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HOMOGENEOUS VECTOR BUNDLES AND STABILITY

SHOSHICHI KOBAYASHI*>

§ 1. Introduction

In [5,6,7] I introduced the concept of Einstein-Hermitian vector
bundle. Let E be a holomorphic vector bundle of rank r over a complex
manifold M. An Hermitian structure h in E can be expressed, in terms
of a local holomorphic frame field sl9 , sr of E, by a positive-definite
Hermitian matrix function (hi3) defined by

hi3 = h(si9 Sj).

Then the Hermitian connection form and its curvature form are given by

ω) = Σ h«d'hrk,

Ω) = d"ω) .

In terms of a local coordinate system z\ , zn of M, we can write

Given an Hermitian metric

on M, we define the g-trace K of the curvature of (E, h) by setting

Then K is a field of endomorphisms of E with components K). We say
that (E, h, M, g) is an Einstein-Hermίtίan vector bundle if

K=φIEi i.e., Ki^φδl,

where φ is a (real) function on M and I^ is the identity endomorphism of E.
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In [6, 7] I obtained the following differential geometric criterion for

stability, (see Lύbke [8] for a simpler proof).

(1.1) THEOREM. Let M be a compact complex manifold with an

ample line bundle H and g a Kάhler metric on M whose Kdhler form repre-

sents the Chern class of H. Let E be a holomorphίc vector bundle over M

and h an Hermίtian structure in E. If (E, h, M, g) is an EίnsteίnΉermίtian

vector bundle, then

(a) it is H-semίstable in the sense of Mumford-Takemoto;

(b) it is a direct sum of H-stable Einstein-Hermίtίan vector bundles

(E19 hu M, g), , (Eq, hq, M, g) with irreducible holonomy group;

(c) μ(2£i) = = μ(Eq)=μ(E), where μ(E) denotes the degree-rank ratio

of E defined by μ(E) = c1(JS)c1(flr)w-1/rank(£;), n = dimM.

If E is a homogeneous vector bundle over a homogeneous algebraic

manifold M = GIG0 of a compact Lie group G and if the isotropy subgroup

Go is irreducible on the fibre Eo of E at the origin o e M, then E with

any G-invariant Hermitian structure h is an Einstein-Hermitian vector

bundle. From (a) of (1, 1) it follows that E is iZ-semistable for any ample

line bundle H. In order to see whether E is indeed ίf-stable or not, we

study the holonomy group of E in Section 2. In Section 3 we give a

differential geometric proof to the theorem of Ramanan [11] and Umemura

[13] that every irreducible homogeneous vector bundle over a Kahler C-

space M (of H. C. Wang) is //-stable for any ample line bundle H. In

Section 5, as an application we show that the null correlation bundles

over P2«+i are Einstein-Hermitian vector bundles with irreducible holonomy

group (and hence, they are ίf-stable—a well known fact). Our approach

to null correlation bundles is through complex contact structures (see §4).

In Section 6 we construct example of stable Einstein-Hermitian bundle

using complex contact structures.

§ 2. Holonomy and automorphisms of Hermitian vector bundles

Let (E, h) be an Hermitian vector bundle over a complex manifold M.

If c = c(i), 0 <̂  t ^ 1, is a piecewise smooth curve in M, the parallel trans-

port τc along c gives an isometry between the fibres EcW and Ecω. Fixing

a point o of M and considering all closed curves c from o to o, we obtain

a group Ψ of automorphisms of the fibre Eo given by parallel transports

τc. This group Ψ is called the holonomy group of (E, h). We decompose
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the fibre Eo into an orthogonal direct sum of ?Γ-invariant subspaces:

(2.1) Eo = El + El + + E*o,

where ¥ fixes EQ

0 elementwise (i.e., acts trivially on 2?°) and acts irredu-

cibly on El, , Ek

0. By transporting Eo parallelly, we extend the decom-

position (2.1) to a global decomposition of E. Thus,

(2.2) E = E° + E1 + .. + E\

This decomposition is not only orthogonal but also holomorphic since the

Hermitian connection D (as covariant differentiation) is of the form D =

Ό' + d". (In fact, if s = sQ + s1 + + sk is a local holomorphic section

of E and s0, su - -, sk are local C°° sections of E°, E\ , Ek, respectively,

then from D"s = d"s = 0 we obtain d"Si = ΏnSi = 0 for all i, showing

that s0, sl9 - - -, sk are holomorphic sections of E. This means that E°, E\

• , Ek are holomorphic subbundles of E).

Let G be a group of automorphisms of the Hermitian vector bundle

(E, h). Each element / of G induces a holomorphic transformation f of M.

Since / preserves the connection of E, for each curve c = c(t), 0 < t < 1,

of M we have

(2.3) τ J ΰ C o f = f o τ c ,

where both sides are considered as transformations Ec{0) —> Ecω. If c is a

closed curve starting from o and if J(ό) — o, then both sides are auto-

morphisms of the fibre Eo.

Let Go be the isotropy subgroup of G at o, i.e., Go = {/ e G; /(o) = o}.

From (2.3) we obtain

(2.4) /oro/- 1 e ΪΓ for / e Go and r e r ,

i.e., Go normalizes the holonomy group Ψ'.

Following the decomposition (2.1) of the fibre Eo, we can express

each element τ of the holonomy group Ψ by a matrix of the form

(2.5) A(τ) =

A0(τ) 0 • • • 0

0 A ^ τ ) ••• 0

0

I 0 0 ••• At(r)J

We consider an element X of the Lie algebra of Go, i.e., X = (df(s)/ds)s=
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where f(s) is a 1-parameter subgroup of Go. Corresponding to the decom-

position (2.1) of Eo, X can be written in the following block form:

(2.6) X =
-Λ.iΛ

**-k

Since f(s)oτof(s)~ι e Ψ by (2.4), the corresponding matrix has zeros off

the diagonal blocks. Differentiating /(s)oro/(s)" ! at s = 0, we obtain

/'(()) o τ — τ o f'(0). Hence, the corresponding matrix

(2.7) X.A(τ)-A(τ) X

must have zeros off the diagonal blocks. Thus,

(2.8) Xίj Aj(τ) = Aί(τ).Xίj for ίφj.

Since the holonomy group Ψ acts trivially on E°o and irreducibly on

El " ,Ek

0, it follows that

(2.8) A0(τ) = 1 for τ e Ψ

and that the representations

(2.10) At\ τ\ > Ai(τ), ί — 1, •••,&, are irreducible.

By Schur's lemma, we have

(2.11) Xij = 0 unless the representations At and A3 are equivalent.

We note that we have always Xoj = 0 and XJ0 = 0 for j = 1, , k.

If Ai and Aj are equivalent, by changing a basis in J?o we may assume

that At — Aj. By parallel transport of such bases in Eι

0 and E{ we obtain

an isomorphism between Eι and Ej. We have established the following

(2.12) THEOREM. Let (E, h) be an Hermitian vector bundle over a

complex manifold M. Let o e M and Go a connected Lie group of auto-

morphisms of (E, h) leaving the fibre Eo invariant If Go acts irreducibly

on Eo, then

(E, h) = (E', h') + . + (E', h'\ (q copies, say),

where (E\ h') is an Hermitian vector bundle with irreducible holonomy

group.



VECTOR BUNDLES 41

The decomposition E = Ef + + E' in (2.12) may be written as

(2.13) E= Ef®Cq,

where Cq denotes the product bundle of rank q.

Assuming that (£J, h) is a direct sum of q copies of (E', h') with irre-

ducible holonomy but without assuming that Go acts irreducibly on Eo, we

shall study automorphisms / of (E, h). Let / be an automorphism of (E, h)

with the induced transformation f of M. We set

o' = f(o).

We denote the holonomy group of (E, h) with reference point o' by Ψ'.

We fix a curve a from o to o' and assign to each loop c at o the loop

αocoα" 1 at o'. This gives an isomorphism Ψ ->Ψ\ To a basis in Ef

0 we

associate the basis in Ef

0> obtained by parallel transport along the curve α.

Then the corresponding elements under the identification Ψ = Ψ' have the

same matrix representation.

The matrix A(τ) representing an element τ e Ψ is of the form

(2.14)

B(τ) 0 .-

0 B(τ)

0

0

0 0 B(τ))

where the representation B is irreducible since (E\ h') is assumed to have

an irreducible holonomy.

An automorphism / sends the fibre Eo to the fibre Eo>. With respect

to the bases for Eo and Eo, chosen as above, we represent / by a matrix

F:

(2.15)

..- Fl
lq

F 1 F

where each Ftj is a (p χ p) matrix, p = rank £J\

Let τ = τc e Ψ and r' = τ J o c e Ψ'. From (2.3) we obtain

(2.16) FA(τ) = A(τOF.

Hence,

(2.17) F,jB(τ) = B(τ')Fij for all ί , j .



42 SHOSHICHI KOBAYASHI

Each Ftj is non-singular unless Ftj = 0. (For if υ is a vector such

that Fi}υ = 0, then Fί}B(τ)υ - 0 by (2.17), which implies that the kernel of

the linear transformation Fυ is invariant by B(τ), τ e Ψ. Since B is an

irreducible representation, the kernel of FiS is either 0 or the whole space).

We claim next that

(2.18) Fίj = uίjV for all ij,

where V is a (p X p) unitary matrix and U = (ui3) is a (q X g) unitary

matrix. (It suffices to show that Fi5 is a scalar multiple of jPm7Z when both

Fi3 and F m w are non-singular. Eliminating B(τ') from

FuBiτ) = B(τ')Fί} and FmnB(τ) = B(τ')Fmn ,

we obtain

F-lF^B^τ) = B{τ)F-lFi$ for all τ e ?F .

Since B is irreducible, F~lFtj = cl).

Hence, î 7 can be written as the Kronecker product:

(2.19) F= V®U.

This corresponds to the tensor product E = Ef ® Cq

9 i.e.,

(2.20) f(η ® ξ) = Vη ® C7f for 9 (x) ? e (^XC^,, - Eo .

Any (g X q) unitary matrix U defines an automorphism fυ of (E, h) by

(2.21) fu{η®ξ) = r]®Uξ f o r η®ξeEf®Cq = E.

Such an automorphism induces the identity transformation on the base

manifold M, i.e.,

fu = i d * .

Conversely, assume that / is an automorphism of (E, h) such that f =

iάM. By (2.3), / commutes with every element of the holonomy group ¥.

With the notation of (2.14) and (2.15), we have

FA(τ) = A(τ)F on Eo for all τ e Ψ.

Hence,

FiSB(τ) = B(τ)Ftj for all τ e Ψ.

Since B is an irreducible representation, it follows that
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Fιj = uίjl f o r a l l i,j .

This means

(2.22) F=I®U on Eo,

where I denotes the identity transformation of Ef

0. Now, varying the point

o in M, we obtain (2.22) on Ex for all x in M. Thus,

FX = I®UX on Ex.

We claim that Ux does not depend on x. To see this, let c be a curve from

o to x. By (2.3), since f = idiV, we have

(2.23) f o T c = rcof.

Since Cα is the product bundle with the natural flat Hermitian structure,
we have

(2.24) τc = τ'c®I on Eo = (E'® C*)o 9

where τ'c is the parallel transport in Ef along c and / is the obvious

parallel transport in the product bundle Cq. Then

( Λ O (η <g> f)
τ ^ ® Uξ .

By (2.23), we can conclude Ux = !7.

We have thus established that for an automorphism / of (E, h)

(2.25) f = iάM if and only if f(η (x) ξ) - η ® Uξ for 57 ® ξ e JB' X C*,

where Z7 is a (q X g) unitary matrix.

We shall now study automorphisms of (E, h) preserving the decom-

position E = E' + > + E'. It follows from (2.3) that, in general, an

automorphism / of (E, h) preserving the decomposition (2.1) at one point o

preserves the decomposition (2.2) globally, that is,

(2.26) f(E*) - E* if f(Ei) = E\, for £ = 0,1, -- ,A,

where o' = f(ό). Going back to the present situation where E — E' +

+ E', we see that if an automorphism / of (E, h) preserves the decompo-

sition E = Ef + + E' by sending each factor into itself, then the

unitary matrix U of (2.18) must be diagonal, i.e.,

(2.27) utJ = 0 for iφj.

Denoting the restriction of / to the j-th factor of the decomposition
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E = E' + - + E' by fi9 we write

(2.28) / = ( / , , . . . , / β ) , fte Aut(E'Jι').

Writing

Ci = u H i = 1 , • • , q ,

set

We shall show that /ί = = /£. Since / is given by V(x) Ϊ7 on i?0, /* is

given by uu V on E'o. Hence, f[ = = /£ on ^ . Consider, for example,

g1 = /2"1 o/ί. Then ^ induces the identity automorphism of the fibre Eo

and the identity transformation g = iάM. Applying (2.25) to g, we see

that g is the identity automorphism of (E', h'). Hence, f[ = f2, proving

our assertion. Set f'' = f[= = / .̂ Thus we have established that if /

is an automorphism of (E, h) preserving the decomposition E — Ef +

+ Er factorwise, then

(2.29) / = ( c ! / ; , •• , c β / 0 ,

where f e A u t ^ , /ι') and | C l | = . . . = |cβ] - 1.

Now, we shall study the case where / is an arbitrary automorphism

of (E, h). Let o' = f(o). Let U be the (q χ g) unitary matrix given by

(2.18) and /^ the automorphism given by (2.21). From (2.20) we obtain

which shows that the automorphism fϋι°f preserves the decomposition

E = E' + + E' at o and hence globally. Then fϋι°f must be of the

form (2.29):

(2.30) fϊ1of=(c1f', •• , c / ) .

Let C be the diagonal unitary matrix with diagonal entries cl9 « , c ρ .

Then (2.30) can be rewritten as

Hence,
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or

f=f'®fuc

Absorbing C into U, we write U for UC. Thus, every automorphism / of

(E, h) is of the form

where f' is an automorphism of (E', h') and fυ is the multiplication by a

(q X q) unitary matrix U as in (2.21). In other words,

(2.32) f(η ® ξ) = f'η ® Uξ τ)®ξ e E' ® Cq.

This means that the group homomorphism

Aut (E\ h') χ U(q) > Aut (E, h)

sending (f', U) to f' ®fv is surjective. Its kernel consists of (μu, (l/u)I),

where u is a complex number with \u\ — 1 and μu: E' -+E denotes the

multiplication by u.

Summarizing what we have proved, we state

(2.33) THEOREM. Let (E', h') be an Hermitian vector bundle over M with

irreducible holonomy group and Cq be the product bundle of rank q over

M with the natural flat Hermitian structure. Let E = E' ® Cq and let h

be the naturally induced Hermίtίan structure in E. Then the automorphism

groups Aut (E, h) and Aut (E', h') are related by the following exact se-

quence :

1 >f7(l) - U Aut (E\ h') ® U(q) -i-> Aut (E, h) >1,

where

κr,v) = r®fv, κu) =

(In the definitions of j and / above, fΌ is the multiplication by Z7 e

U(q) as defined in (2.21), and μu is also the multiplication by a scalar u).

The natural projections from Aut(E',h')χU(q) to Aut (E', h') and

U(q) induce homomorphisms

a: Aut (E, h) > PAut (E', h'): = Aut (E', h')/{μu u e U(l)},

β: Aut(E,h) >PU(q):= U(q)/{ul; u e 17(1)},
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(where P stands for "projective").

Then

Keτa = {fu; U e U(q)} - U(q) ,

Ker β = {/' <g> /; f' e Aut (£', h')} « Aut (£', Λ') -

§ 3. Homogeneous Hermitian vector bundles

Let G be a connected, compact semi-simple Lie group, Γ a toral sub-

group of G, and C(T) the centralizer of Tin G. Then G/C(T) is a simply

connected, compact homogeneous Kahler manifold, and conversely, (Wang

[14] and Borel [3]).

We need the following simple lemma.

(3.1) LEMMA. Let G and C(T) be as above and assume that C(T)

contains no simple factor of G. Let PU(ή) = U(ή)/{ul; u e U(ϊ)} denote

the projectίve unitary group. If p: G -> PU(ri) is a representation of G,

then its restriction to C(T) is always a reducible representation.

Proof. We may assume that p is non-trivial, i.e., p(G) Φ {/}. Let

V = p(T). Then T is a non-trivial toral subgroup of PU(ή). (If T is

trivial so that T c Ker p, then C(T) must contain all simple factors of G

which are not in Ker p). Let C{Tf) be the centralizer of T' in PU(n).

Since T' may be considered as a subgroup of the diagonal subgroup of

PU(ή), its centralizer C{T) is of the form P(U{n^χ X U(nk)) =

X X U(nk))/{ul; u e U(ΐ)}, where n = n, + + nk. By C7(^

X U(nk), we mean the subgroup of U(ή) of the form

Since p{C{t)) c C(T')9 Lemma follows immediately. Q.E.D.

Let (E, h) be an Hermitian vector bundle over a complex manifold

M. Let G be a group of automorphism of (E, h). Let o e M and Go the

subgroup of G consisting of automorphisms leaving the fibre Eo invariant.

If Go acts irreducibly on Eo, then (E, h) is of the form (E', h') ® C\ (see

(2.12)). In the preceding section, we defined a homomorphism β: Aut (E, h)

-> PU(q). If G is connected, compact and semi-simple and if Go = C(T),

the centralizer of a toral subgroup T of G, then (3.1) implies that β: Go

—> PU(q) is a reducible representation. Let S c C"7 be a subspace invariant
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by β(GQ). Then {E' ® S)o is a subspace of Eo = (E' ® Cq)0 invariant by

Go. Since we assumed that Go acts irreducibly on Eo, this contradiction

means that we must have q = 1, i.e., E = E/ in (2.12). We have shown

the following

(3.2) PROPOSITION. Let (E, h) be an Hermitian vector bundle over a

complex manifold M. Let G be a connected, compact, semi-simple Lie group

of automorphisms of (E, h). Let o e M and Go the subgroup of G consisting

of automorphisms leaving the fibre Eo invariant. If Go acts irreducibly on

Eo and if Go is of the form C(T) for some toral subgroup T of G, then the

holonomy group of (E, h) is irreducible.

We prove now the following

(3.3) THEOREM. Let E be a holomorphic vector bundle over a compact

complex manifold M with an ample line bundle H. Let G be a connected,

compact Lie group of automorphisms of E acting transitively on M. Assume

that the isotropy subgroup Go of G at a point o e M acts irreducibly on

the fibre Eo at o. Then

(1) There exists a G-invariant Hermitian structure in E and a G-

invariant Kdhler metric g on M whose Kdhler form represents the Chern

class c^H) of H, and (E, h, M, g) is an Eίnsteίn-Hermίtian vector bundle.

(2) Moreover,

(E, h) = (E', h') + . + (E', hf) = (E', hf) ® C«,

where (E', h;) is an Einstein-Hermitian vector bundle over (M, g) with irre-

ducible holonomy group. The vector bundle Er is H-stable in the sense of

Mumford- Takemoto.

Proof. (1). Averaging an arbitrary Hermitian structure of E by the

action of G, we obtain a G-invariant Hermitian structure h in E. Simi-

larly, we start with a Kahler metric on M whose Kahler form represents

Cj(JΪ). Averaging it by the action of G, we obtain a G-invariant Kahler

metric g on M. Since G is connected, the Kahler form of g still re-

presents cλ(H).

Since the g-trace K of the curvature R is invariant by G and since

Go is irreducible on Eo, the endomorphism Ko must be a scalar multiple

of the identity transformation of Eo.

(2). The first assertion follows from (2.12). The second assertion
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follows from (1.1).

(3.4) THEOREM. In (3.3), assume further that G is semisimple and Go

is the centralizer C(T) of a toral subgroup T of G. Then (E, h) is an

EίnsteίnΉermίtian vector bundle over (M, g) with irreducible holonomy group

and E is H-stable for any ample line bundle H over M.

Proof This follows from (3.2) and (3.3). Q.E.D.

We note that the second assertion in (3.4) is equivalent to the follow-

ing theorem of Ramanan [11] and Umemura [13].

(3.5) THEOREM. Let L be a simply connected, semisίmple complex Lie

group and P a parabolic subgroup simple factor. Let p be a finite dimen-

sional irreducible representation of P. Then the homogeneous vector bundle

Ep over M — LjP defined by p is H-stable for any ample line bundle H

over M.

We can pass from (3.4) to (3.5) by letting L to be the complexification

of G.

§ 4. Complex contact structures

Let M be a complex manifold of dimension 2n + 1. A complex contact

structure on M is given by an open cover {Ut} and a system of holomorphic

1-forms {ωj such that

(a) Each ω{ is a holomorphic 1-form defined on Ut and vanishes

nowhere;

(b) The holomorphic (2n + l)-form ωt A {dω^)n vanishes nowhere;

(c) If Ui Π Uj is non-empty, there exists a (nowhere-vanishing) holo-

morphic function fi3 on Ui Π U5 such that ωt = fi5ω5 on Ut (Ί Ujm

Two complex contact structures {Ui9 ωt} and {Vλ, θλ} are considered to

be equivalent if ωt = auθλ on Ut Π Vλ with a suitable holomorphic function

aίλ. We are, of course, interested in equivalence classes of complex con-

tact structures.

Given a complex contact structure {Uiy ω^ on M, we obtain a'^holo-

morphic subbundle E of rank 2n of the tangent bundle TM:

(4.1) E={X e TM ωt(X) = 0}.

Let F be the line bundle defined by the transition functions {ftj} above.

Then we have an exact sequence
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(4.2) 0 >E >TM >F >0.

Since

(4.3) ωt A (dωt)
n = (ftjY^ωj A {dω3)

n ,

it follows that the determinant bundle det(ΓM) = Λ2n + ίTM is defined by

the transition functions {Z?/1}. Hence,

(4.4) Cί(M) = (n + l)

From (4.2) we have

(4.5) 1 + C l ( M ) + c2(M) + ... = ( l + C l ( F ) ) ( l + cx(E) + c2(E) + . - • ) .

In particular,

(4.6) Cl(E) = nc^F).

From (c), we obtain

(4.7) dωt = fijdωj + dfυ A ωs .

Since OJ; = 0 on E, (4.7) implies that we have a skew-symmetric blinear

form {dωz) on E with values in F:

(4.8) {dωt}: EχE >F.

Condition (b) implies that this bilinear form is everywhere non-degenerate

on E. In particular, it defines an isomorphism

(4.9) E^E* χF.

This imposes further conditions on Chern classes of M.

For complex contact structures, see Kobayashi [4], Boothby [1, 2] and

Wolf [15]]. The compact simply connected homogeneous complex contact

manifolds were classified by Boothby. They are 2-sphere bundles over

compact simply connected quaternionic symmetric spaces. This natural

correspondence between the compact simply connected homogeneous com-

plex contact manifolds and the compact connected quaternionic symmetric

spaces was explained by Wolf. In today's terminology, it is nothing but

the twistor construction, (see Salamon [12]).

§ 5. Null correlation bundles

We shall first describe a natural complex contact structure on the
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complex projective space P2n+ι of dimension 2n + l. Let z°, z\ , z2n+ι be

a natural coordinate system in C2n+2, which will be taken as a homo-

geneous coordinate system for P 2 n + 1. O n C2n+2 — {0} (considered as a

principal C*-bundle over P2n+ι) we consider the following holomorphic 1-

form:

(5.1) ω = z'dz1 - z'dz0 + + z2ndz2n+ί - z2n+ίdz2n .

Let {Ui} be an open cover of P2n+i with a system of local holomorphic

sections st of the bundle C2n+2 — {0} over U^ Setting

(5.2) ωt = sfω ,

we obtain a complex contact structure [Uιy ωj on P2re + 1.

We identify the complex vector space C2 n + 2 with the quaternionic

vector space Hn+1 by setting

(5.3) q° = z° + zιj9 . , qn = e2n + ^2n+1i .

The identification c2n+2 = Hn + 1 induces a fibering

(5.4) P 2 n + 1 >PnH

whose fibers are complex protective lines in P2 n +i In order to understand

this fibering group-theoretically, we consider P2n+ί as a homogeneous

space of the symplectic group Sp(n + 1) rather than the special unitary

group SU(2n + 2). Thus,

(5.5) P2n+ι = Sp(n + ί)ISp(n) χT • PnH - Sp(n + ί)ISp(ή) χSp(ΐ).

Visibly, the form ω is invariant by Sp(n + 1). Hence, the complex contact

structure {Ui9 ω̂ } on P2n+1 is invariant by Sp(n + 1). Let o denote the

origin of the homogeneous space P2n+1 = Sp(n + ΐ)/Sp(ή) χ T\ Then the

isotropy group Sp(n) χ T1 acts irreducibly on the hyperplane Eo of the

tangent space T0P2n+ί defined by (4.1). Since Sp(n + 1) is simple and

Sp(n) X T1 is the centralizer of T in Sp(n + 1), we can apply (3.4) to

obtain

(5.6) THEOREM. Let E be the vector bundle of rank 2n over P2n+ί —

Sp(n + ΐ)ISp(n) χ T1 defined by an invariant complex contact structure, (see

(4.1)).

(1) Let h be an Sp(n + l)4nvariant Hermίtίan structure in E and let

g be an Sp(n + ί)-invariant Kdhler metric on P2 w + 1. Then (E, h) is an
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Einstein-Hermίtίan vector bundle over (P2n+1, g) with irreducible holonomy
group;

(2) E is H-stable in the sense of Mumford-Takemoto for any ample line
bundle H over P2n+1.

If we apply (4.4) to this example, then

Cl(P2n+ι) = (n + l)Cl(F).

Hence,

Cl(F) = 2a,

where a is the positive generator of H2(P2n+ι; Z). Let H denote the hyper-
plane line bundle over P2n+1. Then

F= H2.

From (4.8) we obtain a non-degenerate skew-symmetric bilinear form on
E(— 1) = E χ H\ From (4.9) we obtain an isomorphism

(5.7) E ( - 1 ) « E ( - 1 ) * .

The vector bundle E( — 1) is called a null correlation bundle over P2n + ι.
From (5.6) it follows that E{— 1) is an Einstein-Hermitian vector bundle
with irreducible holonomy group and hence is iJ-stable. (Since cXE( —1))
= 0, the bundle E(—ϊ) admits actually an Einstein-Hermitian structure
with K = 0). It is not difficult verify (see Okonek-Schneider-Spindler [10])
that the total Chern class of E(— 1) is given by

1 + a2 + a" + + an .

The fact that E(— 1) is ίf-stable is well known (Okonek-Schneider-Spindler
[10]) and Lϋbke constructed in his thesis [8] an Einstein-Hermitian struc-
ture in E(— 1) for n = 1.

§6. Cotangent projective bundle over Pn + ί

We shall consider another example of complex contact manifold. In
general, let V be a complex manifold of dimension n + 1 and T* V its
holomorphic cotangent bundle. From T*V we construct the cotangent
projective bundle M = P(T*V), which is a holomorphic bundle over V
with fibre Pn. Then dim M = 2n + 1. Let ω be the holomorphic 1-form
defined on the total space of T* V as follows:
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(6.1) ω{X) = v(p*X) for X e TΌ(T*V), v e T * F ,

where p: J Γ * V - » V is the projection. In terms of a local coordinate

system z°, z\ , zn of V and the induced local coordinate system z°, z\ ,

zn, ζ0, C , ζn of T* V, the form ω is given by

(6.2) ω = ζQdz° + ζ.dz1 + + ζndzn .

Then as in the first example discussed in the preceding section, the 1-form

ω induces a complex contact structure in M. Then (4.1) defines a

subbundle E of rank 2n of the tangent bundle TM.

In this case, E has a subbundle E' of rank n consisting of vectors

tangent to fibres of the fibering M-> V. We denote the quotient bundle

E\Ef of rank n by E". If we denote the pull-back of TV to M by the

same symbol TV, then all these vector bundles over M can be organized

by a diagram of commutative sequences as follows:

(6.3)

0 -

t
E' —

t
E' —

ί
0

0

t
-> F —

t
-+TM—

ί
—> E —

t
0

0

t
-> F

t

t
-> E'

t
0

The bilinear form {dωj: E χ E —> F of (4.8) induces a non-degenerate

pairing

(6.4) £ ' χ JE" • F

and an isomorphism

(6.5) E" ~ E'*®F.

Every automorphism of V, lifted to T* V, leaves the 1-form ω invariant.

The induced transformation of M leaves the complex contact structure

(defined by ω) invariant. It leaves the vector bundles E and Er also in-

variant and induces an automorphism of the quotient bundle E".

We consider the special case where V = Pn+1. Then the action of

SU(n + 2) on V= Pn+1 induces actions of SU(n + 2) on M, E, F, Er and

E". It is easy to verify that SU(n + 2) acts transitively on M with the
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isotropy subgroup

S(U(ή) X SUO) X £7(1)) = SU(n + 2) Π (U(n) χ [7(1) χ C7(l))

so that

M = S£7(n + 2)IS(U(n) X £7(1) X £7(1)).

The isotropy group is the centralizer of a torus (~ T2) in SE7(π, + 2) and

acts irreducibly on the fibres of E' and E" at the origin of M. By (3.4)

we have

(6.6) THEOREM. Let E' and E" be the vector bundles of rank n over

M= P(T*P π + 1 ) defined above.

(1) Let h! and h" be SU(n + ^-invariant Hermitian structures in E'

and E"\ respectively. Let g be an SU(n + ^-invariant Kdhler metric on

M. Then (E', hf) and (E"\ h") are Eίnsteίn-Hermίtίan vector bundles over

(M,g) with irreducible holonomy group;

(2) E' and E" are H-stable in the sense of Mumford-Takemoto for any

ample line bundle H over M.

Let F" be the hyperplane line bundle over V = Pn+ί. Its pull-back to

M will be denoted also by F". Let Ff be the line bundle over M defined

by

F=F'®F".

Let a' = c^F'), a" = c,(ί"0 and a = c/F) = a' + a". Then

H*(M;Z) = (H*(V;Z))[a],

where the minimal equation for a is given by

α»+i _ Cl(V)α» + + (-l)n + 1cn + 1(V) = 0.

By (6.5),

(6.7) E" ® F"~ι « (E' (x) Ff-vY .

The bundle E' ®Ff~ι or its dual E" ® F"~λ is perhaps an analogue of a

null correlation bundle. Their Chern classes can be computed easily. In

fact, from the Euler sequence

0 > F"-1 > Cn+2 > TV® F"-1

over V= Pn+U we obtain the total Chern class of TV®F"~U.



54 SHOSHICHI KOBAYASHI

1

1 - a"

From (6.3) we have an exact sequence

0 > E" (x) F " - 1 > TV χ F"-χ • F' > 0

over M. Hence,

(6.8) c{E" (χ) F"-1) = A _ _ .

From (6.7) and (6.8) we obtain

(6.9) c(E' <g> F'-1) = ~ -jy-.
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