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A NOTE ON CUBIC EQUIVALENCES

HIROSHI SAITO

Dedicated to the memory of Professor Takehiko Miyata

The present note is intended to be a supplement to [9], in which the
following is proven: Let V be a smooth protective variety over the field
of complex numbers C, T a smooth quasi-projective variety, Z a cycle in
T χV oϊ codimension p. If Z(t) is ^-cube equivalent to zero for general
t e T, then, setting r = dim V — p,

{'Z}: Hr(V, Ωγβt) • > H°(T, β£)

vanishes for £' < £, where {*Z} is the correspondence defined by Z.
If r = 0, H°(V, Ωγ) was classically called the space of integrals of the

first kind on V, and we can ask: Is an analogue true for the integrals
of the second kind? The aim of this note is to give an affirmative answer
to this question (cf. (3.2)) if we take, as the definition of integrals of the
second kind, that defined by Atiyah-Hodge [1]; Hr(V, Ωr

v

+£') is then replaced
by the associated graded module for the coniveau filtration of H2r+£'(V).

A similar result holds also for etale cohomology and for varieties
even over a positive characteristic ground field, but the definition of
integrals of the second kind is, a priori at least, different from that by
Grothendieck [5] (cf. (2.6.1)).

Anyway, for abelian surfaces which are not supersingular, the square
equivalence and the cubic equivalence differ if the ground field is un-
countable (cf. (3.6)). This should be compared with the following: if the
ground field is the algebraic closure of a finite field, the square equiva-
lence is the same as the rational equivalence for any variety, hence the
square equivalence and the cubic equivalence are identical.

Again over the field of complex numbers, note that the space of inte-
grals of the second kind carries a polarized Hodge structure. Then the
corollary (3.5) should give some insight into the metaconjecture of Bloch
12], p. 1.14.
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In Section 1, we recall about the coniveau filtrations, and prove its

functoriality (1.5). Section 2 is devoted to a proposition (2.5) on a family

of products of curves, which is the key to the proof of the theorem (3.2).

In Section 3, the results mentioned above are proven.

§1. Review on coniveau filtrations

(1.1) Let X be a smooth quasi-projective variety over an algebraically

closed field k. We denote by Xa one of the following sites:

case a), char k = 0—. Xa is the Zariski site of X;

case b). k = C, the field of complex numbers—. Xa is the classical

site of X;

case c). k is arbitrary—. Xa is the etale site of X.

In any case, we have the canonical morphism of sites

cίχ = a\ Xa > -ΛZar .

By A and μ = μx = μx(a), we denote the following ring and the object

of the derived category D+(Xa) of sheaves on Xa:

in case a), A = k, and μ = Ω'x/Ic, the de Rham complex;

in case b), A = Z, and μ = Z, the constant sheaf of Xa

in case c), let v be a prime number Φ char k, N > 0, and a integers.

We denote by μvN the etale sheaf of ι^-th roots of unity on Xa. Then A —

Z/vN, and μ = (μvN)®a if a > 0, and /i - Horn, ((^)® ( " α ) , A) if α < 0. (We

often denote by the same letter A the constant sheaf on Xa defined by A).

For an integer p > 0, let Z p = ZP(X) be the family of supports con-

sisting of (Zariski) closed subsets of X of codimension > p, and ΓZP(Xa, ?)

the functor "sections with supports in Zp". We have then, in the derived

category of abelian groups, a sequence of triangles:

Λ i Z ZP/ZP +

\/

> RΓZP+2μ > RΓZPilμ — > RΓzvμ > — > RΓzoμ - RΓμ ,

inducing the spectral sequence

(1.1.2) NEξ>»-* = RnΓZP/ZP+ιμ = > RnΓμ .



CUBIC EQUIVALENCES

Let Z_p be the Zariski sheaf of supports obtained by localizing Z p .

Then, in the derived category D+(XZΆV) of Zariski sheaves on X, there

exists a sequence of triangles

(1.1.3)

which induces the spectral sequence

(1.1.4) Ei>»-p = RnLZP/ZP+x{Ra*μ) = »

The application of RΓ(XZaΐ, ?) to (1.1.3) gives the sequence of triangles

(1.1.1).

For a closed subset Y of X, we shall denote RnΓγ(X, μ) by HY(X).

Then

(1.1.5) RnΓZPμ = HUX, μ) = lim Hn

γ(X) ,

and

(1.1.6) RnrZP/ZP+1μ==Hn

ZP/ZP+1(x,μ)= Km i/ w

n F
rezp

The Zariski sheaves RnΓ_ZP{Rcc*μ) and RnΓZP/ZP+1(Ra:i.μ) are obtained by

sheafifying H%P(X, μ) and Hn

ZP/ZP+1{X, μ) respectively with respect to the

Zariski topology of X.

We shall denote by NpHn(X, μ) the filtration on the abutment Hn(X, μ)

of the spectral sequence (1.1.2) which we call the conίveau filtration, and

by grpHn(X, μ) its associated graded module:

gr»Hn(X, μ) = NpHn(X, μ)INp+1Hn(X, μ) .

Explicitly,

NΉ*(X, μ) = Im {HUX, μ) > H*(X, μ))

(1.1.7) = Σ lm(m(X,μ)—+H (X,μ))
Yezp

= Σ Ker (H"(X, μ) > H»(X\ Y, μ)) .
γezp

(Since Zp is filtering for inclusion, we may replace 2 by U.)

Let Z(p) denote the points of X of codimension p. Then we have

(1.1.8) RnΓZP/ZP+1(Ra*μ) = JJ iMn

x(Ra*μ)
ez<p>
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where ixHl(Ra*μ) is the direct image sheaf of Hχ(Ra*μ) regarded as a

constant sheaf on the space {x} by the inclusion from {x} into X, see [6].

Hence that sheaf is flasque. For more explicit formula of H%JRa*μ), see

[3].

THEOREM (1.2) (Bloch-Ogus, [3], 4.2). The spectral sequence (1.1.4)

degenerates from E2-term on, and Eξ'q = 0 for p Φ 0.

THEOREM (1.3) (Bloch-Ogus-Deligne). The spectral sequence (1.1.2) is

isomorphίc to the Leray spectral sequence

Eξ>* = H>(XZW R'a*μ) = > Hn(Xa, μ)

from E2-term on. In particular, the filtratίons of Hn(Xa, μ) by these spectral

sequences coincide.

In case a), the theorem (1.3) was proven in [3]. In cases b) and c),

according to the footnote (loc. cit.), it was shown by Deligne. For com-

pleteness, we give a proof here.

L E M M A (1.4). Let stf and & be abelian categories, stf having enough

ίnjectίves, T: srf -» 08 a left exact additive functor, K = F°, F\ , Fm objects

of Z) + ( j/), Fp+ί-+Fp morphίsms. We have a sequence of triangles:

Gm Gp

0 = Fm+ί >Fm > - • >Fp+ί >FP > - - >F* >F° = K ,

inducting a spectral sequence

E P p = H(Qp) = = ^ >

Assume that

( i ) Eψq are T-acyclic,

(ii) Eψq = 0 for p Φ 0.

Applying the functor RT to the sequence of triangles above, we get

RTGm RTGP

0 = RTFm+1-+RTFm-> >RTFp + 1->RTFp-+ >RTF° = RT K.

Then the spectral sequence Efn~p = RnTGp^RnTK obtained by this

sequence of triangles is ίsomorphίc to the second spectral sequence
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= RpTHq(K) =$ RnTK ,

from E2-term on.

The lemma (1.4) implies the theorem (1.3): We apply the lemma for

si = the category of sheaves of abelian groups on XZΆΐ, & = the category of

abelian groups, T = Γ(XZar, ?), Fp = RΓzP(Ra*μ), and Gp = RLzP/zP+1(Ra*μ).

Then (i) holds as noticed above, and (ii) is satisfied by (1.2). And the

second spectral sequence for RΓ(XZΆV, Ra^μ) is nothing but the Leray

spectral sequence for a.

Before giving the proof of (1.4), we shall prove the elementary

LEMMA (1.4.1). Let stf be an abelian category, f: A' -> Γ be a morphism

of complexes bounded below in srf such that

( i ) /*: H\A) -> Hn(Γ) are zero for all n;

(ii) Hn(Γ) and Im (d71'1: In~x -> I71) are ίnjective objects in stf for all n.

Then, f is homotopic to zero.

We construct a homotopy kn\ An+1 -> In by induction on n. For n < 0,

it is necessarily zero since so are An and In. We have exact sequences

where B? - Im(d: J*"1 ->In), Zj = Ker (d: In -> / w + 1 ) , and Hΐ =; Hn(Γ).

By hypothesis, 5? and if? are injective, so that we have

Z^^BϊQHϊ ,

i re ^ Z? © B?+1 = Bnj®Hnj® Bnj+1 .

Denoting the coboundary and cocycle of A' by Bn and Zw, we get a com-

mutative diagram with exact rows:

0 > Bn > Zn > Hn > 0

fn

Since f* = 0, fn: Zn -> Z? factors through £?:

Notice that giving fn: An -+In ^ Bn

Σ 0 if? 0 £? + 1 is equivalent to giving

Wi°fn> Pr2°fn, pr3°/w, where pr̂  are projections. Since the diagram
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A71 -!—> In ^ JB? ® ffj® BΓ 1

Ύ fn+l Ύ

Aτι + 1 J ^ Tn + 1 /̂ -/ Rrc + 1 {T\ ΈJn + 1 /T\ D n + 2

is commutative, and since d: In-+In+ί is given by In—z-> Bΐ+1 <=—>7n+1,

pr 3o/ r e = p r ! θ / n + 1 o d .

Now suppose that we have constructed ki+1: Aί+ί -> i i j 0 B}+1 C 7* for

/ < n such that

prx op — prj o do &* (i < λi) .

Define j8: A n + 1-^B?+ 2 by

The restriction to Z71 of

is zero by hypothesis. Taking the quotient, we get Bn+1~>H], Since H1}

is injective, it can be extended to a: A7l+1->fl'J. We set

kn+ί = (or, ]8): Aw + 1 > H7} 0 B?+1 C 7W .

Then we have fn = kn+ίod + dokn, pτ1ofn+ί = pτίodokn+ί, which completes

the proof of (1.4.1).

Now we prove the lemma (1.4). Let K' be a complex "representing"

K in D+(jtf), and K' —• 7" be a Cartan-Eilenberg resolution of iΓ', τn>pΓ'

denote the filtration of the complex 7" defined by

(b<p)

Ia'b (b>p) .

We shall construct morphisms δp: Fp —> τu>pl" in D*(s/) such that

(1.4.2) si

commutes, where the horizontal arrow below is the "inclusion". For p = 0,
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δp is K' ->Γ\ Suppose δp: Fp-+τI1>pI" is constructed, and set a: Fp+1->

Fp > τu>pl". The condition (ii) is equivalent to the condition that

Hn(Fp+ί)-^Hn(Fp) are zero for all n. In fact, it results from the condi-

tion (ii) that E™ = 0 for p Φ 0, hence FΉn(K) = 0, i.e., the map Hn(Fι) ->

Hn(F°) is zero. The spectral sequence induced by the sequence ->Fί+ι

-> Fι -» —> Fp is also degenerate at 2?2-term by virtue of (ii), and we

conclude as above that Hn(Fp+ί) -> Hn(Fp) is zero. The converse is easy

to see. Hence,

is zero for every n. We have the triangle

so that the sequence

is exact. Now Hn(τu=pΓ) and Im (d: (τu=vΓ)n-χ

objects for all n, and from what noted above,

>(τu=pΓ')n) are injective

(ΐ(a%: Hn(Fp + ί) > Hn(τn=pΓ)

are zero for all n. By virtue of (1.4.1), T(a): Fp + ι -> τιι=pΓ' is homotopic

to zero, or ϊ(a) = 0 in D+(stf). Thus, by the exactness of the sequence

> τn>p+1Γ
m making the diagramabove, there exists a morphism δp + ί: Fp

(1.4.2) commutative. Therefore, we have a commutative diagram

K

Γ

Applying RT, we get:
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RTGP

>...-—>RTK

• RTτu>p+1I" > RTτu>pI" RTΓ =RTK

Denote by TFEP)Q and TniE
p'q the spectral sequences obtained by the

sequences of triangles above and below respectively. Hence we have a

morphism of spectral sequences

We shall show that it is an isomorphism on jB2-term, which completes

the proof, since TlIiE?'q is, by definition, the second spectral sequence for

RTK.

Consider spectral sequences

RaTH\Gp) = > Ra+bTGp

and a morphism of spectral sequences from the above to the below induced

by Gp -» τu=pΓ\ Since Hb(Gp) are T-acyclic by hypothesis, and Hb(τu=pl")

are injective, hence T-acyclic, we get

THn(Gp) -^i> R»T Gp = TFE
p>n~p

i I
so that it suffices to show that the morphism of complexes

TFE[ n-*: • TH^XG"-1) • THn(G")

jE{n-p\ - - -

THn*\Gp^)
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is a quasi-isomorphism. This morphism is, however, obtained by applying

T to the morphism of complexes :

FE{n~p: 0 > Hn-p(G°) > > Hn~1(Gp-1) > Hn(Gp) >

By hypotheses, FE{n~p is a Γ-acyclic resolution of Hn~p(K) and τΐE'{n-p is

an injective resolution of Hn~p(I") ~ Hn~p(K), hence their cohomologies

are isomorphic:

Ί?p,n-v . . τ>vΦ TJn-p/ ZT\ , . Tpp,n-p ~ Λ J

TFhi2 — ±i ι tί ( A ; — TιιI£Li2 . q.e.α.

COROLLARY (1.5). ( i ) For a morphίsm f: X~> Y, we have the pull-

back

Then, f*(N*Hn(Y, μγ)) a NpHn(X, μx). Therefore, by taking the quotient,

we get

f*: gr* HK(F, ̂ F) > gτp H«(X, μx) .

(ii) For a proper morphism f: X -+ Y, we have a Gysin map

U: H\X, μM) — > H^(Y, μγ(a - d)) ,

where d — dim X — dim Y. Then,

U(NpH\X, μx{a))) C Np-dHn-™(Y, μγ(a - d)) ,

hence we get

/*: gr^ H\X, μx{a)) > gτp-«H«-™(Y, μγ(a - d)) .

(iii) By the cup-product

U : H%X, μx{a)) χ H*'(X, ̂ (αθ) > H«+"\X9 μx(a + α')) ,

NpHn(X,μx(a))χNpH(X,(a')) is mapped into Np+pΉn+n'(X, μx(a + af)).

Hence, we obtain

U : gr* H"(X, μx{a)) X gr '̂ H»'(X, μx{a')) > gr^ ' ' Hn+n'(X, μx(a + a')).

(ii) is trivial and well-known (cf. [3]). We shall prove (i) and (iii).

Let /: X-> Y be a morphism. We have a commutative diagram of sites
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X ^α> y

ax\ aγ\
ψ * ψ

-Λ-Zar ^ 2 Z a r >

and we get a morphism /* of Leray spectral sequences from

TPp,n-p TJPίY "Qn-p \ \ TJnίΛJ \

j-j2 — -*̂  \-̂ zar> L*' (Xγ*μγj / π KJLQ^, μγ)

to

Since the coniveau filtration coincides with the filtration by Leray spectral

sequence, we get (i). As for the cup-product, we have a pairing of spectral

sequences (cf. [4], p. 336).

H> + '(Xa, μx) X H>' + <'(Xa, μx) ^U H>+>' + * + *'(Xa9 μx) ,

(We have omitted symbols of twisting for simplicity). Whence (iii).

Remarks (1.5.1). For an (algebraic) cycle Z on X of codimension p,

we have the fundamental class

{Z} € H»(Xa, μx(p)) •

The subgroup NpH2l>(Xa, μx(p)) ~ gτp H2p{Xa, μx(p)) is generated by the

fundamental classes over A. The operation Z >-*• {Z} is compatible with

pull-backs, direct images, and the products. An equality of maps between

cohomologies induced by algebraic correspondences carries over to their

associated graded modules by the corollary (1.5). For example, let Z be

a cycle on X X Y, and suppose that we have an equality of the type

0 = {Z}: Hn(X) >Hn+™(Y)

then it induces

0 = {Z} . gr' H"(X) > grp + t Hn+Zk(Y).

(1.5.2). As for (1.5), (ii), we have also a morphism of spectral sequences

Eξ 'iX) = H"(X, R"ax,μx(a)) = Φ NΉ*(Xa, μM)

h\ f*\

= H»-d(Y, R*-dayψγ(a - d)) =φ N»-*H»-2«(Ya, μγ{a - d)),



CUBIC EQUIVALENCES H

where E*rd*-\Y) is the shift of the spectral sequence E**q(Y) by (-d, -d).

In the case a), for example, we have isomorphisms

Eψp(X) ~ (the algebraic cycles on X of codimension p modulo algebraic

equivalence) ® k,

Etv{X) ~ (the algebraic cycles on X of codimension p modulo homo-

logical equivalence) ® k.

Since Eψq — 0 for p > q, we have natural surjective maps EξiP —> Ep'p, so

that

EP'P(X) ~ (the algebraic cycles on X of codimension p modulo some

equivalence relation) ® k.

In view of morphisms of spectral sequences above, this equivalence relation

is compatible with pull-backs, direct images and the intersection products,

hence an adequate equivalence relation. Thus we have a "filtration of

adequate equivalence relations" between algebraic and homological equiva-

lences, which stops at most at (p — l)-th step for cycles of codimension p.

LEMMA (1.6). If f: X > Y is an open immersion, then

f*: gr» H\ Y, μy) — * gr° H\X, μx)

is ίnjectίυe for every n.

Immediate from the last expression of (1.1.7).

LEMMA (1.7). /// : X—> Y is a dominant morphism, then the kernel of

the map

f*: gr» H»(Y, μr) — > gr° H'(X, μx)

is killed by an integer Φ 0 {independent of n, and of v, α, and N in the

case cj).

Let Xf be a (locally closed) subvariety of X such that

/': X' >X-L*Y

is generically finite and dominant. If necessary, by shrinking X', we may

assume that Xf is smooth. We have

Ker (/*: gr° H»(Y, μ) • gr° H\X, μ))

C Ker (f*: gr° Hn(Y, μ) • gx°Hn(X\ μ))

hence we may suppose that / is generically finite. Let d be the degree

of /. If / is proper, the projection formula shows that
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ff»( Y, μ) -^> H\X, μ) - ^ * ff"( Y, μ)

is the multipliction by d, hence by taking the associated graded module,

we get the lemma. In general case, there exists a nonempty open sub-

variety yo of Y such that the restriction f0 = / ( F o ) : f~XY0) = Xo -> Yo is

proper. Since the diagram

gi*H»(Y,μ) - A gr° H«(X9 μ)

commutes and since the vertical maps are injective by (1.6), we have

Ker/*-—>Ker/0* .

Then

0 = d Ker/0*<—-d Ker/* . q.e.d.

§ 2. A proposition on a family of products of curves

(2.1) The aim of this section is to prove the proposition (2.5).

Since the Zariski topology is not so fine, we must treat the case a)

and the cases b) and c) separately.

(2.2) First we consider the case a). Let S be a smooth scheme over

k, h: I - > S a smooth morphism. On Ω'x = Ω'x/k9 we have a filtration FPΩ'X
defined by

F»ΩX = Im (Ω'£* (x) Ωl > Ω'z) ,
Os

and its associated graded object Grp Ω'x is given by Ω'x/

V

s ® Ωp

s, where Ω"£p

and Ω'x/

P

s denote the shifts by p places to the right of Ωx and Ωx/S respec-

tively. We obtain a spectral sequence

(2.2.1) hE: El*'* = Rnh*(Gr* Ωz) = Rn~PK{Ω'x/s) ®Ω%=$ Rnh*(Ωz) .

The filtration on the abutment Rnh*(Ωz) will be denoted by FpRnh*(Ωx)

= hF
pRnh*(Ωx). Let g: Y->S be a smooth morphism, s: Y-+X an S-

morphism:

V
S
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Then we have also a spectral sequence for g

and the morphism s* of spectral sequences hE -> gE. Its 2^-term is given

by s*: Rn-ph*(Ω'x/s) -> Rn'pg^ΩΎ/s) tensored with flg.

(2.3) Now we consider the cases b) and c). Let h: X-> S be a smooth

morphism. Then we get a commutative diagram of sites:

We have the Leray spectral sequence for as o ha:

(2.3.1) hE: Eξ>* - RpasM«ha*(μχ) = > Λn(α* ° ^α)*fe .

The filtration on the abutment Rn(asoha)*μx will be denoted by

F?Rn(asohXμx = hF*Rn(asohXμx. Let g: Y-> S be a morphism, 5: Y

—> X an S-morphism, hence we get a commutative diagram

Then we have also the Leray spectral sequence

gE: El* = Rpas*Rqgaφγ = > Rn(asogχμr

and a morphism of spectral sequence s*: ΛίJ -> ^ίJ. Its i?2-term is obtained

by applying Rpas* to s*: Rqhaψx -> Rqgaψγ.

Note that also in the case a), i?w(α:s ° ha)*μx = Rnh*(Ω'x), and we can

consider the Leray spectral sequence (2.3.1), for which Efq = 0 for p Φ 0.

So it is a little bit confusing to employ the same notation hE for the

spectral sequences (2.2.1) and (2.3.1), but will be convenient as seen in the

sequel. By the notation hE (etc), we understand the spectral sequence
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(2.2.1) in the case a), and (2.3.1) in the cases b) and c), both abuting to

Rn(ocs o ha)*μx.

By a family of curves /: X —> S, we mean that / is smooth proper of

relative dimension 1 with f*(Ox) = Os.

LEMMA (2.4). Let g: Y->S be a smooth proper morphίsm of smooth

schemes over k, ff: <g —> S a family of curves, X = Y X c€\
s

X-

'Γ
Y~

g

\h

g

'ί

We set h = gof and suppose that two sections st and s2 of Φ/S are given,

and let su s2 be the base changes of Sj and s2 by g: Y—> S. We have maps

sf: Rn(as o hXμz > Rn(as o gXμγ .

Then,

( f })FR(hX C gF»^Rn{asoga)μγ .

In fact we have a commutative diagram

\
s

hence morphisms of spectral sequences sf: hE -> gE. It suffices to show

s* = sf on Eζ:q, a fortiori on E^q. In the case a), it is therefore enough

to verify
sf = s*: R«K(ΩX/S) > R'g*(Ω'r/s) .

Since X = Y X <€, by Kύnneth formula,
s

RK(Ω X/S) = Rg*ψ γ/S) k
θs

By [7], Rng*(Ω'y/s) and Rnf*(Ω'«/s) are locally free of finite rank, hence,

On

®
Os
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sf are the identity, and s* vanish on Rag*(Ωγ/s) ®Os Rbf'*{Ω]€/s) for b > 0.

Therefore sf: Rnh^(Ωx/s) ~> Rng*(Ω9

γ/s) are nothing but the projection

RnK(Ωx/s) > Rng*(Ωγ/s) (

hence, sf = s* on iJj-term..

In other cases, we shall show that sf = sf on £J2-term. It suffices to

see

sf = s}: Rnha,(μχ) > Rnga*(μr) .

By proper base change theorem, it is sufficient to verify that, for every

(geometric) point s of S,

(sdt = (s2)f: H"{Xl9 μ) > H\Y,, μ) .

We have X-s = Ys χ ^ . Since Hb(^-S, A) are free A-modules, by Kύnneth

formula, we get

H»(Xi9μ)= © H«(Y-S, μ) (X) Hb(%, A) .
a+b=n A

The rest of the proof is similar to that in the case a): On Hn(Ys, μ) (x)

fl%A) = Hn(Y-s,μ), (§,),* are the identity, and on iία(y,, /<) ® i ί δ ( ^ , A),

(Si)? vanish for b > 0. Thus, sf = s2* on i?2-term. q.e.d.

PROPOSITION (2.5). Let S be a smooth scheme over k, cβi -> S (ί =

1, , £) be the families of curves,

X=V1X '" X^e.
s s

Let sf\ sl1] (ί = 1, , £) be sections of VJS. For σ e 2 [ M ] = the set of maps

from [1, £] to {0,1}, we set

|<7| = σ ( l ) + . . . +σ{£)

sσ = 5ίσ ( 1 ) ) X X 5iσ (^ ) }: S > X,
s s

a section of X/S. Let gτp Hn(X, μx) - NpHn(X, μx)lNp+Ήn(X, μx) be as in

Section 1. For each σ, we get

(s')*: gr° H»(X, μx) > gr° H«(S, μ8) .

Then, for n < £, we have

(2.5.1) 0 = Σ (-l) '"(β )*: gr tf-tY,^)—> gr» H"(S, / ί s)
σe2ίl^]

Proo/. Put Xo = S, X4 = X^ χ ^ (1 < i < ^), so that X, = X and

we have a diagram
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gi

(i = 0, , ί — 1; j = 0, 1), W+i being the base change of s¥+\.

First of all, we claim:

0 = Σ ( - l ) M ( s * ) * : Rn(«s

for n < L We have the maps

(we write gt for (^i)α, for the moment, to simplify the notation), hence,

ΔM = (s«Ί)* - (βίΐi)*: i ? " f e ^ ί + , ) * ( f e t I ) •B»(αsoA) ! | ί( i ί/^) .

Clearly, we have

4 o . . . o 4 = Σ ( - i ) M ( s ) * .

By the lemma (2.4),

Jι + 1(gi+F*Rn(asogί+1)^μXi+i)) c giF* + iRn(asogίUμXι) .

Hence,

J, o . . . o Δe{Rn{as o A ) * ^ ) ) C lΛ8FΊPas4μ8) .

Since the spectral sequences (2.2.1) and (2.3.1) are of first quadrant, we

have idsF
£Rnas*(μs) = 0 for ί > n, whence the claim.

We set g = ^ . Since asoga = g o α5> we have another Leray spectral

sequence

*E: SΓβ = Rpg*RqaAμ*) = Φ &(g°az)*(μz) = ΛTC(^,o^α)^(^) .

If S = Spec /̂ , this is no other than the spectral sequence

Ef« = H"(X, R«ax(μxί) ==Φ ^K(XO, Aίχ) ,

in Section 1. The spectral sequence N

gE is obtained by sheafifying this

spectral sequence with respect to "the Zariski topology of S".

For σ e 2ίuel, we have again the commutative diagram
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and a morphism (sσ)* of spectral sequences from N

gE to

which is degenerate: Eψq = 0 for p =̂  0. In particular, we have a com-

mutative diagram

Rn(<*8 ° SaUμχ) > gr° Rn(as o ̂ α ) ^ ( ^ x ) - £ ϊ » of N

gE

(SO* I (80* I

β n α f i 0"5) > gr° Rnas,(μs) - ^ ϊ " of 1(gjB .

The hor izonta l m a p above is surjective since N

gE is a first q u a d r a n t spectral

sequence a n d t h e hor izonta l m a p below is a n isomorphism by degeneracy

of i(^E. F r o m o u r claim above resul t s t h a t

Σ = Σ ( - 1 ) M ( * ' ) * : gr° R»(as o ̂ ) ^ / i x ) > gr° 2 2 » a ^ 5 )

is zero. Applying t h e functor Γ(S, ?), we get

0 = Σ: Γ(S, gr° R*(asoga)*(μx)) > Γ(S, gr° R»as.(μs)) .

As ment ioned above, gr° Rn(asgσ)tXμx) is t h e sheafification (with respect to

Szar) of t h e presheaf

S ' ^ gr° H»(g-XS>), μx) ,

hence we have a canonical map

gr° H\X, μx) > Γ(S, gx° Rn(asogχ(μx)) ,

and the diagram

gr° H»(X, μx) —> Γ(S, gr" R"(as o ^β)#C«.t))

(s )* I (s )* I

gr° H"(S, μs) —> Γ(S, gr" R"as*(μs))
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commutes. We get therefore a commutative diagram

gr" H"(X, μx) > Γ(S, gr° R»(as o gX(μz))

i i
gr° H»(S, μs) —-> Γ(S, gr» i ^ M ^ ) ) .

Rnas*(μs) ~ gr° Rnas*(μs) and the horizontal map below is nothing but

Etn > E°2>
n

for the spectral sequence

H>(S, R*a8Jίμs)) = > # W ( S , μs)

so it is injective. Since the right vertical arrow is zero, so is the left

vertical arrow. q.e.d.

(2.6) In the case c), μx = ( ^ ) 0 a . Recall that the sheaves ((μ»N)®a)NeN

forms a projective system, so that we get a protective system (Hn(X9

(μ^)®a))neN and the v-adic etale cohomology is defined by

£Γ«(X, Zv(a)) = lim £Γ (X, ^ ) ® - ) .

Clearly, the subgroups NpHn(X, (μvN)®a) form a protective system, and we

set:

NpHn(X, Zv(a)) = lim NpHn(X, (μv*)®a) .

Then NpHn(X, Zv(a)) is a subgroup of Hn(X, Zv{a)\ and they define a fil-

tration on Hn(X,ZXa)). We put:

grpHp(X, Zv(a)) = NpHn(X, zXa))INp+1Hn(X, ZXa)).

Since iϊw(Z, (μvN)®a) are finite groups, a projective subsystem of (Hn(Xy

(μvχ)®a))NeN satisfies the Mittag-Leffler condition, so that

gr* Hn(X, ZXa)) = lim gr^ iίw(Z, (μv*)®a) .

For a cycle Z on X of codimension p, we have its fundamental class

in H2p(X, ZXp)) as the limit of those in H2p(X, (μvκ)®p), which is compatible

with direct images, pull-backs, and the intersections.

By taking the protective limit, we have an analogue of (1.5) for

NpHn(X,ZXa)). Also the analogues of (1.6), (1.7) and (2.5) hold. The

cohomology theory Hn(X, ZXa)) with this filtration will be referred to as

the case c') in the sequel.
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Remark (2.6.1). On the other hand, we have another filtration

'N*Hn{X, Z,(a)) of H"(X, Z,(a)) defined by

'NΉ'(X, Z,(σ)) = Σ Ker (ff"(X, ZXά)) • H(X\ Y, Z.(σ)))
YGZP

(cf. (1.1.7)), which should be called the coniveau filtration for Hn(X, Zv{a)).

In general, we have

'NpHn(X, ZXμj) c NpHn(X, Zv(a)) ,

and the equality holds for n = 2p (both generated by the fundamental

classes). The author does not know whether the equality holds in general

or not.

§ 3. Theorem

(3.1) Let T be a smooth quasi-projective variety. We denote the

Chow group of T of codimension p by CHP(T), and put

N*Hn(T, a) = NpHn(T) = NP(T, μ(ά)) <g> Q ,

where NPHN(T, μ(a)) is one of the cohomology theories a), b) and c') (cf.

(2.6)). Let V be a smooth protective variety. If z e CHP(T χ V), we

denote by {z} its fundamental class in NpH2p(T χ V,p)~ gτp H2p(T χ V,p).

Set r = dim V — p; then we have the map

{'*}: gr̂  H2r+ί(V, a) > gr° H'(T, a - r)

defined by {̂ }(ω) = prr*({^} U pr̂ (α>)), where prΓ and prΓ are the projections

from TχV.

For teT (closed point), we denote by it the injection V ~ t χ V a

TχV. Then we obtain the map if: CHP(T χV)~> CHP(V), z *-» if(z) =

z(t). Moreover, for an integer ί > 0, let F£CHP(V) denote the subgroup

of CHP{V) consisting of cycles ^-cube equivalent to zero modulo rational

equivalence (cf. [9]).

THEOREM (3.2). Let T be a smooth quasi-projectίve variety, V a smooth

protective variety of dimension m, p, ί integers > 0, z e CHP(T χ V), and

r — m — p. Suppose that the ground field k is uncountable.

If z(t) e F£CHP(V) for all t e T, then the map

{<z}: gr' H*'+<'(V, a) > gr° H'\T, a ~ r)

vanishes for ίf < ί.
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(3.3). Before giving the proof, we shall recall about the Chow scheme,

especially in positive characteristic (cf. [9], § 1). Fix an embedding V c PN,

and let Cr(V)d (d > 0) denote the Chow scheme of effective r-cycles on

V of degree d with respect to this embedding. If Z is an effective cycle

on T X V of codimension p which is non-degenerate on T, and if the

r-cycle Z(t) on V is of degree d for general teT, then we get a rational

map /: T—>Cr(V)d9 t*-*Z(t). The map Z«->/ is injective in arbitary

characteristic, and bijective if charA = 0. Moreover, if φ: T' —• T is a

morphism, the following are equivalent: (i) (φ χ id)*(Z) is defined; (ii)

Im φ and the domain of definition of / intersect. In this case, the rational

map foφ: T'>»•+Cr(V)d corresponds to the cycle (φχiά)*(Z). Hence if

char k = 0, we have the map

Γ: Hom ra t(r,C r(y),) >N*>H>»(Tχ V)

defined by />-» {Z}, which is "functorial in T".

Suppose that char A > 0, and we shall prove that, in this case, we

have a map similar to T too. Recall that for a rational map /: T *

Cr(V)d, there exists a purely inseparable finite extension L of k(T) such

that if ψ: S -> ϊ 7 is a dominant morphism with L c &(S), then there exists

a cycle on S χ V of codimension p whose corresponding rational map

S -> Cr(V)d is / o f Let g be a power of the characteristic of k, and F:

Spec ^ —> Spec ^ be the Frobenius morphism, i.e., g-th power map on the

ring level. Put

T^ = T χ Spec k
Spec A ί1

and we get the relative Frobenius morphism Fq: T-+ T{q\ Then k(T(q))

= k(T)q-k = k(T)q. Since & is algebraically closed, F is an isomorphism;

we set

rpa/q) ^ τ χ Spec A .
Specfc^ 7 " 1

Then T H-> T ( 1 / 9 ) is functorial and T{1/q) is smooth quasi-projective if so is

T. From (Γ ( 1 / 9 )) ( 9 ) ~ T9 we get a morphism F1/q: T<1/q) -> ϊ 7 and k(T^q) =

A(T)1/9. Thus for a rational map /: T »+Cr(V)d, if g is large enough,

L C k(T{ί/q)) and there is a cycle Z7 on Tσ/q) X V of codimension p whose

corresponding rational map is f°Fί/q, and such Z' is unique for each q.

Then we set
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r(f) = — J L — ( F 1 / g x idvU{Z'}) e N*H*\T χ V).
deg F1/(?

The projection formula shows that ϊ(f) is independent of choice of q, and

we get a map

r: Homrat (Γ, Cr( V)d) > i V ^ ( Γ X V) ,

which is "functorial in T" (Note that F*, : Hn{T χ V) -> Hn(T^^ χ V)

is bijective and F?/qoFυq* = degF1/Q).

For char £ > 0, if /: T ••-> Cr(V)d is a rational map, we obtain a map

/*: grrH2r+e\V) >gτ°He\T)

by /*(ω) = {^(/)}(ω). Evidently, we have the following formulae: if g:

T••••> Cr(V)d, is another rational map, we have

(/ + gY = P+g*' grrH2r+f(V) >gτ°H*'(T) ,

where f + g: Γ -> Cr(V)d + d, denotes the summation on the Chow schemes.

If φ: T -> T is a morphism such that foφ: Γ--> Cr(y)rf is defined,

(/o0)* = ^*o/ : grrH2r+t'(V) >gΐ°H*'(T) .

If /: T> ~> Cr(V)d corresponds to a cycle Z, then /# - {fZ}.

(3.4) We are now ready to prove the theorem (3.2). Let Z be a

representative of z. We may assume that every component of Z is non-

degenerate on T, for degenerate components have no effects on z(t) and

{'z}. Since the map induced by an open immersion on gr° W is injective

by (1.6), we can suppose that if(Z) are defined for all teT. Let Z+ and

Z~ be the positive and negative parts of Z respectively. Clearly we can

suppose i > 0, and in that case, the degrees of Z+(t) and Z~(t) (te T) are

equal, and we have the corresponding rational maps /, g: T7—• Cr(V)d,

which are, in this case, morphisms. By hypothesis, the cycles f(t) and g(t)

are ^-cube equivalent for all te T. Recall the following theorem:

THEOREM (3.4.1. = [9], (5.6)). Let T be a smooth quasί-projectίve variety,

V a smooth projectίve variety, f and g are morphίsms from T to Cr(V)d9

and suppose that the ground field is uncountable. If fit) and g{t) are

£-cube equivalent, then there exist a smooth quasi-projective variety S, a

dominant morphism e: S-+T, families ζ€ι of curves over S, sections s\0)

and sP of tfJS (1 < i < £) and a rational map H* from ^ X X ^ to
s s
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Cr(V)d, xCr(V)d" such that

( i ) f o r e v e r y σ e 2 C M ] , s σ : = s{σit)) X ••• X s j σ ω ) Λ α s i fe i m a g e m ί Λ e

domain of definition of H;

(ii) as morphίsms from S to Cr(V)N (N = 2e~\d' + d") + d\

foe+ Σ p r 1 o £ Γ o ^ + 2 pr2offoS
|ff|sθ |σ|sl

= £°e + Σ pr 1 offos σ + 2 pr2oHosσ ,
M = l |a|=0

ifΛβrβ |(j| = σ(ϊ) + + σ(^), a7zc? ίf = " means "equivalent molulo 2".

As noted in [9], (1.3.1), the theorem is valid even in the positive

characteristic case.

(3.4.2) We shall return to the proof of (3.2). Note that, as maps

from grrIPr+t'(V) to gr°H£'(T), {ιz} = {(Z+} - {eZ'} and p = {ιZ+}, g* =

{ιZ~}. By virtue of (1.7), it is therefore sufficient to show that e*o/* =

e*og\ i.e. (f°ey = {g°ef. But by (ii) above, we have the equality

(foe)*+ Σ
l

=(g°e)*+ Σ (Pr. ° Ho S'Y + Σ (pr2» ίfo β ' ) * ,

or, by (i),

Since we have Σ1Λ~l)]σ]sσ* = 0 by (2.5), we obtain (/°e)# = (#°e)*. q.e.d.

In the sequel, k is supposed to be uncountable (except (3.6.1)). Recall

that g r Ό P ( V ) = F'CH*(V)IFi+1CH*(V).

COROLLARY (3.5). Let T be an abelian variety or a product of {smooth

complete) curves, V a smooth protective variety, z e gr° CHP{T χ V), r + p —

dim V, £ an integer. If

[z]: gr* CHQ{T) > gr* CH»{ V) , Π > z{T)

is zero, then

{'*}: gr'ίP+'(V, α) • gr°^(T, a - r)

vanishes.

The general idea of our proof is as follows: Let x e CHύ{S X T), t =

dim T. If x{s) e F'CH0{T) for all seS, and if
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0 = {«*} o {'z}: gr H2r+e(V) > gr° He{T)

implies {*z} = 0, then we get the corollary, since we have {'x} o {*z} = 0

by the theorem (3.2).

(i) Suppose that T is an abelian variety. For an integer n, let nτ:

T~>T denote the multiplication by n, Γn its graph. Then for t e T, Γn(t)

= nτ*(t) = (nt) e CH0(T) and

{Tn}: W(T)—>H\T)

is multiplication by ng. Let

n
For ί e T7,

X(t) = Σ (~iy-n( ^ Vn(ί) = ((ί) - (0))* . . *((ί) - (0)) (4 times)

by "binomial theorem", where * denotes the Pontrjagin product. Hence

Im[Z] c F'CΉIT), and {'Z}: H'(T)-*H\T) is multiplication by

71

hence {ιX} is bijective on gr°ijχΓ).

(ii) Suppose that T is a product of curves. First, assume JP =

Cj X X Ch a product of i curves. For each /, take a point at e Ct.

Consider the algebraic correspondence X defined by

TBt = (tl9 , t<) > ((O - (aj) X X ((O - (α<)) .

Clearly Z(ί) e F*CH0(T) for ί e T, and

{fZ}: H'ίΓ) >H\T)

is the identity, hence so is {CX} on gr° He(T). The case of a product of

i curves is proven. In general, if dim T < ί, gr° H£(T) — 0. Thus we

may assume:

T=Cίχ ••' χCn (n> £,Ct: curves).

For 7 c [1, n], c a r d / = £, let pr z: Γ-> C7 = Πiez Ct denote the projection.

It induces a map pr?: gr° H\Cj) -> gr° i/^T) and we have an isomorphism

(3.5.1) 0 gr° HXC ) - ^ * gτ° H%T) .
d 7 ^
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The inverse is given as follows: choose a point at e Ct on each curve, and

let j z : C7 -> T be the embedding obtained by "inserting α<" for i £ L The

map yf gr* H*(T) -> gr°ίP(C7) is the /-component of the inverse of the

isomorphism above. In fact, by Kύnneth formula,

The map is induced by the projections (and the cup-product). Note that

H\Ct) = NΉ2(Ct). Hence if a, + + an = £ and α, = 2 for some ί, the

image of fΓ^C,) (g) <g> Hβlι(Cn) in ff^T) lies in NΉ%T), and

gr°

is surjective, where the summation is over such (a^ that αx + + an

= ^ and α̂  = 0, or 1. For such (α2), put / = {i; at = 1}, and we have the

isomorphism

H\Cj) ^> H\T)

Hence, the map (3.5.1) is surjective. The map

HXCT) ^> H\T) - ^ > H\Cr)

vanishes if I Φ Γ, and is an identity if / = Γ. This shows that (3.5.1) is

an isomorphism.

Returning to the proof of the corollary (3.5), suppose that

{«*}: grrIPr+'(V) > gτ°H\T)

is non-zero. Then for some I, with card I — I,

jfo{'z}: gτrH2r+\V) >gτH%CI)

is also non-zero. Let 7 be the graph of j z in CHn(Cj X T) and set x =

zoreCHp(C; χ V). Then

M - M °Λ*: gr̂  CF0(C7) > gr* CW(V)

is zero, but

gr°

is not zero, which is absurd.

Remark (3.5.2). The author does not know whether or not the corol-

lary remains true without the assumption on T. The argument similar
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to the one just above shows, however, that the corollary holds for a smooth

protective variety T satisfying the following condition: for any non-zero

xe gv°H£(T), there exist a product of curves (or an abelian variety) T

and y e CH'(T X T') (t = dim T) such that

{y}(x)Φθ in gr°/ϊ'(Γ') .

For example, a variety dominated by a product of curves or an abelian

variety is such a variety.

COROLLARY (3.6). // V is an abelian variety or a product of curves,

then gτ°He(V) Φ 0 implies gre CHQ{V) Φ 0. In particular, there exists an

abelian variety in any characteristic such that F2CH0(V) Φ F3CH0(V).

Apply the corollary (3.5) to T = V, z = the diagonal of V X V; then

z = 'z induces the identity on gr* CH0( V) and on gr° H\ V). Notice that

dim gr° H\V) = (2nd Betti number)-(Picard number). If char Jfe = 0, then,

gτ°H2(V) Φ 0 (even gr° Hn(V, Q) Φ 0 for n < dim V) for any abelian variety.

In positive characteristic, gr° H2( V) Φ 0 if an abelian variety V is not

supersingular.

Remark (3.6.1). For a supersingular abelian variety A, we have

F'CHIA) ~ A (N. Maruyama [8]), and gr2 CH0(A) = 0. Thus, contrary to

the case of characteristic 0, we cannot conclude that H°(A, Ω2) Φ 0 implies

gr2 CH0(A) Φ 0. Also notice that if k = Fq, the algebraic closure of a

finite field, we have F2CHP(V) = 0 for any smooth projective variety V

and any p. The assumption that k is uncountable is thus not unnecessary

(if a weaker condition can be good).

The author does not know whether or not there exists an abelian

variety (in positive characteristic) for which gr° H\A, Q,) Φ 0 for I < dim A,

though it is plausible for general abelian variety.

Remark (3.7). As mentioned in the introduction, we proved an ana-

logue of (3.2) in [9] for the Hodge cohomology, whose proof was not purely

algebraic. We can give an algebraic proof by a similar method as in

Section 2.
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