

for b e Z, and

ί
10 if α Φ - β.

We get (i) and (ii) from these. In order to compute the value uaβ(σ),

a — [J^T i ], we note the decomposition of a: a = ωl Q _., )ω. If we put

τ' = ω(τ), w = — z/τ, we get

Θ ( τ g \ - θ ( - X ?ί!—
" U r + 1 ' Nτ + V a\ τ'-N' τ> - N
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1/2 Σ uar{ω)Θr(τ' - N, w)Σ
r

(- NTnifiJ- 1, *-

τ ) \ τ Iτ(iVτ + 1)

XΣe(~ Nr2m)uar(ω)u_1Ίβ(ω)Θβ(τ, z).

By noting that ( - 1/r - A^)1/2τ1/2 - ί(Nτ + 1)1/2, we have

uaβ(σ) = i 2 β ( - Nϊ2m)uar(ω)u_ΐjβ(ω)
r

2m
e ( - Nrm)e(2mϊ(β - a)).

§ 3. Modular descent of Jacobi forms of index 1

Throughout this section we will consider the case m = 1. A Jacobi

form φ e Jk/2Λ(Γ0(N), t) is expressed as

φ(τ, z) = φ)Θ0(τ, z) + C1/2(τ)θ1/2(r, z) .

THEOREM 1. Let the notation be as above. Let X{ be a character

) . Then co(τ) is an elliptic modular

m /

form on Γ0(N) of weight (k — l)/2 and character 1^ Furthermore if φ(τ, z)

is a cusp form, co(τ) is also a cusp form.

Proof. First we deal with the case N = 4. We have ξOyO = 1, ξ 1/2)0 = 0

where ξaiβ is defined in Lemma 3. Therefore, by the same Lemma, we

have

co(τ + 1) - φ) and c0

It is well known that Γo(4) is generated by ί̂  ^ J and ( 4 1 ) . Hence co(r)

is a modular form on Γ0(4) of weight (£ — l)/2 and trivial character Zo.

Before proving the general case, we note the following remark. There

exists a Jacobi form such that co(τ) and φ) are not identically zero. In

fact, let M be an even unimodular quadratic lattice of dimension 8 (cf. O.T.

O'Meara [11]) and let L = M ± <2>. Then the theta series
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is contained in C?9/2(T£2)(4), XQ) and the Jacobi form of index 1 obtained from

f(Z) gives such an example, i.e. cO)/(r) and c1/2>/(r) are not identically zero.

By (2.7) and the fact just proved above, we have two relations of c0>/ and

a

= (CΓ +

for any σ = ία 7 j e Γo(4). But the ^(σ" 1 ) are the quantities relating only

to the theta series and do not depend on a Jacobi form. Therefore we

have

(3.1)

w^.oO"1) = 0.

Now let N, k and X be general. We have, by (2.7) and (3.1),

= Ud)(cτ + d)*-wφ).
cτ + d

Since (2.5) holds for any σ = (" %) e SL(2, Z), we have

.(laτ + b z \ , ^_fc / cz2 \
\cτ + d cτ + d I \ cτ + d )

= Σ c ( ^ ± A W + d)-^Σ uaβ(σ)Θβ(τ} z).Σ α(
\ cτ +

Hence

where (ca\[σ])(τ) = c ϊ α r + bVcτ + d)- ( f e"1 ) / 2. Comparing the both sides of
\cτ + d)

the above formula, we have

aσ(n, r) = 0 if r e Z

and
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I / X/^ jΓ "l\/ \ \ " ' rid'('-y\

a n

for β = r/2. If we put (uaβ(σ))~1 = (u'aβ(a)), then we get

thus we obtain our assertion.

Next we consider the function c1/2(r). Let Γ0(N, M) be the subgroup

of Γ0(N) defined by

Γ0(N, M) = l(a b\ e SL(2, Z)|c ΞΞ 0 (mod N), b = 0 (mod M)} .

LEMMA 4. Pwί ^ = (Q I ) and σ0 = L ,̂ j . Lei p be an element o/Γ0(4)

and let

6e iίs expression as the products of η0 and σ0. Then p belongs to Γ0(Ay 4)

if and only if

Σέi-O (mod 4).

The proof of this lemma is easy and we omit it here.

THEOREM 2. Let the notation and the assumptions be as in Theorem

1. Then c1/2(τ) is an elliptic modular form on Γ0(N, 4) of weight (k — l)/2

and character X^

This theorem is proved by the same way as Theorem 1.

12a f e\
EXAMPLE. Let k = 3 and let A = \f 26 d\ be an even ternary

\e d 2c)

quadratic form. We also write A = [α, 6, c, d, e, f] for simplicity. The

theta series corresponding to A is defined by

Θ(Z; A) =

By Theorem 1, the descended form co(r; A) belongs to G^Γ.iN),

N = the level of A, and has a Fourier expansion
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φ A) = Σ * {P 6 M3,2(Z) 1 A[P] = ( " ?))β(nr).
2 \0 1/J

Let J?(Γ) be the Dedekind eta function. Then we have

η(τ)η(23τ) = 1 co(r; [1,1, 6, 0, - 1, 0]) - 1 co(r; [1, 4, 24, - 4, 0, 0])

+ 1 co(r; [1, 8, 12, - 4, 0, 0]) - 1 co(r; [1, 3, 18, - 2, 0, 0])

- i-co(r; [1, 2,12, -2 ,0 ,0] ) e S>
4

jj(2r)9(22r) = -|- co(r; [1,1, 11, 0, 0, 0]) - 1 φ; [1,1, 4, 0, 1, 1])
o ±Δ

eS,(ro(22.ll), ( —

η(Sτ)η(2U) = 1 φ; [1, 1, 16, 0, - 1, 0]) - 1 φ; [1, 4, 4, - 1, 0, 0])

+ 1 φ; [1, 4,16, - 2, 0, 0]) - 1 φ; [1, 4, 64, - 4, 0, 0])

= -i co(r: [1,1, 20, 0, 0, 0)] - i- co(r; [1, 4, 5, 0, 0, 0])

v(5τ)η(19τ) = i- co(τ; [1,1, 24, 0, - 1, 0]) - i φ; [1, 4, 6, - 1, 0, 0])
4 4

- 1 φ [1,1, 95, 0, 0, 0]) € S, (Γo(22 5 19), ( ~ — ) ) ,

9(6r)5(18r) = 1 co(r; [1,1, 27, 0, 0, 0]) - 1 φ; [1, 2, 4, - 1, 0, - 1])

= ^ c»(τ; [1,1, 30, 0, - 1, 0]) - 1 φ; [1, 4, 8, - 3, 0, 0])
4 4

- 1 φ; [1,1,119, 0, 0, 0]) e S, (ro(22 7 17),
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JK8Γ)JK16Γ) = 1 φ ; [1,1, 32, 0, 0, 0]) - i - co(r; [1, 4, 9, 4, 0, 0])
o 4

, (—)),

= 1 co(r; [1,1, 34, 0, - 1, 0]) - 1 co(τ; [1, 4, 9, - 3, 0, 0])
4 4

- 1 φ [1,1,135, 0, 0, 0]) e S, (ro(22 33 5),

φOτ)φAt) = i- φ; [1, 1, 35, 0, 0, 0]) - 1 co(r; [1, 3, 4, 3,1,1])

= 1 co(τ; [1,1, 36, 0, - 1, 0]) - 1 φ; [1, 4, 9, - 1, 0, 0])
4 4

1 φ [1, 1,143, 0, 0, 0]) € S, (ro(2
2 11 13),

= 1 co(r; [1,1, 36, 0, 0, 0]) - 1 co(r; [1, 4, 9, 0, 0, 0])

eS^W n l).

The above expressions are not unique.

§ 4. Review of Hecke operators

Let n be a positive integer. Let Δ{n) = J(

o

n)(N) and Δ{n) the commen-
surator of Δ{n) in g(n). We define two semigroups of Δ{n) by

C Ξ O (modiV), Wα), iV) = l]

S(n) = {ξ = (a, ψ) e S(on)\v(a) is square of some integer.}

Let k be an integer and ξ e c$(n). Suppose we are given an operation

[ξ]k on a space of functions on ψn)χCm such that
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Let 1 be a Dirichlet character modulo N and let Hχ be a certain set of

functions on fyn)χCm such that

f\[ζ]k = X(άetD)f for any f e J<»>, P(f) = (* * ) .

For ξ eS(

o

n) and / e F z , we set

(4.1) f\[Δ^ξΔ^]k,χ = (detP(f)y*/2-<«+1»/2 Σ^(det Av)/|[fJfc

where {£„} is a set of representatives of J(w)\J(7°fJ(7l):

(4.1) is independent on the choice of the representatives ξv.

We fix ξ = (or, φ)eSbn). There exists a homomorphism ίδ of Γ(

o

n)(N)f]

a~T(

Q

n)(N)a into Γ = {zeC\\z\ = 1} such that

Then, by S. Hayakawa [3], the following assertions hold.

( i ) If t) is non-trivial on Γ^{N)Πa'ιΓ^{N)a9 then/|[J(?z)fA(n)]k,x = 0 for

any feHx.
(ii) The Hecke algebra D{Δ{n\ S{n)) with respect to the Hecke pair

(zP>, S(n)) is commutative and D{Δ{n\ S(w)) = (x)p^D(J(7l), Ŝ ,n)) where

S(

p

n) = {ξ = (a, φ) e Sin)\v(a) = p2m, m = 0, 1, 2, . •}.

Furthermore if we put

(U 1

(4.2) Tf\ = Δw(ap i,piβ)Δ{n) with ap t = 21

D(j(»),S(n)) is generated by TpΛ (0£ί£n) and (l2n, ί)^ ( n ), (teT).

(iii) Let λi = 2 and /2 an odd positive integer. We define an operation

[ξ]k on a space of functions on ϊj(n) by

and put i ϊ z = Gk/2(Γp(N), X). For /e/Γ,, we let

and
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Then apΛ(T) are given by

(4.3) apΛ(T)
β ( Γ [ 6

where

and

ί(—) if T is equivalent to \
\p ) \0 0

0 otherwise.
(4.4) αp,2(Γ) - a(p2T)

with s e (Z/pZ)x over Zp/pZ?)

J)])}

p \0 j)

where

and

if t ~ 0 (mod p)
if t ξέ 0 (mod p)

§ 5. Definition of the Maass relation

As before let k be an odd positive integer and m a positive integer.
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Let g = gΠ) and ξ = (a, φ) an element of g with α = (^ Λ We put £

detf = detα. We define an action [ξ]ktΊΛ on a function φ on § χ C by

,J(τ, z) = Φ
cτ + d / \ cτ + d

It can be easily checked that

and

We put Hχ = Jk/2i7n(Γ0(N), X) this time. Note that 0 € Jk/2,m(Γ0(N), X) satis-

fies

for any ξ e A0(N). As in (4.1), we define a function 0|[JoCN)£4,(N)]o

for a double coset J0(N)ξJ0(N) = U Λ W f , P(fv) = (a» *\
\* */

By (1.4) of G. Shimura [12], we have

φ\[J0(N)ξJ0(N)]0 = 0

if det ξ is not a square, i.e. ξ e So — S. Finally we define the Hecke

operator on Jfc/2,m(Γ0(JV), X) by

(φ\[J0(N)ξJQ(N)])(τ, z) = (φ\[MN)ξJo(N)]o)(τ, VT z).

PROPOSITION 2. Let ξ be an element of S and £ = det ξ. Then the

Hecke operator [JQ(N)ξJ0(N)] is a linear mapping from Jfc/2)m(Γ0(iV), X) to

It is easy to prove this by direct calculations.

Let fe Gm(Γ(

0

2)(N), X) be a Siegel modular form and φm,f(τ, z) the Jacobi

form of index m obtained from / by Proposition 1. We set the following

definition.

DEFINITION 2. Let p be a prime number such that (p, N) = 1. Put
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and

A Siegel modular form / is said to satisfy the Maass relation for p if and

only if

(5.1)

for any m.

We regard that if m is not an integer, φmif(τy z) is identically zero.

For later use, we rewrite (5.1) by the Fourier coefficients of/. As is

well known, a complete set of representatives of J0(N)\ά0(N)ξpd0(N) is

given by

(cf. G. Shimura [12]). By Proposition 1, φm,f(τ, z) has a Fourier expansion

φm,f(τ, z) = Σ a(n, r,m)e(nτ + rz) .

Therefore, by the definition of Hecke operators, we obtain

(φmJ[J0(N)ξp/l0(N)])(τ,z)

b

By an elementary calculation and the classical knowledge on the Gauss

sum:

we have
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(φmJ[J0(N)ξA(N)ϊ)(τ,z)

= Σ a(np\ r, τή)e(nτ + rz)

β Σ (-)a(n,r,m)e(nτ-{
n,r s \p I

+ rp2z).

On the other hand, we can easily see that

z"> z) — pk/2~2Z(p) Σl a(n> r> mJeinT + rPz)

Hence the Maass relation (5.1) is equivalent to

a(n, r, mp*) = a(np\ r, m) + l{pVp-'p^M(lL) - (-))a(n, ϋ , m)

(5.2) U p / K p ) ) V P '

a(^, JL, m) - a(n, JL, Jlί)) .
\ p2 p2 ) \ p2 p11),p" p / \ p< p

In particular, if p divides n and m, then

( n r \
, , TΪI I

(5.3) P P

= a(np\ r, m) - X(p)ψ-2a(n, -L-, -^-) .
\ p2 p2 /

And if p does not divide m, then

a(n, r, mp2) = a(np\ r, m) + X(p)4-ιp^'2(^j - (-))«(»> -» "»)

(5.4) P P P

)'p*-o(4-, -^-, in).
V p2 p2 /

It can be shown by using the formula of local densities of quadratic

forms that the Eisenstein series satisfies the above Maass relation (Y.

Kitaoka [7]).

§ 6. Dirichlet series

In this section we consider two kinds of Dirichlet series as stated in

the introduction. We always assume that p is a prime number such that

(P, N) = l.
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THEOREM 3. Let f be a Siegel modular form on Γ(

Q

2)(N) of weight k/2

and character Z, and let

Φι,λτ> Σ) = co,/(r)θo(r, z) + c1 / 2 | /(r)θ1 / 2(r, z)

be the Jacobi form of index 1 obtained from f Put

Suppose that f is an eigenform of TpΛ with an eigenvalue λλ{p) and satis-

fies the Maass relation for p. Then we have

(6.1) ω(p)T(n) = ϊ(np2) + X<j?)ήr

where

(6.2; ω{p) = 3PLP λι(p)
P + 1

and

(6-3) / > »

Proof By assumption, f\TPtl = ^(p)/. If we put Γ = ^ °) i n

we have

(6.4) =a(n,0,p2)+ Σ Φψ\ 2nps, ns2 + 1) + X(p)εk

p-
1p^^2hp(ή)a(n, 0,1)

, 0,
ΣJ sez/pZ p p

We note that a(n, 2ns/p, (ns2 + l)/p2) = 0 for all s e Z/pZ. Let us consider

the second term of the right hand side. When n is prime to p, we have,

by (5.4),

a(np2, 2nps, ns2 + 1) = a(ns2 + 1, 2nps, np2)

— a((ns2 + l)p2, 2nps, ή)

(6.5) + χ(p)4-'p<*-3>/^^!±l) _ ( i L ^ n s * + 1, 2ns, ri)

= a(n, 0,p2) + xipte-ipV-w^J^Ljtl-} - (Jl))α(n, 0,1) .
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On the other hand, when p divides n, we regard ns2 + 1 as m in (5.4) to
obtain

a(np2, 2nps, ns2 + 1)

= a(n, 2nps, (ns2 + ϊ)p2)

(nS2 + * ) ) ( * , ns2

(6.6) - KpfP^af^, *™-, ns2 + l)

= a(n, 0, p2) + %(p)εΓ1P ( fc-3)/2(('1S^^) - (-))α(n, 0,

But the expression (6.5) is the same as (6.6), since a(n/p2, 0, 1) = 0, when
n is prime to p. We again use (5.4) for a(n, 0, p2) and get

α(n,0,p2)

= a(np\ 0, 1) + %(p)εΓ1P(fc-3)/2((-) - l)α(n, 0, 1) + Z(p)2pfc"2α(^, 0, l) .

By an elementary calculation, we have

ij) lfpin
Σ(

sez/pz\ p / Vp/ I
I P if p I n .

Hence

l{p)-ψ-"%ij>)a(n, 0, 1)

= (p + l){α(«p2, 0, 1) + Z(pK'1P (*" ) /Wn) - D«(". 0, 1)

This concludes the proof, because ϊ(ή) = a(n, 0, 1).

COROLLARY 1. Let the notation and the assumptions be as in Theorem
3. Let T(ή) be a Hecke operator acting on Gα_υ/2(Γ0(2V), X^. Then the form
co,/(r) is an eίgenform of T(p2) with an eigenvalue ω(p) + %!(p)p(fc"3)/2.

Proof In general, let g(τ) be an elliptic modular form on Γ0(M) of
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integral weight m and character ψ. If we put g(τ) = Σ a(ri)e(nτ) and
(g\T(p2))(τ) = ZXOMrcr), it is well known that

α'(n) - α(np2) + ψ(p)pm-ίhp(n)a(ή)

for p such that (p, M) = 1. Hence we get our assersion from (6.1).

We get the following proposition by the same method as in G. Shimura
[12].

PROPOSITION 3. Let the notation be as in Theorem 3. Suppose that
the assumptions of the theorem are valid for all p such that (p, N) = 1.
Let t be a positive integer which has no square factor and is prime to N.
Then

(6.7) Σ rWn- = r(t) π I^
ω(p)p~s

Let g(τ) be an elliptic modular form on Γ0(M) of the (integral) weight
m and character ψ. We assume that g(r) is a common eigenform of all
the Hecke operators T(p2) for p such that (p, M) = 1, with the eigenvalue
μ(p2). Then the formal Dirichlet series Σ(n,M)^μ(n2)n~s has the following
Euler product:

(6.8) Σ μ(n2)n-s - Σ (i - (μ(p2) - pm"V(p))P"s + P ^

In fact, this follows from the relation of the Hecke operators:

(T(p2)-pT(p,p))T(p2°) - T(p2«+1>) +p2T(p,p)2T(p2^).

Let us define the Dirichlet series L2(s, g) by the left hand side of (6.8):

L2(s,g)= Σ μ(n*)n-.
(n,M)=l

Remark. We also get a similar results for c1/2ι/(r). Put T 7 ^ ί/L ί )

in (4.3). Then we get this time

<o(p)a(n, 1,1) = α( ^ 4 n

(6.9) + Z(p)4-'p<-3'/2((iL) - 1 + (^)κ,(n))α(n, 1, 1)
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where ω(p) is the same as in Theorem 3 and fcp(ή) is defined by

0 otherwise.

Let c1/2)/(τ) = Σ Γ!(n)e((^/4)τ) be its Fourier expansion. Then Fourier co-

efficients are given by

1 , 1 , l ) if n ΞΞ 3 (mod 4)

0 otherwise.

Hence (6.9) is equivalent to

o)(p)Un)

But it is easily seen that

(SlL+m.) (i + J»±l)) = hp(n) = ί1 i f PIn

\ p Λ *\ 4 // A lO otherwise

for all n such that B Ξ 3 (mod 4). Therefore, we have

r <tn*)n- - 7(t) π λ +

where £ is a square free integer such that (t, N) = 1 and £ = 3 (mod 4).

THEOREM 4. Let f be a common eigenform of TvΛ and Tp,2 for all p.

Suppose further that f satisfies the Maass relations for all p. Let 0t —

{M e M2(Z) Π GL(2, Q)|(det M, N) = 1}/GL(2, Z). Then

(6.10) Σ a(T[M])\det M\~s = L2(s, cOf/)L2(β + 1, cOf/) Π ^ ( P " s ; Γ)

where Pp(p~s; T) is a polynomial of p~s of degree at most 3.

Proof We quote a result of T. Ibukiyama [5]. He showed that, if

/ is a common eigenform of TvΛ and TPt2 with eigenvalues λ^p) and λ2(p)

respectively, then the Dirichlet series Y^MQ^O,{T[M\)\ det M\~s equals to

uPp(p—,T)

& QP(P~S)
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where Pp(p~s; T) and Qp(p~s) are polynomials of p"s and

degPp(x;T)£3,

Qp(χ) = l - χCpry-^ΛCp)* + (PUP) + KP)Ψ~\I + P2))χ2

χ(PyP

2k- v .

Now we suppose further that / satisfies the Maass relation. Then it is

easily seen that

UP) - «>(py

Therefore Qp(x) decomposes into

(1 - ω(p)x + l(p)ψ~ V)( l - ω(p)px

Hence we get our assertion.

Next we consider another type of Dirichlet series. In [4], T. Hina

showed that Σ7^a(p2vT)x1' is a rational function of x9 and its denominator

and numerator have degree 4 and at most 3 respectively. We show that,

for a Maass form, the above Dirichlet series has the denominator of

degree 3.

LEMMA 5. Let f be an eigenform of TPtl9 which satisfies the Maass

relation for p. Let T = ( n

l0

 r' ) be an element of Λ2 such that m^O (mod
\r/Δ m /

p). Then

Σa(p2vn, pvr, m)xv

__ a(n, r, rri) + (a(p2n, pr, m) — ω(p)a(n, r, m))x_

where ω(p) is defined by (6.2).

Proof. We have already known the expression (6.11) for T — (^ . j

by Proposition 3. Let T = (% r^\ with m Ξ£ 0 (mod p). We put

(6.12) H{x\T)--

Then the coefficient of xv for v 2> 2 in

(1 — ω(p)x + X(p)2pk~*x2)H(x; T)
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I S

(6.13) a(p2»n,p>r, m) - ω(p)a(p2^n, p^r, rrί) + Z(p)2pfc-3α(p2(υ"2)", p

Therefore it suffices to show that (6.13) is identically zero. Put

, m)

m

in (4.3). Since m ^ 0 (mod p), we have

}n,p^V, m)

~l)n,pvr, m) + Σ a(p2υn> 2p2v~1sn -\

1]n,pv~ιr, m) +

But

α ( p 2 υ ^ , 2p2v~1sn m)

Therefore

ω(p)α(p2(p-1)τι,pl'-1r,

+ pv Jsr + m)

-*n,pv~2r, m).

^ ^ " V , m)

^ a ί p 2 - 2 ^ ^ - ^ , m)
pt

- l{p)ψ~\P ~ ΐ)a(p2v-%pv-%r9 m)

= a(p2vn,PΎ, m) + X(p)2pk-3a(p2-%pv-2r, m).

This is what we wanted.

THEOREM 5. Let f(Z) be an eigenform of TPyί, which satisfies the Maass

relation for p. Let T be an element of Λ2 such that T ^ 0 (mod p) and

let d be a non-negative integer. Then

*x)(l - (ω(Pγ -

where Rp(x; d,T) is a polynomial of x such that deg(Rp(x; d, T))^2.
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Proof. We may assume that m ^ 0 (mod p), because a(T) = a(T[U])

for any UeGL(2,Z). We put

K(x; d,T) = (l-
v = 0

By using (5.3) (5.4) successively, we get

K(x; d,T) = a(p2dT) + ±{a{p^-2^dn,p2^2dr,p2m

2a{pi'-i+ian,p'"-2*ΐdr, m))x>

-1p(k-w(—)a(pi"-*+ian,p2'-ί+Mr, m))x'.
\p/

Put

K^x; T) = Kfc; n, r, m) = f; a(p^n,p2% m)x".

By Lemma 5, we have

K^x*; T) = λ. (H(x; T) + H(- x; T))

= a(n, r, m) + [a(n, r, m)l(p)2pk'z + ω(p)(a(p2n,pr, m) — ω(p)a(n, r, m))]x2

Since

K(x; d,T) = a(p2dn,p2dr,p2dm) - a(p"dn,p2dr, m) + K^x p^p^r, m)

^)κι(x',p^2n,p2d^r9 m)x,
p /

its denominator is equal to

1 - (ω(p)2 - 2X(p)2pk-*)x + Z(p)4p2<fc-3>x2.

By comparing the Hina's result, there is one cancellation of a linear

factor, so we get the theorem.

§ 7. Remark

We can ask the following questions.
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1. What is the Maass relation for p — 2?
2. What is the relation between the Jacobi forms of index 1 and p ?

Eisenstein series is a typical example. 1 is not yet solved. For 2, let
E(z, s) = 2 a(T)e(tr TZ). If n and m are integers prime to p, then

np< O X / n p " 0\ } W(iWm\\β /^0\
0 mp/ \ 0 m/ ? U p / \p)J \0 TO/

if i is even,

\0 )+X(PK(()()U
mJ p \\ p J \pJJ \0

* 1 " 1 °) if i is odd,
0 m/

(cf. Y. Kitaoka [7]). It is natural that we also call these ones the Maass
relations.

Recently I was informed by T. Ibukiyama and S. Hayakawa that V.
G. Juravlev obtained similar results on Siegel modular forms of half
integral weight.
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