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QUADRATIC VARIATION AND ENERGY

S. E. GRAVERSEN AND M. RAO

§ 0. Introduction

It is well known that the concept of energy has played a fruitful
role in potential theory and Markov processes. Cartan's work [6] led to
kernel-free potential theories of Beurling-Deny [2]. Since then many
authors have worked on this, M. Fukushima [8], M. Silverstein [16], J.
Bliedner [3], Berg-Forst [1], to name some. In these works, however, the
main thrust is Hubert space theoretic.

In the martingale context the notion of energy was introduced by
Meyer [11]. This has been applied in the potential theory of general
Hunt processes in Z. R. Pop-Stojanovic and M. Rao [14], S. E. Graversen
and M. Rao [10].

In a different direction G. Brosamler [5] in one original paper initiated
the study of quadratic variation in the context of potential theory.
Brosamler's formula suggests an intimate connection with energy and is
indeed the inspiration for the present work.

Let us briefly describe the results. In Section 1 we define what we
mean by the energy of a cadlag process, i.e. a right continuous process
with left limits. Then we show that such a process is a sum of a mar-
tingale and a previsible process with a special "orthogonality to mar-
tingales" property. Uniqueness of this decomposition, its relation to
standard decompositions and an Itό formula for (^-functions are then
discussed. In this connection we mention the work of Follmer [9].

Section 2 deals with energy of potentials in the context of Hunt
processes. There are at least two different definitions to be found in the
literature [8, 14]. We discuss the relation of these with the energy of
the process obtained by composing the process with the potential.

Section 3 deals with application of the preceding to classical poten-
tials in bounded domains of the Euclidean space. We obtain the well-
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known decomposition of f(B) where / is a BLD function and B the
Brownian motion as the sum of a martingale and a process of zero
quadratic variation [8]. We close this work with a Brownian motion
characterization of local BLD functions in terms of the notions introduced
in Section 1 and Section 2.

Notation
(Ω, JF, P) will denote a probability space with a filtration jFf, 0 <, t

o satisfying the usual conditions and free of times of discontinuity.
For an adapted process X and an integer n we set

and for square integrable processes X, Y,

(1) S(n, X, Y) = E[X0, Yo] + Σ E[d(n, i, X)Δ{n, ί, Y)].
i

We will say that a process X has finite energy if the set of numbers
S(n, X) = S(n, X, X) is bounded. We put

|β = sup S(n,X)
n

and
Q(X) = lim sup S(n, X).

n

The set of adapted cadlag processes of finite energy is clearly a
linear space.

Even under such general conditions we have the following

THEOREM 1. Let X be cadlag and of finite energy. Then X has a
decomposition

(2) X=M+A

where M is a martingale and A is prevίsible. A has the property: there
is a subsequence n} such that for every square integrable martingale g

\imS(nj,A,g) = 0.

If N + B is another such decomposition, then A — B is a continuous
martingale.
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Proof. Write

3(n, ί, X) — X(i + 1)/2n

and

X being of finite energy, M(n) is a well defined bounded sequence in L2.

Let M(oo) be a weak limit of M(n) along a sequence nJm Let M be the

cadlag version of the martingale determined by M(oo). Put

(3) A = X-M.

Then Ao = 0 and A is cadlag. It is completely routine to show that, for

each square integrable martingale g,

we have

(4) lim Σ E[Ait+1)/2n^(nj9 i, g)] = lim S(nj9 A,g) = 0.
nj i πj

Let T be any inaccessible stopping time, B the increasing process

Bt = lτst

and C the continuous increasing process that B — C is a martingale.

From (4) we get

(5)

Because C is continuous and A cadlag,

because C is the predictable dual projection of B. Using this in (5), we

get

E[(AT - Aτ_): T<oo] = 0

which evidently implies that A cannot have a jump at an inaccessible

stopping time. Referring to p. 88 C of [7], A has to be previsible.

The second statement is clear because a previsible martingale has to

be continuous.
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Relation to standard decompositions

It is natural to inquire what relation the decomposition given by
Theorem 1 has to standard decompositions. Suppose X is a cadlag semi-
martingale in the sense that X = M' + A! where M' is a uniformly
integrable martingale and A' is a process of integrable variation. By
[12] X is a special semimartingale provided it has finite energy as defined
above. Then it is known that we may write X = M + A, where A is
previsible of integrable variation. We claim that this is the decomposi-
tion given by Theorem 1. Indeed, let X = N + B be a decomposition
given by Theorem 1. Let g be a bounded martingale. Since A is of
integrable variation, for every n, S(n, A, g) makes sense and tends to
zero as n tends to infinity because A is previsible. It follows that

lim S(n, X, g) = lim S(n, M, g) = E[M(oo)g(oo)] .
n n

But by definition of N, along a subsequence nj9

Comparing this with the above, we conclude M = N and hence A = B.

Uniqueness of the decomposition

We now discuss when there is uniqueness in the decomposition given
by Theorem 1.

COROLLARY 2. Let X be as in Theorem 1. Suppose for some decom-
position

(6) X=M+A

given by Theorem 1, Q(A) = 0. Then there is uniqueness in Theorem 1.

Proof. Suppose X = N + B is another decomposition. As observed
in Theorem 1, A — B = W is a continuous martingale. There is a sub-
sequence rtj such that

UmS(nj,B,g) = 0
j

for all square integrable martingales g. In particular,

0 = lim sup S(nj9 A) = E[ W2(oo)] + lim sup S(nj9 B).
3 3

We must have W — 0 and hence A = B
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Now it is clear that ||X||e is a norm. Convergence in this norm will

be termed convergence in energy. If Q(X) = 0, we shall say that X has

quadratic variation zero. It is well known that if B is the Brownian

motion in a bounded domain and / is BLD, then f(B) is the sum of a

martingale and a process of zero quadratic variation. This is the motiva-

tion for the following theorem.

Let Jf denote the space of cadlag processes of finite energy which

can be written as a sum of a square integrable martingale and a process

of quadratic variation zero. Jf is a normed space with energy norm.

THEOREM 3. Let Xe^f. Then the decomposition given by Theorem 1

is unique. Semίmartingales as defined in Meyer [12] are dense in -Jf\ If

X is cadlag and if there exists a sequence Xk e J^ such that

lim Q(X - Xk) = 0 ,
k

then Xe.yif. If the corresponding decompositions are Mk + Ak, M + A,

then also

lim Q(M - Mk) = 0 .
k

Proof. For the first part, note that if Y is cadlag, has finite energy

and Q(Y) = 0, then the martingale part of the decomposition given by

Theorem 1 is 0—this is seen for example as in the proof of Corollary 2.

In particular, Y is previsible—indeed Y is continuous as is easily seen,

see the proof of Proposition 4. To prove the density part, let

X= M+ A

where Q(A) = 0. Define for n = 1, 2,

An(t) = Aί-1-) if -L- < t < ̂ t - 1

and Xn = M + An.

Then Xn is a semimartingale, and since S(k, A — An) = 0 for k <̂  n,

and the last term tends to zero because A has zero quadratic variation.

The proof of the last assertion is just as easy.
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Stopped processes

PROPOSITION 4. Let X be cadlag and have finite energy. Let T be a

stopping time such that

is square integrable. Then the stopped process Y defined by

γ γ

also has finite energy.

Proof. For any stopping time S

E[(XS - Xs_γ] £ sup S(n9 x).
n

Indeed, the left side above is less or equal to

lim inf Σ EU(n, i, XY:±-<S^ ι-±l-] ^ ||Z||e
2.

Therefore, for any n

S(n, Y) = Σ E[Δ(n, i, Xf:i + l< 2»
i

+ Σ E[(XT - Xi2-»)2: i <
i

The first term on the right side above is less or equal to S(n, X). And

E[(XT - Xί2-n)
2: ί<2nT£ί + l]^ 2E[X% + ( Z * ) 2 : i < 2nT£ ί + 1]

where

X* = sup Xt.
1ST

PROPOSITION 6. Let X, Y, T be as in Proposition 4. If X = M + A

is a decomposition of the type given in Theorem 1, then

Y= Mτ + Aτ

is a decomposition of Y of the type considered.

The proof is routine and is omitted.

C'-Itό formula

Recall that jf denotes the space of cadlag processes of finite energy

which can be written as a sum of a square integrable martingale and a
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process of quadratic variation zero. We then have the following theorem:

THEOREM 6 (Itό formula). Let X = M + A be continuous and belong

to tff. Let f be continuously differentiate with bounded derivative. Y =

f(X) e 2/f and the martingale part of Y is

Yo+ \'f'(X,)dM,.
Jo

Proof Recall the notions S, Δ introduced in the begining and in the

proof of Theorem 1. Since / has bounded derivative, Y is of finite energy.

Let us prove that the sequence

( 7 ) Yo + Σδ(n,i,Y)
i

converges weakly in L2. This will be the martingale part of Y. We have

( 8 ) 3(τι i, Y) - Γ(X*-«Mn, i, X) = Zt,n - E[Zι<n | ^ < 2 . , ]

where

Since /' is bounded and X = M + A with Q(A) = 0, we have

(9) lim Σ f'(X^dδ(n, i, X) = Γ f'(X,)dM.
7 1 % JO

where the limit in (9) is in probability and in ZΛ Thus to prove the Theo-

rem it is sufficient to show that

(10) limΣE[ZU = 0.
n

Since X = M + A, Q(A) = 0 and 2 Δ(n, i, Mf is uniformly integrable

by [12], we also have that Σt Δ{n, i, X)2 is uniformly integrable. Since f/

is bounded, the same is true of ^ Z2

Un. Also since

Σ Δ(n, i, XY ^ 2E[(M(oo) - M(R)f] + 2S(n, A)

which is small if R and n are large, it is sufficient to show that

Σ E[Z\,n]

is small if n and R are large. This last follows easily from the assump-

tions that X and /' are continuous, f bounded and the uniform inte-
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grability of ]^Zf(tt, i, X)2 which has already been shown.

That proves the Theorem.

Remark. If X is uniformly bounded, we do not need to assume X is

continuous.

§ 2. Application to excessive functions

Let X be a transient Hunt process on a loc. compact space E. By

this we mean that the last exit time from any compact set is finite almost

surely. The notation and terminology will be that of [4]. We assume

there is a finite excessive reference measure denoted m. The resolvent

is denoted U\ λ ^ 0. By Pm we mean the measure Px( )m(dx).

A non-negative function s is called excessive if

sup Pts = lim Pts = s
ί>0 ί—0

where Pt is the transition semi-group of the process. An excessive func-

tion s is called a class (D) potential if

( 1 ) lim PTns = 0 a.e.

whenever the sequence Tn of stopping times increases to infinity.

Given a class (D) potential s, we can write

( 2 )

where A is a natural additive functional defined off a polar set [14]. And

is itself a class (D) potential provided it is finite almost everywhere.

To each class (D) potential s we can associate a non-negative number,

called its mass functional L, defined by

L(s) = lim ( s " PtS

In [14] a class (D) potential s was termed of finite energy if

L(E\A\oo))) < oo

and the square root of this number the energy of s. Up to a constant

factor this agrees with the concept of energy in the classical sense.
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The above discussion remains intact if we take differences of class
(D) potentials. The seminorm so obtained will be denoted ||s||e.

For symmetric processes another definition of energy is given in [8]:
A function u such that u(X) is cadlag is of finite energy if

ί-o 2t

exists and is finite. Its value is termed the square of the energy of u.
We shall now see how to relate these definitions with the definition

of energy of the cadlag process s(X) studied in Section 1.
Let us introduce some convenient notation. If / is a Borel function

and μ a measure (/, μ) will denote fdμ. If μ = gdm for some g we sim-

ply write (/, g).
For any Borel function / such that f(X) is cadlag we shall write

S(n,x,f(X))

when the S in (1) of Section 1 is evaluated relative to Px. We just
write S(n,f(X)) if it is evaluated relative to Pm.

ys,

PROPOSITION 1. Let X have a strong Markov dual X and assume that
the expected life time JE'[ξ] of X is bounded. Let ueL2(m) and suppose
that u(X) is cadlag. If

t ι o =

then u(X) has finite energy relative to Pm.

Proof. Fixing n, put

g(x) = *ΣE*[Δ2(n,i,u(X))]
1

Then using the excessivity of m and Markov property we get

(g, 1) ^ a

where a is a bound for the quantity in (3). And

so that
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S(n, u(X)) = (u\ 1) + f] (g, Ptΐ).
0

Since 2]~ Pfcl <I 1 + E'[ξ], the result is thus clear from the hypothesis.

From Theorem 1 of Section 1, and the above proposition, relative to

Pm, there is a decomposition

( 4 ) u(X) = M+ A.

Since A(0) = 0, M(0) = u(X0). We have

PROPOSITION 2. With the above notation

( 5 ) Em[(M(t) - M(0))2] + Em[A2(t)] ^ Aat

Proof. Just as in the proof of Proposition 1 it is seen that for any

( 6 )

Also

( 7 )

for

Σ E*
J£Z«-H-l

a subsequence np

u(X0) + Σ

J,u(X)] < ai

u(X))

converges weakly to M(i/2*), where δ is denned in the proof of Theorem

1. Since Em[42] ^ Em[δ2] we get from (6) and (7)

M - M(O)V1 ^ liminf of left side of (5)

as n ranges through np is less or equal to ——.

From this to get (5) is easy.

Let now s be square summable and a difference of class (D) potentials

with || s \\e < co. Write

s(x) = E [A(oo)\Ft]-At.

We want to compare ||s|[g with

( 8) Mem; = lim l β » [
ί-0 t

We shall soon see that this limit exists.

It is easy to see that
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E [A\oo)} - s\x)

is excessive. The mass functional being monotone L(E'(A\oo) — s2) is

also finite. From the definition of mass functional we then see that

( 9 )
t

exists and is finite. Here Pt is just the adjoint of Pt as an operator in

L\

Let n >̂ k be integers, fixed for the moment. Put for simplicity in

notation

φ = E'[(s(Xmn) - S(XO)Y]

and D the operator

D = Pί/2n.

Then

ZT- f c = P1 / 2 f c, S(n,., s(X)) = s2 + Σ 2)*p-
0

Since s is assumed to be square summable and a difference of potentials

of finite energy, the following computations are legitimate.

2«(S(n, , s(X)\ 1 - PmΛ) = 2fc(s2, 1 - A/*l) + 2fc * Σ " 1 (J3V, D
(10) o

^ 2fc(s2, l - p 1 / 2 a) + 2%, l)

(by excessivity of m).

Now the variable A(oo) being the weak limit in U of the variables

s(X0) + Σ [s(X«+i)/2«) - £ (s(X(ί
i

we have

E'[A\σo)] £ Uminf S(n, ,

Thus, using the definition of mass functional, (9) and (10) we have proved

part of

THEOREM 3. Let seU be a difference of class (D) potentials of finite

energy. Then

(11)
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where \\\s\\\l is defined in (8).

Proof. First we prove the existence of the limit following equality

sign in (11). By assumption s is a difference of class (D) potentials of

finite energy. If T is a class (D) potential of finite energy U((ϊ — Pj)jt)

increases to ΐ. It is proved in Theorem 1.4 of [14] that these potentials

then converge "weakly in energy" to 7. Applying this to differences we

deduce that

(12> ay [(s, JL^ϋt) + („, PAT-SI.)] = |.B

where μ is the Revuz measure of s [15]. By dominated convergence

(13) lim (μ, Us~PιS) = lim 1 (μ, f Pvsdv) = (μ, s)

By Meyer's energy formula [11]

E'[A\oo)] =

Applying the mass functional L to the above formula and using (12)

and (13) we get

(14) lim (s, S~P'S) = L{E \Γ s(Xt)-dA]\.
ί-o \ t I I LJo A)

Now for any t we have

(s\ 1 - A l ) + E-[(s(Xt) - s(XQ)Y] = 2(s, s - Pts).

Using (9) thus the limit in (8) exists and the proof is complete.

COROLLARY 4. Let s be as in Theorem 3. Then

(15) ||s||e
2 = 2 lim (s, s~ PtS)

ί-0 \ t /

if and only if s is regular i.e. the corresponding additive functional A is

continuous.

Proof If s is as in Theorem 3, the difference of the right and left

sides of (15) is just the mass functional applied to the excessive function.
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This is immediate from (14) and Meyer's energy formula.

Remark, If s is as in Theorem 3, it is easy to see that

(16) lim S(n, x, s(X)) = E*[A\oo)} + E*\Γ (At - A

for all x such that Ex[A2(oo)] < co. On the other hand for any square

integrable u such that u(X) is cadlag and has finite energy relative to

Pm the function

(17) liminf{S(n, , u(X)) - u2}
n

is super-median.

§ 3. Special cases

Symmetric processes

Consider now the classical case. Thus the state space is a bounded

open subset D of Rd, d > 3, and X is the Brownian motion killed at the

exit time from D.

Symmetry of the transition kernel easily implies that for any / e L2(D),

(3.1)

is decreasing in t. Indeed, by density it is sufficient to verify this for

fe^(A) domain of generator s4 of Pt regarded as a semigroup on L2(D).

Now if fe@(j/),

d(f, P^f) = A(^/, Psf) =
ds ds

so that (/, Psstff) is increasing in s. But then the same is true of

1 f (/,
t Jo

In other words the quantity in (3.1) is decreasing. Thus the quantity in

(3.1) is bounded in t if and only if the limit as t tends to zero is finite.

Corollary 4 of Section 2 is certainly valid for the Brownian motion

because all excessive functions are regular. Also every class (D) potential

s such that ||s||β < oo is necessarily in L\D). Completion of this space
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with the energy norm is usually called the space of BLD functions or

the Sobolev space J C Thus if fe JfJ

(3.2) ||/|B = 2 l i m ( / , ^ ^

It is known that if fe^, f(X) is continuous relative to Pm. By (3.2)

and Proposition 1 of Section 2 f(X) has finite energy. We can write by

Theorem 1 of Section 1,

f(X) = M + A.

Let us show that this decomposition is unique. By Corollary 2 of

Section 1 it is sufficient to show that the quadratic variation Q(A) — 0

and this is immediate from Theorem 3, Section 1 because the energy

norm of the process f(X) is dominated by ||/||e as shown in Proposition 1

of Section 2.

NOTE. It is clear that no special properties of the Brownian motion

process are used in the above discussion.

About characterisation of Jf £

As above D will be a bounded open subset of Rn and ^ = Jf'0(D) the

space of BLD functions on D. We now give a local characterisation of

this space in terms of its composition with the Brownian motion. Before

we do this we need the following simple proposition which classifies the

role of (3.1) in these considerations.

PROPOSITION 1. For feL\D) let \\f\\t denote the quantity in (3.1) with

o 11/11*. Then

(3.3) \\PJ\\t < 11/11, for all t,h>0

(3.4) ||/ - PΛ/| | 0 - 0 as h -> 0 if ||/||0 < oo.

Finally fedί?'o if and only if ||/||0 < oo.

Proof. The proof given above that \\f\\t is decreasing also shows that

(3.5)

is decreasing both in s and t. (3.3) is then immediate upon replacing s

in (3.5) by 2ft. To prove (3.4) first choose s so that

ll/llo - 11/11. < e
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for a given ε > 0. Then for any t < s,

\\f-PJ\\t = 11/11, - 2(/, P»f~t

PJ^D) + \\PJ\\t

^ ε - (Phf,

for small enough h.

The final statement is immediate from (3.4) because Ph maps L\D)

into ^(j^)e^fo. q.e.d.

The following remark may be helpful.

Remark. Proposition 1 of Section 2 shows that the energy of Process
f(X) with feL\D) is connected with the quantity in (2.8). It is easily
seen that ||/||0 as defined above equals

) - f(Xo))2]

provided

(f Λ^O
ί-o t

And this last limit does obtain provided / has compact support in D.
With these details out of the way we can now state

THEOREM 2. Let feL2(D) have compact support in D. Then fe-J^o
if and only if f(X) is cadlag and has finite energy relative to Pm.

Proof. The if part has already been shown. Suppose / satisfies the
hypotheses of the theorem. Fix n and put

g = J

We compute, τ denoting the first exit time from D

S(n, f(X)) - (Λ 1) = Σ (Pts.Λq, 1) = (g, ± ί»«-
0 \ 0

= (g, ΣP'<? > &-n)) ^ 2"(g, |β" P (τ > t)dtj

= 2"(g,
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Let V Q D, be a relatively compact neighbourhood of the support of

/. On V, E'(τ2) is bounded below by say a. Then denoting by Y the

process killed at exit from V,

.w) - /(Y0))
2] < 2* ί gdm £ 2n l ( g , E\τ*)) ^ S(Λ, f(X)).

Jp α

Since / has support in V, Proposition 1 together with Remark force the

conclusion

That concludes the proof.

Sector condition

Now we consider very briefly a slightly more general situation.

This condition states: For all measurable / and g whose potentials

Uf and Ug have finite energy we have

(3.6) \(Uf,g)\<M\\UfUUg\\t

for some constant M > 0. To our knowledge this condition appears for

the first time in these considerations in M. Silverstein [17].

According to [14] the set of potentials Uf of finite energy is weakly

dense in energy in the space of all class (D) potentials of finite energy.

So if (3.6) obtains, then

(3.7) \(s,g)\£M\\s\\e\\Ug\\e.

It is also known that under the sector condition all excessive functions

are regular.

Let us assume one more condition: For all t > 0

(3.8) \\PtUf\l<M\\Uf\\e.

It is easily seen using Fourier transforms that (3.8) holds for all Levy

processes, with M = 1.

Now let s be a difference of class (D) potential of finite energy.

For t > 0, the potential of l/t(s — Pts) is

τ ί p s

t Jo

usdu
t Jo

with energy
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4- Γ PuSdu £ 1 f \\Pus\\edu £ M\\s\\t.
t Jθ e ί JO

We are of course using (3.8). And using (3.7)

(a, A - ^ ^ M 2 l | S | | e

2 .

Now we can argue as in the symmetric case and conclude: If a Borel
function / is a limit of a sequence sn of differences of class (D) potentials
which is Cauchy in energy and if f(X) is cadlag then we can write

f(X) = M+A

uniquely with M a martingale and A previsible of zero quadratic varia-
tion.
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