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ON THREEFOLDS WITH LOW SECTIONAL GENUS

MAURO BELTRAMETTI AND MARINO PALLESCHI

Introduction

The general problem of rebuilding the threefolds X endowed with a
given ample divisor H, possibly non-effective, is closely related to the
study of the complete linear system \KX + H\ adjoint to H. Many powerful
results are known about \KX + H\, for instance when the linear system
\H\ contains a smooth surface or, more particularly, when H is very ample
(e.g. see Sommese [SI] and [S2]). From this point of view we study some
properties of \KX + H\9 which turn out to be very useful in the descrip-
tion of the threefolds X polarized by an ample divisor H whose arithmetic
virtual genus g(H) is sufficiently low.

In section 1 we recall some preliminaries.
In section 2 an explicit description of the threefolds on which the

sheaf Θx(n(Kx + H)) fails to be spanned by its global sections for n > 0
is pointed out (Theorem 2.2). This is a consequence of a part of Mori's
theory on extremal rays. In brief this theorem assures that it is always
possible to assume Θx{n(Kx + H)) to be spanned for n > 0 up to contrac-
tions of (— l)-planes, apart from some classes of threefolds, which are
fully described. Incidentally this answers a question put by Sommese in
[S2].

In section 3 first of all we characterize the pairs X, H in the cases
g(H) = 0 and g(H) = 1 (Propositions 3.1 and 3.2), in this way recovering
some classical results (cf. [E]; see also [Ro], IV, §9) in the wider context
of ample divisors. As far as higher values of g(H) are concerned, the
pairs X, H are classified under the assumption H3 > 2g(H) — 2 (Theorem
3.3). This analysis together with the general theory of Fano threefolds
leads to the explicit description of X, H where g(H) = 2, H* > 2 (Proposi-
tion 3.5). This is again linked to a classical piece of research carried
out by Enriques in [E].
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§1. Notation and preliminaries

Consider a τι-dimensional nonsingular protective variety (V, Θv) over

an algebraic closed field k of characteristic zero. When n = 3 or 2, such

a V will be called threefold or surface respectively.

Any canonical divisor of V will be denoted by Kv. The dimension

q(V) of the k-vector space H\V, Θv) will be said irregularity of V. If D

is a divisor on V, the complete linear system determined by D will be

denoted by \D\ and we shall write DlY for the restriction divisor of D to

a subvariety Y of X. We shall also put

where " s " means numerical equivalence. We shall express the intersec-

tion of cycles by the symbol "•", and the linear equivalence of divisors

by " = ". The dimension p(V) of the real vector space N^V) will be called

Picard number of V. Morever NE(V) will be the closure of the convex

cone NE(V)dN1(V) generated by effective 1-cycles, with respect to any

Euclidean norm.

Let (X, H) be a nonsingular polarized threefold. We say that an ir-

reducible divisor D on X is a (— l)-plane if D ^ P\ and ΘD{— D)^ΘD{H)

= Θp2(l). The pair (X, H) (or X if there is no danger of confusion) is said

to be a minimal model when it does not contain any (— l)-planes.

We say that a polarized threefold (Y, M) is a (— ΐ)-contraction of

(X, H) if there exists a morphism Φ: X-> Y which decomposes as X —

Xγ—
1-^X2->- —s->Xs+i = Y(s > 0) such that φt is the blowing up of some

point p i+1€X<+1,A = ^Γ1(Pt+i) is a ( - l)-plane of (Xίy (φ^o .. oφ^H),

(Y, M) is a minimal model and, if s ^ 1,

where of course in the summation index i — 1 is meant to give Dlt

We note that if/: X-^Yis a blowing up at one point p then M —
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is an ample divisor because the base locus of some multiple of M is con-

tained in {p} and M is numerically positive. It is clear that (X, H) has

a (— l)-contraction and uniqueness follows from the following

PROPOSITION 1.1. Let (X, H) be a polarized threefold and let f: X~>Z

be a contraction of a (— l)-plane E of (X, H). Then an arbitrary {— 1)-

contraction (Y, M) of (X, H) is also a (— l)~contractίon of (Z,f*H). In

particular, a (— ΐ)-contractίon is unique up to isomorphism.

Proof. We use induction on p(X) — p(Y). In the proof, we use the

notation introduced in defining (— l)-contractions. Then 5 = ρ(X) — p(Y).

If s — 0, then the assertion holds since (X, H) has no (— l)-planes. Let

s ^ 1. If D1 Π E Φ 0, then every curve in Dx\j E is contracted by both f

and φx because Dί = E ~ P2. Thus / = φi and the assertion is clear in

this case. Assume now that Dι Π E = 0. Then /(A) (resp. φγ(E)) is a

(— l)-plane of Z (resp. X2), and the contraction V of (— l)-plane /(A) of

Z is also the contraction of (— l)-plane φx{E) of X2. Since (Y, M) is a

(— l)-contraction of (X2, φ^H) and |θ(X>) — /o(Y) = s — 1, the assertion

follows by induction. q.e.d.

We shall say that X is a (Q a F3)-bundle if X is embedded in a

P3-bundle & over a nonsingular curve Y such that every fibre Xy is an

irreducible reduced quadric of F 3 ~ &y, y e Y.

Fano threefolds will often occur throughout the paper. We shall

always denote by ££ the unique (up to linear equivalence) ample divisor

on X such that — Kx = r£f, where r is the index of X. The integer

d — H3 will be called the degree of X (see also [Mu], § 1).

A part of Mori's theory of extremal rays is to be used throughout

the paper. As far as definition and generalities about numerically effec-

tive cycles (nef cycles from now on), extremal rays, extremal rational

curves, etc. are concerned, we shall refer to Mori's papers [Ml], [M2].

§2. On the system adjoint to an ample divisor

To begin with, let us state the following

LEMMA 2.1. Let us consider an ample divisor H on a threefold X. If

Kx + H is not nef then there exist an extremal ray R, a projective variety

Y and a morphίsm Φ — contR: X->Y unique up to isomorphism, such that

(Kx + H)> C < 0 for any irreducible curve C dX which is contracted by Φ.
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Proof. Since Kx + H is not nef, one has

for a suitable curve ϊ dX. After choosing ε e R, 0 < ε < 1, in view of

Mori's theorem on cone ([Ml], 1.4.2) it is possible to write Γ S Σ λJt + Γ

where λt e R, λt> 0, each li is an extremal rational curve, Γ e NE(X) and

Kχ-Γ > — ε(Γ'H). Since H Γ > 0 by Kleiman ampleness criterion [K],

it is possible to find an extremal rational curve 65 such that

Therefore (Kx + H) C < 0 for every irreducible curve C whose class [C]

in Nλ(X) belongs to the extremal ray R = R+[4j] O n the other hand

there exist a protective variety Y and a morphism Φ:X—>Y such that an

irreducible curve C is contracted by Φ if and only if [C] e R ([Ml] 3.1).

q.e.d.

The following theorem play an important role in the forthcoming

analysis and has also interest in itself (compare with Question B put by

Sommese in [S2]). Actually it might well be considered as a known prop-

erty, since it is a direct consequence of Mori's theory of extremal rays.

Nevertheless we sketch its proof for readers' convenience, because we do

not know any reference for it. As to the following proof we will use

two recent results from Kawamata [Ka] and Reid [R] so as to avoid a

rather long analysis of the extremal rays occurring when Kx + H is nef.

THEOREM 2.2. Let us consider an ample divisor H on a threefold X.

If Θx(n(Kx + H)) is not spanned by its global sections for n > 0, then either

(2.2.1) X is a P'-bundle and ΘF{H) ~ Θpi(ΐ) for every fibre F;

(2.2.2) X is a P2-bundle and ΘF{H) - ΘP,(n), n = 1, 2, for every fibre F;

(2.2.3) X is a (Q c Pz)-bundle with p(X) = 2 and ΘQ{H) = ΘQ(ΐ) for every

fibre Q;

(2.2.4) X is a Fano threefold with p(X) = 1, of index r > 2 and H = n&,

n < r; or

(2.2.5) there exist a unique, up to isomorphism, (— l)-contractίon Y, M of

X, H and either Y, M is as in one of the previous cases or

Θγ(n(Kγ + M)) is spanned by its global sections for n > 0.

Proof First let us suppose Kx + H to be nef. Then the Kodaira

dimension tc(X, Kx + H) is not negative as has recently been proved by
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M. Reid [R]. Therefore Theorem 6 in [Ka] says that (9x(n(Kx + H)) is

spanned by its global sections for n > 0. So we can assume that Kx + H

is not nef and consider both the extremal ray R and the morphism

Φ: X-+Y as in Lemma 2.1.

Let us start analysing the case when R is nef. Then Y is nonsingular

and one of the cases listed in [Ml], 3.5 holds. Let F be the general fibre

of Φ. The conic bundle case leads to (2.2.1). Indeed, by Lemma 2.1, we

get

0 >(KX + H)F = degKF + H F = - 2 + HF,

so H'F = 1, which is enough to conclude. In the Del Pezzo fibering case

Lemma 2.1 gives

for every irreducible curve Γ c F . Now F is a Del Pezzo surface, then

Theorem 1.2 in [M2] assures that the class [ϊ] of ϊ in NE(F) is generated

by extremal rational curves of F. Therefore (*) implies the existence of

an extremal rational curve C d F such that (KF + HlF)C < 0. Then

KjpC < — 2 and so C is not an exceptional curve of the first kind.

Therefore either F ~ P2 or F is a ^-bundle (cf. [Ml], 2.1). In the former

case X is a P2-bundle (cf. [M2], 2.6) and by taking an effective generator

of Pic (F) as ϊ, relation (*) implies ΘF{H) — ^ ( τ ι ) , n = 1, 2, so we have

(2.2.2). In the latter case F is isomorphic to P1 X P\ Then X is a

(Q C P3)-bundle ([M2], 2.6) and again (*) gives (2.2.3). Finally we have to

consider the case when X is a Fano threefold of index r with p(X) = 1.

Then Kx = — r££ and H = n^f with n < r, as ifx + if is not nef, which

gives (2.2.4).

We must now consider the case when R is not nef. In this case Φ

is a birational morphism contracting a unique irreducible divisor D (see

[Ml], 3.3). Moreover one sees that KXR < — 2 in view of Lemma 2.1.

Therefore a standard computation shows that the three 'singular contrac-

tion" cases and the "contraction of a scroll" case in [Ml] 3.3 do not

occur, so the only possible case is when Y is nonsingular, Φ(D) is a

point, D ~ P2 and ΘD{D) ~ (9P%{— 1). Let us consider the ample divisor

M = Φ*H. By repeating the same reasoning as above on Y, we can as-

sume Kγ + M to be nef. Then Gγ{n(Kγ + M)) is spanned by its global

sections for n > 0 in view of [Ka] and [R]. q.e.d.



32 MAURO BELTRAMETTI AND MARINO PALLESCHI

Let us point out the following easy consequence of Theorem 2.2,

which will be useful in the sequel.

LEMMA 2.3. Let A be an ample divisor on a threefold X. If Kx + 2 A

is not nef, then either

(2.3.1) X is a P2-bundle and ΘF{A) ~ 0^(1) for every fibre F;

(2.3.2) X ~ P3 and ΘX(A) ~ 0P,(1), or

(2.3.3) X~ QaP\ Q quadrίc hypersurface and ΘX{A) ~ ΘQ(l).

Proof Let us put H = 2A and suppose that Kx + H is not nef.

Then the pair X, H belongs to one of the classes listed in Theorem 2.2.

On the other hand H ϊ > 2 for every curve ϊ in X and so (2.2.1), (2.2.2)

with n = l, and (2.2.3) are excluded. If (2.2.4) holds, then A = τnJSf with

2m < r so that X is a Fano threefold of index r > 3, which gives (2.3.2)

and (2.3.3) (see also [Mu], 2.1). Finally, if (2.2.5) holds, pick up a ( - 1)-

plane D aX and consider the effective generator B of Pic (D). We know

that ΘD(D) ~ 0 P 2 ( - 1) and so

OK* + fl) B = (KD - D + f Q B - - 2 + 2A.S > 0 ,

which contradicts Lemma 2.1 and completes the proof. q.e.d.

§3. Threefolds with a given sectional genus

We are going to study the threefolds X endowed with an ample

divisor H with a given (arithmetic virtual) genus g(H), defined by the

relation

(3.0.1) 2g(H) -2 = (Kx + 2H).H2.

In case when \H\ contains smooth members Hλ and H2 such that

C = Hλ - H2 is a nonsingular curve, then g(H) is merely the arithmetic genus

of the curve C. In the general case, g(H) is a non-negative integer for

the following reasons:

(i) g(H)eZ: in fact, for sufficiently large odd n, nH is very ample

and g(nH) e N as seen above. Since (Kx + 2nH)nΉ2 = (Kx + 2H)H2

mod 2, one sees that g(H) e Z;

(ii) g(H) ^ 0: since g(H) 2> 0 in case Kx + 2Ή is nef or H is very

ample, one has only to check g(H) ^ 0 in case (2.3.1) by Lemma 2.3. Let

π:X-+C be the P2-bundle morphism. Then H + π*M is very ample for

some ample line bundle M of C and a direct calculation shows that

g(H) — g(H + 7r*M), which is non-negative.
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PROPOSITION 3.1. If g(H) = 0, then either

(3.1.1) X is a P2-bundle and ΘF(H) ~ ΘP2(ΐ) for every fibre F;

(3.1.2) X ~ P3 and ΘX(H) ~ ΘP,(ί); or

(3.1.3) X~ QaP\ Q quadric hypersurface, and ΘX(H) ~ ΘQ(ΐ).

Proof. Relation (3.0.1) reads (Kx + 2H)H2 = - 2, then Kx + 2H is

not nef. Thus the assertion follows from Lemma 2.3. q.e.d.

PROPOSITION 3.2. If g(H) = 1, then either

(3.2.1) X is a P2-bundle and ΘF(H) ~ 0pa(l) for every fibre F;

(3.2.2) X ~ P3 and ΘX{H) ~ ΘP3(2); or

(3.2.3) X is a Fano threefold of index r = 2, degree d, Kx ~ 2H, and

1 < d = Hz < 7.

Proof. Relation (3.0.1) reads (Kx + 2H)H2 = 0. Let us assume iΓx +

2iί to be nef. Then (Kx + 2H)2 e NE(X) and so H-{KX + 2H)2 > 0 ([K],

III). Since H3 > 0 one sees that Kx + 2ίf is numerically trivial by [K],

I, Section 4, Prop. 3. Therefore — Kx is ample, so q(X) = 0 and Pic (X)

is torsion free (cf. [Mu], 1.11). It follows Kx Ξ 2H and X is a Fano

threefold of index r = 2,4. If r = 2 it is known that 1 < H3 < 7 (cf.

[Mu], 2.2) so we get (3.2.3), while r = 4 gives (3.2.2).

Whenever ifx + 2iϊ is not nef we obtain (3.2.1) by Lemma 2.3. q.e.d.

As far as higher values of g(H) are concerned, we can assume

g(H) > 2 after Propositions 3.1 and 3.2. We can prove

THEOREM 3.3. Let H be an ample divisor on the threefold X and let

us assume H3 > 2g(H) - 2, g(H) > 2. Then either

(3.3.1) X is a P'-bundle, ΘF(H) ~ φpi(ΐ) for each fibre F;

(3.3.2) X is a P2-bundle, ΘF{H) ~ ΘP*(ri), n = 1, 2 for each fibre F;

(3.3.3) X is a (Qd P*)-bundle, Θq{H) - ΘQ(ΐ) for each fibre Q;

(3.3.4) W > 2g(H) - 2, X ~ P3, ΘX(H) ~ ΘP3(S) and g(H) - 10;

(3.3.5) H3 > 2g(H) - 2, X~QaP\ Q quadric hypersurface, ΘX(H) ~

ΘQ(2), g(H) = 5;

(3.3.6) H* = 2^(H) - 2, X ^ P3, ύ?z(fl) ^ 0P,(4), ^(i/) - 33;

(3.3.7) ί ί 3 = 2^(iί) - 2, X - Q c P4, Q quadric hypersurface, ΘX(H) -

0β(3), g(iί) = 28;

(3.3.8) Hz = 2g(fl) - 2, X is α Fαno threefold of index r = 1, 2 decree d,

ϋΓχ- = — H and one has furthermore g(H) = Ad + 1, d = 1, 2, , 7

if r = 2; or
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(3.3.9) there exists a unique (— l)-contraction Y, M of X, H, g(M) = g(H)

and the pair Y, M is as in (3.3.1), (3.3.2), (3.3.3), (3.3.4) or (3.3.5)

with Mz > 2g(M) - 2.

Proof. Assume X to be a minimal model. First, let us consider the

case Hz > 2g(H) - 2. Formula (3.0.1) implies Kx + H is not nef and so

X belongs to one of the classes listed in Theorem 2.2. Classes (2.2.1),

(2.2.2), (2.2.3) give (3.3.1), (3.3.2), (3.3.3) respectively. Now suppose X to

be a Fano threefold of index r > 2 as in (2.2.4). Whenever r = 4, 3 we get

(3.3.4), (3.3.5) respectively; while r — 2 is to be excluded, otherwise we

would have Kx = — 2Ή. and then g(H) = 1 in view of (3.0.1). Now as-

sume Hz = 2g(H) - 2. Then formula (3.0.1) gives

(**) (Kx + H)H2 = 0.

Let us start by supposing Kx + H nef. Therefore (Kx + Hf e NE(X) and

reasoning as in the proof of 3.2 one sees that Kx + H is numerically

trivial (see again [K]). Thus X is a Fano threefold of index r, degree d.

Hence q(X) = 0 and Pic (X) is torsion free, so that Kx = - H. If r = 4, 3

then X ~ P 3 or X ~ Q c P\ Q quadric hypersurface, so we get (3.3.6),

(3.3.7) respectively. As soon as r = 2 then 1 < d < 7 by [Mu] 2.2; one

has Kx ΞΞ — 2^ that is H = 2jδf and (3.3.8) follows. Again, whenever

Kx + H is not nef, X belongs to one of the classes listed in Theorem 2.2:

(2.2.1), (2.2.2), (2.2.3) give (3.3.1), (3.3.2), (3.3.3), while (2.2.4) does not occur.

Otherwise we could write Kx = — rJ^, H = nJ^, n < r, which would imply

(Kx + H)H2 = (n- r)J?H2 < 0

contradicting (**).

It remains to consider the case when X is not a minimal model. Let

f: X->Z be the contraction of a ( - l)-plane D of (X, # ) , and N = f*H.

Since Kx + 2H = f*(Kz + 2N), the projection formula gives

- (Kz + 2N) f*H2 = ( l ^ + 2N).N2 = 2g(N) - 2 ,

hence g(N) = g(H) and also

H* = (f*N - Df = (/*ΛΓ)3 - D3 = N3 - ((D)D)2 = N3 - 1 .

Therefore the ( - l)-contraction (Y,M) of (X, if) satisfies g(M) = g(H)

and M3 > 2g(M) — 2, which implies that ifF + M is non nef by definition
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of g(M). Thus Theorem 2.2 applied to (Y, M) gives (3.3.9). q.e.d.

Remark 3.4. Whenever the cycle H2 is a nonsingular curve C, in

P2-bundle cases (3.1.1), and (3.3.2) with n = 1, the curve C is isomorphic

to the base curve Y. While in the (Q c P3)-bundle case (3.3.3) (resp. in

(3.3.2) with n = 2) the curve C is a double (resp. quadruple) covering of Y.

The previous results lead to a complete description of pairs X, H with

genus g(H) — 2 and ί ί 3 > 2. In this particular case we have

PROPOSITION 3.5. Let us suppose g(H) = 2, i/3 > 2.
(3.5.1) X is as in (3.3.1), (3.3.2) or (3.3.3) of Theorem 3.3;

(3.5.2) ί/ιβre exists a unique (— ί)-contractίon Y, M of X, H, g(M) = 2 aτzcί

£/ιe pair Y, M is as in (3.5.1); or

(3.5.3) Hz = 2 cmd [flΓ| ^iues a double covering X - > P 3 H;^/* ramification

locus a smooth sextίc surface.

Proof Indeed, Theorem 3.3 implies either (3.5.1) and (3.5.2), or that

X is a Fano threefold of index r = 1, degree d = 2. In this case by

looking over the classification of Fano threefolds given in [II], Section 7,

[M-M] we get (3.5.3). q.e.d.

Remark 3.6. We have no satisfactory results when g(H) = 2, H3 = 1.

By using the same arguments as above we can only prove that if Kx is

not numerically trivial, then either (3.5.1) or (3.5.2) holds or the complete

linear system \n(H + Kx)\, n > 0, gives a morphism φ: X —> Y, over a curve

Y such that the general fibre is a Del Pezzo surface. •

The general theory of Fano threefolds, for which we refer to [Mu],

leads to the following:

Supplement 3.7. a) The Fano threefolds occurring in (3.2.3), (3.3.8)

are classified in [II], [12], [M-M]. Moreover as a consequence of one of

Shokurov's theorems the linear system \H\ contains a Del Pezzo surface

or a K3 surface according to whether r > 1 or r = 1.

b) In (3.3.8), since — Kx = H, the integer g(H) is nothing but the

genus g = g(— Kx) of X. Whenever H is very ample, one has g(— Kx)

> 3 and Xis embedded as a threefold of degree 2g — 2 in Pg+1 by means

of \H\. In particular, it follows that (3.5.3) gives an example of a pair
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X, H where H is not very ample. Note also that other examples where
H is not very ample arise from (3.2.3) when d = 1, 2 (see [Mu], 2.8). •
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