CONSTRUCTION OF SIEGEL MODULAR FORMS OF DEGREE THREE AND COMMUTATION RELATIONS OF HECKE OPERATORS

YOSHIO TANIGAWA

In connection with the Shimura correspondence, Shintani [6] and Niwa [4] constructed a modular form by the integral with the theta kernel arising from the Weil representation. They treated the group $S p(1) \times O(2,1)$. Using the special isomorphism of $O(2,1)$ onto $S L(2)$, Shintani constructed a modular form of half-integral weight from that of integral weight. We can write symbolically his case as " $O(2,1) \rightarrow$ $S p(1)$ ". Then Niwa's case is " $S p(1) \rightarrow O(2,1)$ ", that is from the halfintegral to the integral. Their methods are generalized by many authors. In particular, Niwa's are fully extended by Rallis-Schiffmann to " $S p(1)$ $\rightarrow O(p, q)$ ".

In [7], Yoshida considered the Weil representation of $S p(2) \times O(4)$ and constructed a lifting from an automorphic form on a certain subgroup of $O(4)$ to a Siegel modular form of degree two. In this note, under the spirit of Yoshida, we consider $S p(3) \times O(4)$ and construct a Siegel modular form of degree three. We use Kashiwara-Vergne's results [2] for the analysis of the infinite place. Roughly speaking, the representation $\left(\lambda, V_{\lambda}\right)$ of $O(4)$ which corresponds to an irreducible component of the Weil representation determines the representation $\tau(\lambda)$ of $G L(3, C)$. Then we can make the V_{k}-valued theta series. By integrating the inner product of this theta series and a V_{λ}-valued automorphic form, we get a Siegel modular form (Proposition 1). The main results in this note are commutation relations of Hecke operators (Theorems 1, 2). By these formulas we can express the Andrianov's L-function by the product of the L-functions of original forms. It is desired that the relations of Theorems 1 and 2 are computed more naturally.

Received April 24, 1984.

§1. Weil representation and the results of Kashiwara and Vergne

Let v be a place of \boldsymbol{Q}. We fix a non-trivial additive character ψ_{v} of \boldsymbol{Q}_{v}. For a positive integer n, let $S p\left(n, \boldsymbol{Q}_{v}\right)$ be a symplectic group of degree n i.e. $S p\left(n, \boldsymbol{Q}_{v}\right)=\left\{\left.g \in G L\left(2 n, \boldsymbol{Q}_{v}\right)\right|^{t} g J g=J\right\}$ where $J=\left(\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right)$. Let (E, S) be a k-dimensional quadratic space E with a quadratic form $S[x]$ $={ }^{t} x S x$. We put $X_{R}=M_{k, n}(R)$ for any ring R. We also put $S[x]={ }^{t} x S x$ for $x \in X_{Q_{v}}$. The function $q(x)=\psi_{v}\left(\frac{1}{2} \operatorname{tr}(S[x])\right)$ defines a character of second degree on $X_{Q_{v}}$. The associated self duality on $X_{Q_{v}}$ is given by $\langle x, y\rangle=$ $\left.\psi_{v}\left(\operatorname{tr}{ }^{(t} y S x\right)\right)$. We denote by $d x$ the self-dual measure on $X_{Q_{v}}$ with respect to 〈, \rangle. The Fourier transform of Φ is defined by

$$
\Phi^{*}(x)=\int_{X_{Q_{v}}} \Phi(y)\langle x, y\rangle d y .
$$

Then the Weil representation R_{v} of $\operatorname{Sp}\left(n, \boldsymbol{Q}_{v}\right)$ is realized on $L^{2}\left(X_{Q_{v}}\right)$ and has the following forms for special elements (cf. Weil [9]):
(i) $\quad R_{v}\left(\begin{array}{ll}1 & b \\ 0 & 1\end{array}\right) \Phi(x)=\psi_{v}(\operatorname{tr} b S[x]) \Phi(x) \quad$ for $b={ }^{t} b \in M_{n}\left(\boldsymbol{Q}_{v}\right)$
(ii) $\quad R_{v}\left(\begin{array}{cc}a & 0 \\ 0 & { }^{t} a^{-1}\end{array}\right) \Phi(x)=|\operatorname{det}(a)|^{1 / 2} \Phi(x a) \quad$ for $a \in G L\left(n, \boldsymbol{Q}_{v}\right)$
(iii) $R_{v}\left(\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right) \Phi(x)=\Phi^{*}(x)$.

It is well known that for even k, R_{v} is equivalent to a true representation π_{v} of $S p\left(n, \boldsymbol{Q}_{v}\right)$ (cf. Lion and Vergne [4] p. 212, Yoshida [8]).

Hereafter we choose an additive character so that $\psi_{\infty}=e^{2 \pi i x}, x \in \boldsymbol{R}$ and $\psi_{p}=e^{-2 \pi i \operatorname{Fr}(x)}, x \in \boldsymbol{Q}_{p}$ for each finite place p, where $\operatorname{Fr}(x)$ is the fractional part of $x \in \boldsymbol{Q}_{p}$.

In [2], Kashiwara and Vergne decompose the Weil representation R_{∞} into irreducible components. We will recall briefly their results.

Let (E, S) be a positive definite quadratic space of dimension k. There are two groups acting on $L^{2}\left(X_{R}\right)$, the orthogonal group $O(S)$ of (E, S) and $S p(n, R)$. The action of $O(S)$ is defined by

$$
(\sigma \Phi)(x)=\Phi\left({ }^{t} \sigma x\right) \quad \text { for } \sigma \in O(S),
$$

and that of $S p(n, \boldsymbol{R})$ by the Weil representation. It is easily seen that they commute with each other. Therefore we can decompose $L^{2}\left(X_{R}\right)$ under $O(S)$. Let $\left(\lambda, V_{\lambda}\right)$ be an irreducible unitary representation of $O(S)$. Denote by $L^{2}\left(X_{R} ; \lambda\right)$ the space of all V_{λ}-valued square integrable functions
$\phi(x)$ on X_{R} which satisfies $\phi(\sigma x)=\lambda(\sigma) \phi(x)$ for $\sigma \in O(S)$. Then $L^{2}\left(X_{R}\right)=$ $\oplus_{\lambda \in \widehat{O S})} L^{2}\left(X_{R} ; \lambda^{\prime}\right) \otimes V_{\lambda}$ where λ^{\prime} is the contragradient representation of λ.

A polynomial $Q(x)$ on X_{R} is said to be pluriharmonic if $\Delta_{i j} Q=0$ for all i, j. Here $\Delta_{i j}=\sum_{\ell=1}^{k}\left(\partial / \partial x_{\ell i}\right)\left(\partial / \partial x_{\ell j}\right)$. Let \mathfrak{h} be the space of all such polynomials. $G L(n, C) \times O(S)$ acts on \mathfrak{h} by $Q(x) \rightarrow Q\left(\sigma^{-1} x a\right)$ for $(a, \sigma) \in$ $G L(n, C) \times O(S)$. For an irreducible representation $\left(\lambda, V_{\lambda}\right)$ of $O(S)$, we denote by $\mathfrak{h}(\lambda)$ the space of all V_{λ}-valued pluriharmonic polynomials $Q(x)$ such that $Q(\sigma x)=\lambda(\sigma) Q(x)$ for $\sigma \in O(S)$. As above, we have $\mathfrak{h}=$ $\oplus_{\lambda \in O(S)} \mathfrak{K}\left(\lambda^{\prime}\right) \otimes V_{\lambda}$. We define $\tau(\lambda)$ as the representation of $G L(n, C)$ on $\mathfrak{h}(\lambda)$ by the right translation.

On the other hand, the special representation of $\operatorname{Sp}(n, R)$ is defined as follows. Let (τ, V) be an irreducible representation of $G L(n, C)$ and $\delta(a)=\operatorname{det}(a)$ be a one dimensional representation. Let $S p(n, R)_{2}$ be the two fold covering group of $S p(n, \boldsymbol{R})$. Then for $h \in \boldsymbol{Z}$, we define the representation $T(\tau, h)$ of $S p(n, R)_{2}$ in $\mathcal{O}\left(H_{n}, V\right)$, the space of all V-valued holomorphic functions $f(Z)$ on the Siegel upper half plane H_{n}, by

$$
\left.(T(\tau, h)(g) f)(Z)=\delta(C Z+D)^{-h / 2} \tau \tau^{t}(C Z+D)\right) f\left((A Z+B)(C Z+D)^{-1}\right)
$$

for $\tilde{g}^{-1}=\left(g, \delta(C Z+D)^{1 / 2}\right) \in S p(2, R)_{2}$ with $g=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right)$.
Theorem A (Kashiwara and Vergne). Let the notation be as above. Suppose that $\mathfrak{h}(\lambda) \neq\{0\}$, then
(i) $\tau(\lambda)$ is irreducible
(ii) $L^{2}\left(X_{R} ; \lambda\right)$ is equivalent to $\left(T(\tau(\lambda), k), \mathcal{O}\left(H_{n}, \mathfrak{h}(\lambda)\right)\right)$.

The correspondence $\lambda \rightarrow \tau(\lambda)$ is also determined explicitly in their paper.

For any $Q \in \mathfrak{G}(\lambda)$ and $Z \in H_{n}$, we put

$$
f_{Q, z}(x)=Q(x) e^{\pi \sqrt{-1} \operatorname{tr}(z S[x])} .
$$

$f_{Q, z}$ is a V_{λ}-valued function on X_{R}. We also put $\tau=\tau(\lambda)$ and $V_{\tau}=\mathfrak{h}(\lambda)$.
Theorem B (Lion and Vergne). Let $f_{Q, z}$ be as above, then for any $g=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right) \in S p(n, R)$,

$$
R_{\infty}(g) f_{Q, Z}=\operatorname{det}(C Z+D)^{-k / 2} f_{z^{(t(C Z+D)-1) Q, g(Z)}} .
$$

This theorem is easily proved by checking the above formula for the
generators of the form $\left(\begin{array}{ll}1 & B \\ 0 & 1\end{array}\right),\left(\begin{array}{cc}A & 0 \\ 0 & { }^{t} A^{-1}\end{array}\right),\left(\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right)$. Especially for $g=$ $\left(\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right)$, it is obtained by acting the diffierential operator $Q((1 / 2 \pi i)(\partial / \partial x))$ on both sides of the theta formula.

§ 2. Shintani-Yoshida's construction of Siegel modular form of degree three

Let D be a quaternion algebra over \boldsymbol{Q} which does not split only at ∞ and 2 . We denote by $a \rightarrow a^{*}$ the canonical involution of D. Let R be a maximal order in D and Z the center of D. Let (ξ_{v}, V_{v}) be the symmetric tensor representation of $G L(2, C)$ of degree ν. We put $\sigma_{\nu}(g)$ $=\left(\xi_{\nu} \cdot \iota\right)(g) N(g)^{-\nu / 2}$ for $g \in D_{\infty}^{\times}$, where ι is an embedding of D_{∞}^{\times}into $G L(2, C)$. Let A be the adele ring of rational field \boldsymbol{Q} and D_{A}^{\times}be the adelization of D^{\times}. Then an automorphic form on D_{A}^{\times}of the type $\left(R, \sigma_{\nu}\right)$ is a V_{ν}-valued function φ on D_{A}^{\times}with the following properties:
(i) $\varphi(\gamma g)=\varphi(g)$ for any $\gamma \in D_{Q}^{\times}$and $g \in D_{A}^{\times}$,
(ii) $\varphi(g k)=\sigma_{\nu}(k) \varphi(g)$ for any $k \in D_{\infty}^{\times}$and $g \in D_{A}^{\times}$,
(iii) $\varphi(g k)=\varphi(g)$ for any $k \in\left(R \otimes Z_{p}\right)^{\times}$and $g \in D_{A}^{\times}$where p is any finite place of \boldsymbol{Q},
(iv) $\varphi(z g)=\varphi(g)$ for any $z \in Z_{A}^{\times}$and $g \in D_{A}^{\times}$.

We put $(E, S)=(D$, norm) as a quadratic space over \boldsymbol{Q}. So the dimension of E is four. $D^{\times} \times D^{\times}$acts on E by $\rho(a, b) x=a^{*} x b,(a, b) \in$ $D^{\times} \times D^{\times}$. Under this action, the group $G^{\prime}=\left\{(a, b) \in D^{\times} \times D^{\times} \mid N(a)=\right.$ $N(b)=1\}$ operates isometrically on E, and is considered as a subgroup of $O(S)$.

Let $G=S p(3)$ be a symplectic group of degree 3 . We put $K_{p}=$ $S p\left(3, Z_{p}\right)$ for any finite place p and $K_{\infty}=$ the stabilizer of $\sqrt{-1}$ in G_{R}. We get the local (true) Weil representation π_{v} of G_{v} corresponding to the quadratic space E and the additive character ψ_{v} defined in Section 1. The global Weil representation π is also defined in the usual way.

We are going to define a lifting from an automorphic form on G_{a}^{\prime} to that on G_{A}. As before we let $X=M_{4,3}$. For any finite place p, let f_{p} be the characteristic function of $X_{Z_{p}}$. For the infinite place ∞, let $\sigma_{n_{1}} \otimes \sigma_{n_{2}}$ be an irreducible representation of G_{R}^{\prime} such that $n_{1} \equiv n_{2}(\bmod 2)$. We put $m_{1}=\left(n_{1}+n_{2}\right) / 2, m_{2}=\left|n_{1}-n_{2}\right| / 2$ and λ the irreducible representation of $O(S)_{R}$ with the signature $\left(m_{1}, m_{2}\right)$. Then $\sigma_{n_{1}} \otimes \sigma_{n_{2}}$ is naturally included in λ. Let $\tau\left(\lambda^{\prime}\right)$ be the representation of $G L(3, C)$ which corres-
ponds to λ^{\prime}. For any $Q \in \mathfrak{G}\left(\lambda^{\prime}\right)$, we put $f_{Q}=\prod_{v \neq \infty} f_{v} \times f_{Q, \sqrt{-1}} \in \mathscr{S}\left(X_{A}\right) \otimes V_{\lambda^{\prime}}$ where $f_{Q, \sqrt{-1}}=Q(x) e^{-\pi \operatorname{tr}(S[x])}$. Now we define the theta series by

$$
\theta_{f_{Q}}(g, h)=\sum_{x \in X_{Q}}\left(\pi(g) f_{Q}\right)(\rho(h) x)
$$

for $g \in G_{A}, h \in G_{A}^{\prime}$. Then from Theorem B, we get

$$
\theta_{f_{Q}}(g k, h)=\theta_{f_{e}}(g, h), \quad \text { for any } k=\left(\begin{array}{rr}
A & B \tag{2.1}\\
-B & A
\end{array}\right) \in K_{\infty},
$$

where $\left.Q^{\prime}=\left(\delta^{2} \otimes \tau\left(\lambda^{\prime}\right)\right){ }^{t}(-B \sqrt{-1}+A)^{-1}\right) Q$.
Let φ_{1} and φ_{2} be automorphic forms on D_{A}^{\times}of type ($R, \sigma_{n_{1}}$) and ($R, \sigma_{n_{2}}$) respectively. Then $\varphi=\varphi_{1} \otimes \varphi_{2}$ can be regarded as a V_{λ}-valued automorphic form on G_{A}^{\prime}. Define a function of G_{A} by

$$
\Phi_{f_{Q}}(g)=\int_{G_{Q_{Q}^{\prime} \backslash G_{A}^{\prime}}}\left(\theta_{f_{Q}}(g, h), \varphi(h)\right) d h
$$

Here (,) is the natural inner product on $V_{\lambda^{\prime}}$ and V_{λ}. Take a basis $B=\left\{Q_{1}, \cdots, Q_{m}\right\}$ of $\mathfrak{h}\left(\lambda^{\prime}\right)$ and fix it. The matrix representation of $\tau\left(\lambda^{\prime}\right)$ with respect to B is also denoted by the same letter. Finally we define the C^{m}-valued function on G_{A} by

$$
\begin{equation*}
\Phi_{B}(g)=\left(\Phi_{f_{Q_{1}}}(g), \cdots, \Phi_{f_{Q_{m}}}(g)\right) . \tag{2.2}
\end{equation*}
$$

The next Proposition follows at once by the definitions.
Proposition 1. Let the notation be as above. Then $\Phi_{B}(g)$ is a Siegel modular form with respect to the representation $\delta^{2} \otimes \tau\left(\lambda^{\prime}\right)$; it satisfies the following properties,
(i) $\Phi_{B}(\gamma g)=\Phi_{B}(g)$ for any $\gamma \in G_{Q}, g \in G_{A}$,
(ii) $\quad \Phi_{B}(g k)=\Phi_{B}(g)\left(\delta^{2} \otimes \tau\left(\lambda^{\prime}\right)\right)\left({ }^{t}(-B \sqrt{-1}+A)^{-1}\right)$ for any $k=\left(\begin{array}{rr}A & B \\ -B & A\end{array}\right)$ $\in K_{\infty}, g \in G_{A}$,
(iii) $\Phi_{B}(g k)=\Phi_{B}(g)$ for any $k \in K_{p}, g \in G_{A}$, where p is any finite place.

To transform into classical notation, we put $j(g, Z)=\left(\delta^{2} \otimes \tau\left(\lambda^{\prime}\right)\right)$. ${ }^{t}(C Z+D)$) for any $Z \in H_{3}$ and $g=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right) \in S p(3, R)$. Then $j(g, Z)$ satisfies the cocycle relation $j\left(g_{1} g_{2}, Z\right)=j\left(g_{2}, Z\right) j\left(g_{1}, g_{2}(Z)\right)$. For any point $Z \in H_{3}$ we choose an element $g \in S p(3, R)$ such that $g(\sqrt{-1})=Z$ and put $g^{\prime}=1_{f} \cdot g \in G_{A}$, where 1_{f} is an element of the finite part of G_{A} such that all the p-component is equal to 1 . Then $F(Z)=\Phi_{B}\left(g^{\prime}\right) j(g, \sqrt{-1})$ satisfies the transformation formula $F(\gamma(Z))=F(Z) j(\gamma, Z)$ for $\gamma \in S p(3, \boldsymbol{Q}) \cap \prod_{p \neq \infty} K_{p}$.

§ 3. Hecke operators

Let \tilde{G} be the group of symplectic similitude of degree 3 i.e.

$$
\tilde{G}_{F}=\left\{\left.g \in G L(6, F)\right|^{t} g J g=m(g) J, m(g) \in F^{\times}\right\}
$$

for any field F. In order to consider Hecke operators we must extend the function on $G_{Q} \backslash G_{A}$ to the function on \tilde{G}_{A}. For that purpose we will adopt Yoshida's standard extension. Put $\tilde{K}_{p}=\tilde{G}_{Q_{p}} \cap G L\left(6, \boldsymbol{Z}_{p}\right)$ and $\tilde{G}_{\infty,+}$ $=\left\{\left.g \in G L(6, R)\right|^{t} g J g=m(g) J, m(g)>0\right\}$. By the approximation theorem, we have $\tilde{G}_{A}=\tilde{G}_{Q} \cdot \prod_{p \neq \infty} \tilde{K}_{p} \cdot \tilde{G}_{\infty,+}$. Let ν be an element of \tilde{G}_{A} such that $\nu_{p}=\left(\begin{array}{cc}1_{3} & 0 \\ 0 & \mu_{p} 1_{3}\end{array}\right), \mu_{p} \in \boldsymbol{Z}_{p}^{\times}$, for each finite place p and $\nu_{\infty}=\mu_{\infty} 1_{6}, \mu_{\infty} \in R_{+}^{\times}$, for the infinite place ∞. Then by the approximation theorem, any element g of \tilde{G}_{A} can be written as $g=\gamma k \nu$ with $\gamma \in \tilde{G}_{Q}$ and $k \in \prod_{p \neq \infty} K_{p} \times G_{\infty}$. Suppose that Φ is a function on G_{A} which is left invariant under G_{Q}. We define a function $\tilde{\Phi}$ on \tilde{G}_{A} by $\tilde{\Phi}(g)=\Phi(k)$ for $g=\gamma k v$. It is shown in [7] that this is well-defined and left invariant under $\tilde{G}_{\boldsymbol{Q}}$.

We put $S_{p}=\left\{\left.g \in M_{6}\left(\boldsymbol{Z}_{p}\right)\right|^{t} g J g=m(g) J, m(g) \neq 0\right\}$. For the Hecke pair (\tilde{K}_{p}, S_{p}) we denote by $\mathscr{L}\left(\tilde{K}_{p}, S_{p}\right)$ the corresponding Hecke ring. It is well known that the complete representatives of the double cosets $\tilde{K}_{p} \backslash S_{p} / \tilde{K}_{p}$ is given by

$$
\alpha=\left(\begin{array}{cccccc}
p^{d_{1}} & & & & & \\
& p^{d_{2}} & & & & 0 \\
& & p^{d_{3}} & & & \\
& 0 & & p^{e_{1}} & & \\
& & & & p^{e_{2}} & \\
& p^{\epsilon_{3}}
\end{array}\right)
$$

where $d_{1} \leqq d_{2} \leqq d_{3} \leqq e_{3} \leqq e_{2} \leqq e_{1}$ and $m(\alpha)=p^{d_{i}+e_{i}}$ for any i. We denote the element $\tilde{K}_{p} \alpha \tilde{K}_{p}$ of $\mathscr{L}\left(\tilde{K}_{p}, S_{p}\right)$ by $T\left(p^{d_{1}}, p^{d_{2}}, p^{d_{3}}, p^{e_{1}}, p^{e_{2}}, p^{e_{3}}\right)$ and put $m\left(\tilde{K}_{p} \alpha \tilde{K}_{p}\right)$ $=m(\alpha)$. For a non-negative integer n, we define the Hecke operator of degree p^{n} by $T\left(p^{n}\right)=\sum \tilde{K}_{n} \alpha \tilde{K}_{p}$ where the summation is taken over all distinct double cosets $\tilde{K}_{p} \alpha \tilde{K}_{p}$ with $m\left(\tilde{K}_{p} \alpha \tilde{K}_{p}\right)=p^{n}$ 。
$\mathscr{L}\left(\tilde{K}_{p}, S_{p}\right)$ is a polynomial ring generated by $T_{0}=T(1,1,1, p, p, p)$, $T_{1}=T\left(1,1, p, p^{2}, p^{2}, p\right), T_{2}=T\left(1, p, p, p^{2}, p, p\right)$ and $T_{3}=T(p, p, p, p, p, p)$. Define a local Hecke series by $D_{p}(s)=\sum_{n=0}^{\infty} T\left(p^{n}\right) p^{-n s}$.

Theorem C (Andrianov). Let the notation be as above and put $t=p^{-s}$. Then

$$
\begin{equation*}
D_{p}(s)=\left[\sum_{n=0}^{6}(-1)^{n+1} e(n) t^{n}\right] \times\left[\sum_{n=0}^{8}(-1)^{n} f(n) t^{n}\right]^{-1} \tag{3.1}
\end{equation*}
$$

where

$$
\begin{aligned}
& e(0)=-1, e(1)=0, e(2)=p^{2}\left(T_{2}+\left(p^{4}+p^{2}+1\right) T_{3}\right), e(3)=p^{4}(p+1) T_{0} T_{3}, \\
& e(4)=p^{7}\left(T_{2} T_{3}+\left(p^{4}+p^{2}+1\right) T_{3}^{2}\right), e(5)=0, e(6)=-p^{15} T_{3}^{3} ; f(0)=1, \\
& f(1)=T_{0}, f(2)=p T_{1}+p\left(p^{2}+1\right) T_{2}+\left(p^{5}+p^{4}+p^{3}+p\right) T_{3}, \\
& f(3)=p^{3}\left(T_{0} T_{2}+T_{0} T_{3}\right), f(4)=p^{6} T_{0}^{2} T_{3}+p^{6} T_{2}^{2}-2 p^{7} T_{1} T_{3}-2 p^{6}(p-1) T_{2} T_{3} \\
& -\left(p^{12}+2 p^{11}+2 p^{10}+2 p^{7}-p^{6}\right) T_{3}^{2}, f(5)=p^{6} T_{3} f(3), \quad f(6)=p^{12} T_{3}^{2} f(2), \\
& f(7)=p^{18} T_{3}^{3} f(1), f(8)=p^{24} T_{3}^{4} .
\end{aligned}
$$

For $\tilde{K}_{p} \alpha \tilde{K}_{p} \in \mathscr{L}\left(\tilde{K}_{p}, S_{p}\right)$, let $\tilde{K}_{p} \alpha \tilde{K}_{p}=\cup \alpha_{i} \tilde{K}_{p}$ be a right cosets decomposition. α_{i} may be considered as an element of \tilde{G}_{A} by the canonical embedding $\tilde{G}_{Q_{p}} \longleftrightarrow \tilde{G}_{A}$. Let Φ be a Siegel modular form and $\tilde{\Phi}$ its standard extension. We define the action of $\tilde{K}_{p} \alpha \tilde{K}_{p}$ on $\tilde{\Phi}$ by $\left(\tilde{\Phi} \mid \tilde{K}_{p} \alpha \tilde{K}_{p}\right)(g)=\sum_{i} \tilde{\Phi}\left(g \alpha_{i}\right)$, which does not depend on the choice of representatives α_{i}. Suppose that Φ is an eigenfunction of all Hecke operators: $\tilde{\Phi} \mid T(m)=\lambda(m) \tilde{\Phi}$ for all $m \in Z, m>0$. Then by the Theorem C of Andrianov, we have

$$
\sum_{n=0}^{\infty} \lambda\left(p^{n}\right) n^{-n s}=G_{p, \varnothing}\left(p^{-s}\right) H_{p, \phi}\left(p^{-s}\right)^{-1},
$$

where $G_{p, \phi}$ (resp. $H_{p, \phi}$) is the polynomial given by the numerator (resp. denominator) in (3.1) after replacing the $e(n)$ (resp. $f(n)$) with the corresponding eigenvalues. We define the Andrianov's L-function by the Euler product

$$
L(s, \Phi)=\prod_{p} H_{p, \phi}\left(p^{-s}\right)^{-1} .
$$

On the other hand, any odd prime p is unramified in D. Therefore $D_{p}=D \otimes \boldsymbol{Q}_{p}$ is isomorphic to $M_{2}\left(\boldsymbol{Q}_{p}\right)$. Hence we get the p-part of Hecke operators in the usual way. If φ is an automorphic form D_{A}^{\times}such that $\varphi \mid T(p)=\lambda^{\prime}(p) \varphi$ for all $p \neq 2$, we define the L-function of φ by

$$
L(s, \varphi)=\prod_{p \neq 2}-\frac{1}{1-\lambda^{\prime}(p) p^{-s}+p^{1-2 s}} .
$$

Note that in this paper we don't set any normalization in the definitions of Hecke operators and L-functions.

The following Proposition will be used in Section 4.
Proposition D (Yoshida). Let V be a vector space over \boldsymbol{R} and $f=\Pi f_{v}$, where f_{p} is a characteristic function of $X_{Z_{p}}$ for finite p and f_{∞} is an element of $\mathscr{S}\left(X_{R}\right) \otimes V$. Define the theta series by $\theta_{f}(g, h)=\sum_{x \in x_{Q}} \pi(g) f(\rho(h) x)$ for
$(g, h) \in G_{A} \times O(S)_{A}$. For a double coset $\tilde{K}_{p} \alpha \tilde{K}_{p}$ with $m(\alpha)=p^{d_{1}+e_{1}}$, let $\tilde{K}_{p} \alpha \tilde{K}_{p}=\bigcup \alpha_{i} \tilde{K}_{p}$ be a right cosets decomposition.
(i) When $d_{1}+e_{1}$ is odd, $d_{1}+e_{1}=2 t+1(t \in \boldsymbol{Z})$, we put

$$
z=p^{-t}\left(\begin{array}{cc}
1_{3} & 0 \\
0 & p^{-1} 1_{3}
\end{array}\right) \in \tilde{G}_{Q}
$$

Then for any element $g \in \tilde{G}_{A}$ we have

$$
\sum_{i} \tilde{\theta}_{f}\left(g \alpha_{i}, h\right)=\tilde{\theta}_{f^{\prime}}\left(\left(\begin{array}{cc}
1_{3} & 0 \\
0 & p^{-1} 1_{3}
\end{array}\right)_{\infty} g, h\right)
$$

where $f^{\prime}=\prod_{v \neq p} f_{v} \times f_{p}^{\prime}$ and $f_{p}^{\prime}=\sum_{i} \pi_{p}\left(z_{p} \alpha_{i}\right) f_{p}$.
(ii) When $d_{1}+e_{1}$ is even, $d_{1}+e_{1}=2 t(t \in \boldsymbol{Z})$, we put $z=p^{-t} 1_{6} \in \tilde{G}_{Q}$. Then for any element $g \in \tilde{G}_{A}$, we have

$$
\sum_{i} \tilde{\theta}_{f}\left(g \alpha_{i}, h\right)=\tilde{\theta}_{f^{\prime}}(g, h)
$$

where $f^{\prime}=\prod_{v \neq p} f_{v} \times f_{p}^{\prime}$ and $f_{p}^{\prime}=\sum_{i} \pi_{p}\left(z_{p} \alpha_{i}\right) f_{p}$.

§4. Local computation of Hecke operators

In this section we will compute the action of Hecke operators on Φ_{B} explicitly. It is enough to determine $f_{p}^{\prime}=\sum_{i} \pi_{p}\left(z_{p} \alpha_{i}\right) f_{p}$ by Proposition D. First note that, if we put $\Gamma=S p(3, Z)$, the left cosets decomposition $\Gamma \alpha \Gamma=\cup_{i} \Gamma \alpha_{i}$ corresponds to the right cosets decomposition $\tilde{K}_{p} \alpha \tilde{K}_{p}=$ $\bigcup_{i} m(\alpha) \alpha_{i}^{-1} \tilde{K}_{p}$. It is well known that the representatives $\left\{\alpha_{i}\right\}$ can be given by

$$
\alpha_{i j k}=\left(\begin{array}{cc}
A_{i} & B_{i k} \\
0 & D_{i}
\end{array}\right)\left(\begin{array}{cc}
U_{i j} & 0 \\
0 & { }^{t} U_{i j}^{-1}
\end{array}\right)
$$

where $A_{i}=\left(\begin{array}{rrl}p^{a_{i 1}} & & \\ 0 & p^{a_{i 2}} & 0 \\ & & p^{a_{i 3}}\end{array}\right), 0 \leqq a_{i 1} \leqq a_{i 2} \leqq a_{i 3}$ with $D_{i}=m(\alpha) A_{i}^{-1}$ integral, $B_{i k}$ is taken over the complete set of representatives of integral matrices $\bmod D_{i}$ with

$$
\left(\begin{array}{cc}
A_{i} & B_{i k} \\
0 & D_{i}
\end{array}\right) \in \Gamma \alpha \Gamma, \quad \text { and } \quad S L(3, Z)=\bigcup_{j}\left(S L(3, Z) \cap A_{i}^{-1} S L(3, Z) A_{i}\right) U_{i j} .
$$

Suppose that $m(\alpha)=p$ or p^{2}. For each i, we define the function on $X_{Q_{p}}$ by

$$
f_{p}^{(i)}(x)=\sum_{k} \psi_{p}\left(\operatorname{tr}\left(-B_{i k} D_{i}^{-1} S[x]\right)\right) f_{p}(x)
$$

Then by Proposition D, we have

$$
\begin{aligned}
f_{p}^{\prime}(x)= & \sum_{i j k} \pi_{p}\left(z_{p} m(\alpha) \alpha_{i j k}^{-1}\right) f_{p}(x) \\
= & \sum_{i j k} \pi_{p}\left(\left(\begin{array}{cc}
U_{i j}^{-1} & 0 \\
0 & { }^{t} U_{i j}
\end{array}\right)\right) \cdot \pi_{p}\left(\left(\begin{array}{cc}
p A_{i}^{-1} & 0 \\
0 & m(\alpha) / p D_{i}^{-1}
\end{array}\right)\left(\begin{array}{cc}
1 & -B_{i k} D_{i}^{-1} \\
0 & 1
\end{array}\right)\right) f_{p}(x) \\
= & \sum_{i, j} \pi_{p}\left(\left(\begin{array}{cc}
U_{i j}^{-1} & 0 \\
0 & { }^{t} U_{i j}
\end{array}\right)\right)\left|\operatorname{det}\left(p A_{i}^{-1}\right)\right|^{2} \\
& \times \sum_{k} \psi_{p}\left(\operatorname{tr}\left(-B_{i k} D_{i}^{-1} S\left[x p A_{i}^{-1}\right]\right)\right) f_{p}\left(x p A_{i}^{-1}\right) \\
= & \sum_{i}\left|\operatorname{det}\left(p A_{i}^{-1}\right)\right|^{2} \sum_{j} f_{p}^{(i)}\left(x p\left(A_{i} U_{i j}\right)^{-1}\right) .
\end{aligned}
$$

Henceforth we write the above $f_{p}^{\prime}(x)$ by $\left(f_{p} \mid \tilde{K}_{p} \alpha \tilde{K}_{p}\right)(x)$ to clarify the operation of $\tilde{K}_{n} \alpha \tilde{K}_{p}$.

First we deal with the Hecke operator of degree p.
Theorem 1. We assume that p is an odd prime number. Put

$$
\begin{aligned}
G_{0}(x)= & \sum_{v=0}^{p-1} f_{p}\left(\rho\left(\left(\begin{array}{ll}
p & v \\
0 & 1
\end{array}\right), 1\right) x\right)+f_{p}\left(\rho\left(\left(\begin{array}{ll}
1 & 0 \\
0 & p
\end{array}\right), 1\right) x\right) \\
& +\sum_{v=0}^{p-1} f_{p}\left(\rho\left(1,\left(\begin{array}{ll}
p & v \\
0 & 1
\end{array}\right)\right) x\right)+f_{p}\left(\rho\left(1,\left(\begin{array}{ll}
1 & 0 \\
0 & p
\end{array}\right)\right) x\right) .
\end{aligned}
$$

Then for an element $T_{0}=T(1,1,1, p, p, p)$ of $\mathscr{L}\left(\tilde{K}_{p}, S_{p}\right)$, we have

$$
\begin{equation*}
\left(f_{p} \mid T_{0}\right)(x)=\frac{p+1}{p} G_{0}(x) . \tag{4.1}
\end{equation*}
$$

Proof. We will write $Y=M_{4,1}$ for simplicity. We prove the above equality case by case. First note that for any $a \in G L\left(3, Z_{p}\right)$ both sides of the equality are invariant under $x \rightarrow x a$. We will frequently use this remark for $a=$ permutation matrices, $\left(\begin{array}{lll}1 & \alpha & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$ etc. Now let us write down all A_{i} and $U_{i j}$.
(i) $A_{1}=1_{3} \quad$ and $\left\{U_{1}\right\}=\left\{1_{3}\right\}$
(ii) $A_{2}=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & p\end{array}\right)$ and $\left\{U_{2 j}\right\}=\left\{\left(\begin{array}{lll}1 & 0 & \alpha \\ 0 & 1 & \beta \\ 0 & 0 & 1\end{array}\right),\left(\begin{array}{rrr}1 & \gamma & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0\end{array}\right),\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right)\right.$, $0 \leqq \alpha, \beta, \gamma \leqq p-1\}$
(iii) $A_{3}=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & p & 0 \\ 0 & 0 & p\end{array}\right)$ and $\left\{U_{3 j}\right\}=\left\{\left(\begin{array}{lll}1 & \alpha & \beta \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right),\left(\begin{array}{lll}0 & 1 & \gamma \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right),\left(\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right)\right.$,

$$
0 \leqq \alpha, \beta, \gamma \leqq p-1\}
$$

(iv) $\quad A_{4}=p 1_{3} \quad$ and $\left\{U_{4 j}\right\}=\left\{1_{3}\right\}$.

We put $S[x]=\left(u_{i j}\right)$ and define the subsets of $X_{Z_{p}}$ by

$$
\begin{aligned}
& V_{1}=\left\{x \in X_{\boldsymbol{Z}_{p}} \mid u_{i j} \in p \boldsymbol{Z}_{p} \text { for all } i \text { and } j\right\}, \\
& V_{2}=\left\{x \in X_{\boldsymbol{Z}_{p}} \mid u_{11}, u_{12}, u_{22} \in p \boldsymbol{Z}_{p}\right\}, \\
& V_{3}=\left\{x \in X_{\boldsymbol{Z}_{p}} \mid u_{11} \in p \boldsymbol{Z}_{p}\right\} .
\end{aligned}
$$

Let ϕ_{i} denote the characteristic function of V_{r}. Then we have

$$
f_{p}^{(1)}=p^{6} \phi_{1}, \quad f_{p}^{(2)}=p^{3} \phi_{2}, \quad f_{p}^{(3)}=p \dot{\phi}_{3}, \quad f_{p}^{(4)}=f_{p} .
$$

Therefore for $x=\left(x_{1}, x_{2}, x_{3}\right) \in X_{Q_{p}}, x_{i} \in Y_{Q_{p}}$, we have

$$
\begin{aligned}
\left(f_{p} \mid T_{0}\right)= & \phi_{1}(p x)+p^{-1}\left\{_{0 \leqq \alpha, \beta \leq p-1} \phi_{2}\left(p x_{1}, p x_{2},-\alpha x_{1}-\beta x_{2}+x_{3}\right)\right. \\
& \left.+\sum_{0 \leq \backslash \leq p-1} \phi_{2}\left(p x_{1}, p x_{3}, \gamma x_{1}-x_{2}\right)+\phi_{2}\left(p x_{2}, p x_{3}, x_{1}\right)\right\} \\
& +p^{-1}\left\{_{0 \leqq \alpha, \beta \leq p-1} \sum_{3}\left(p x_{1},-\alpha x_{1}+x_{2},-\beta x_{1}+x_{3}\right)\right. \\
& \left.+\sum_{0 \leq r \leq p-1} \phi_{3}\left(p x_{2},-\gamma x_{2}+x_{3}, x_{1}\right)+\phi_{3}\left(p x_{3}, x_{1}, x_{2}\right)\right\}+f_{p}(x) .
\end{aligned}
$$

By the above remark, we have only to consider the following cases.
Case 1. We assume $x \in X_{z_{p}}$. In this case, all the terms occur, so that $\left(f_{p} \mid T_{0}\right)(x)=\left(2(p+1)^{2}\right) / p$ and $G_{0}(x)=2(p+1)$.

Case 2. We assume $p x \notin X_{z_{p}}$. In this case, all the terms vanish, so that both sides of (4.1) equal to zero.

Case 3. We assume that $x_{1} \notin Y_{Z_{p}}$ and $p x_{1}, x_{2}, x_{3} \in Y_{Z_{p}}$. Then

$$
\left(f_{p} \mid T_{0}\right)(x)= \begin{cases}2(p+1) / p & \text { if } u_{11} \in p^{-1} Z_{n} \\ 0 & \text { otherwise }\end{cases}
$$

Now let us compute $G_{0}(x)$. By the above remark we may assume that

$$
x_{1}=\left(\begin{array}{cc}
\alpha & 0 \\
0 & \beta
\end{array}\right) \quad \alpha \in p^{-1} \boldsymbol{Z}_{p}, \quad \alpha \notin \boldsymbol{Z}_{p} .
$$

Then we have

$$
\begin{array}{ll}
\left(\begin{array}{cc}
p & v \\
0 & 1
\end{array}\right)^{*} x_{1}=\left(\begin{array}{cc}
\alpha & -v \beta \\
0 & p \beta
\end{array}\right), & \left(\begin{array}{ll}
1 & 0 \\
0 & p
\end{array}\right)^{*} x_{1}=\left(\begin{array}{cc}
p \alpha & 0 \\
0 & \beta
\end{array}\right), \\
x_{1}\left(\begin{array}{ll}
p & v \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
p \alpha & v \alpha \\
0 & \beta
\end{array}\right), & x_{1}\left(\begin{array}{ll}
1 & 0 \\
0 & p
\end{array}\right)=\left(\begin{array}{cc}
\alpha & 0 \\
0 & p \beta
\end{array}\right) .
\end{array}
$$

Note that $\beta \in \boldsymbol{Z}_{p}$ if and only if $u_{11} \in p^{-1} \boldsymbol{Z}_{p}$. Therefore we have

$$
G_{0}(x)= \begin{cases}2 & \text { if } u_{11} \in p^{-1} Z_{p} \\ 0 & \text { otherwise }\end{cases}
$$

Case 4. We assume that $x_{1}, x_{2} \notin Y_{Z_{p}}, p x_{1}, p x_{2}, x_{3} \in Y_{Z_{p}}$, and there is no $s \in Z$ such that $s x_{1}+x_{2} \in Y_{Z_{p}}$. Then we have

$$
\left(f_{p} \mid T_{0}\right)(x)= \begin{cases}(p+1) / p & \text { if } u_{11}, u_{12}, u_{22} \in p^{-1} \boldsymbol{Z}_{p} \\ 0 & \text { otherwise }\end{cases}
$$

On the other hand, let $x_{1}=\left(\begin{array}{cc}\alpha & 0 \\ 0 & \beta\end{array}\right)$ and $x_{2}=\left(\begin{array}{cc}\alpha^{\prime} & \gamma^{\prime} \\ \delta^{\prime} & \beta^{\prime}\end{array}\right)$ with $\alpha \notin \boldsymbol{Z}_{p}$. As in the Case 3, $G_{0}(x)=0$ if $u_{11} \notin p^{-1} Z_{p}$. Hence we can suppose that $\beta \in \boldsymbol{Z}_{p}$. We have only to consider the following two terms:

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & p
\end{array}\right)^{*} x_{2}=\left(\begin{array}{cc}
p \alpha^{\prime} & p \gamma^{\prime} \\
\delta^{\prime} & \beta^{\prime}
\end{array}\right) \quad \text { and } \quad x_{2}\left(\begin{array}{cc}
p & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
p \alpha^{\prime} & \gamma^{\prime} \\
p \delta^{\prime} & \beta^{\prime}
\end{array}\right) .
$$

When $\beta^{\prime} \notin \boldsymbol{Z}_{p}$ we have $G_{0}(x)=0$. On the other hand, if $\beta^{\prime} \in \boldsymbol{Z}_{p}$, the above condition implies that there does not occur the case that both γ^{\prime} and δ^{\prime} belong to Z_{p}. So that we have

$$
G_{0}(x)= \begin{cases}1 & \text { if } \gamma^{\prime} \in \boldsymbol{Z}_{p} \text { and } \delta^{\prime} \notin \boldsymbol{Z}_{p}, \text { or } \gamma^{\prime} \notin \boldsymbol{Z}_{p} \text { and } \delta^{\prime} \in \boldsymbol{Z}_{p} \\ 0 & \text { if } \gamma^{\prime}, \delta^{\prime} \in p^{-1} \boldsymbol{Z}_{p}-\boldsymbol{Z}_{p} .\end{cases}
$$

Anyway, $G_{0}(x)=1$ if and only if $\beta, \beta^{\prime} \in \boldsymbol{Z}_{p}, \gamma^{\prime} \delta^{\prime} \in p^{-1} \boldsymbol{Z}_{p}$ and $\gamma^{\prime} \notin \boldsymbol{Z}_{p}$ or $\delta^{\prime} \notin \boldsymbol{Z}_{p}$, which is equivalent to $u_{11}, u_{12}, u_{22} \in p^{-1} \boldsymbol{Z}_{p}$. Otherwise $G_{0}(x)=0$. Therefore we get the equality (4.1) in this case.

Case 5. We assume that $x_{i} \notin Y_{Z_{p}}, p x_{i} \in Y_{z_{p}}$ for $i=1,2,3$, and for any pair (i, j) there is no $r \in \boldsymbol{Z}$ such that $r x_{i}+x_{j} \in Y_{Z_{p}}$ and there are no $s, t \in Z$ such that $s x_{1}+t x_{2}+x_{3} \in Y_{Z_{p}}$. Then we have $\left(f_{p} \mid T_{0}\right)(x)=\phi_{1}(p x)$. We shall see that it is equal to zero. Let $x_{1}=\left(\begin{array}{ll}\alpha & 0 \\ 0 & \beta\end{array}\right), x_{2}=\left(\begin{array}{ll}\alpha^{\prime} & \gamma^{\prime} \\ \delta^{\prime} & \beta^{\prime}\end{array}\right)$ and $x_{3}=\left(\begin{array}{ll}\alpha^{\prime \prime} & \gamma^{\prime \prime} \\ \delta^{\prime \prime} & \beta^{\prime \prime}\end{array}\right)$ with $\alpha \notin \boldsymbol{Z}_{p}$. Suppose that $u_{i j} \in p^{-1} \boldsymbol{Z}_{p}$ for all i and j. Then we have $\beta \in \boldsymbol{Z}_{p}, \beta^{\prime} \in \boldsymbol{Z}_{p}, \gamma^{\prime} \delta^{\prime} \in p^{-1} \boldsymbol{Z}_{p}, \beta^{\prime \prime} \in \boldsymbol{Z}_{p}, \gamma^{\prime \prime} \delta^{\prime \prime} \in p^{-1} \boldsymbol{Z}_{p}$ and $\gamma^{\prime} \delta^{\prime \prime}+$ $\gamma^{\prime \prime} \delta^{\prime} \in p^{-1} \boldsymbol{Z}_{p}$.

Subcase 1. We assume $\gamma^{\prime} \notin \boldsymbol{Z}_{p}$. We have $\delta^{\prime} \in \boldsymbol{Z}_{p}$ and $\delta^{\prime \prime} \in \boldsymbol{Z}_{p}$. But then there exist r and s in Z such that $r x_{1}+s x_{2}+x_{3} \in Y_{Z_{p}}$, which contradicts our assumption.

Subcase 2. We assume $\delta^{\prime} \notin \boldsymbol{Z}_{p}$. This is also impossible as above.
Subcase 3. We assume $\gamma^{\prime}, \delta^{\prime} \in \boldsymbol{Z}_{p}$. From $x_{2} \notin Y_{Z_{p}}$ we have $\alpha^{\prime} \notin \boldsymbol{Z}_{p}$, but then there exists r in Z such that $r x_{1}+x_{2} \in Y_{Z_{p}}$, which also contradicts our assumption. Therefore we have $\left(f_{p} \mid T_{0}\right)(x)=0$.

On the other hand, by the same method as Case 4 , we have $G_{0}(x)=1$ if and only if

$$
\beta, \beta^{\prime}, \beta^{\prime \prime} \in Z_{p}
$$

and

$$
\begin{array}{lll}
\gamma^{\prime} \in p^{-1} \boldsymbol{Z}_{p}-\boldsymbol{Z}_{p}, \quad \delta^{\prime} \in \boldsymbol{Z}_{p}, \quad \gamma^{\prime \prime} \in p^{-1} \boldsymbol{Z}_{p}-\boldsymbol{Z}_{p}, \quad \delta^{\prime \prime} \in \boldsymbol{Z}_{p}, \quad \text { or } \\
\gamma^{\prime} \in \boldsymbol{Z}_{p}, \quad \delta^{\prime} \in p^{-1} \boldsymbol{Z}_{p}-\boldsymbol{Z}_{p}, \quad \gamma^{\prime \prime} \in \boldsymbol{Z}_{p}, \quad \delta^{\prime \prime} \in p^{-1} \boldsymbol{Z}_{p}-\boldsymbol{Z}_{p} .
\end{array}
$$

If this is true, there exist s and t in Z such that $s x_{1}+t x_{2}+x_{3} \in Y_{Z_{p}}$, which also contradicts our assumption, so that we have $G_{0}(x)=0$. This completes the proof.
q.e.d.

Let φ_{i} be an automorphic form on D_{A}^{\times}. We constructed the Siegel modular form Φ_{B} of degree 3 for some fixed basis B of $\mathfrak{h}(\lambda)$ in Proposition 1. The following corollary is an easy consequence of Theorem 1.

Corollary 1. Let p be an odd prime number. Suppose that φ_{i} is an eigenfunction of $T(p)$ with the eigenvalue $\lambda_{i}(p)$. Then Φ_{B} is also an eigenfunction of T_{0} with eigenvalue $p^{2}(p+1)\left(\lambda_{1}(p)+\lambda_{2}(p)\right)$.

Next we deal with the Hecke operators of degree p^{2}. To state the commutation relations for Hecke operators T_{1} and T_{2}, we introduce two functions:

$$
\begin{aligned}
G_{1}(x)= & \sum_{v_{1}, v_{2}=0}^{p-1} f_{p}\left(\rho\left(\left(\begin{array}{cc}
p & v_{1} \\
0 & 1
\end{array}\right),\left(\begin{array}{cc}
p & v_{2} \\
0 & 1
\end{array}\right)\right) x\right)+\sum_{v_{1}=0}^{p-1} f_{p}\left(\rho\left(\left(\begin{array}{cc}
p & v_{1} \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
1 & 0 \\
0 & p
\end{array}\right)\right) x\right) \\
& +\sum_{v_{2}=0}^{p-1} f_{p}\left(\rho\left(\left(\begin{array}{cc}
1 & 0 \\
0 & p
\end{array}\right),\left(\begin{array}{cc}
p & v_{2} \\
0 & 1
\end{array}\right)\right) x\right)+f_{p}\left(\rho\left(\left(\begin{array}{cc}
1 & 0 \\
0 & p
\end{array}\right),\left(\begin{array}{cc}
1 & 0 \\
0 & p
\end{array}\right)\right) x\right) \\
G_{2}(x)= & \sum_{v=0}^{p^{2}-1} f_{p}\left(\rho\left(\left(\begin{array}{cc}
p^{2} & v \\
0 & 1
\end{array}\right), 1\right) x\right)+\sum_{v=1}^{p-1} f_{p}\left(\rho\left(\left(\begin{array}{cc}
p & v \\
0 & p
\end{array}\right), 1\right) x\right)+f_{p}\left(\rho\left(\left(\begin{array}{ll}
1 & 0 \\
0 & p^{2}
\end{array}\right), 1\right) x\right) \\
& +\sum_{v=0}^{p^{2}-1} f_{p}\left(\rho\left(1,\left(\begin{array}{cc}
p^{2} & v \\
0 & 1
\end{array}\right)\right) x\right)+\sum_{v=1}^{p-1} f_{p}\left(\rho\left(1,\left(\begin{array}{ll}
p & v \\
0 & p
\end{array}\right)\right) x\right)+f_{p}\left(\rho\left(1,\left(\begin{array}{ll}
1 & 0 \\
0 & p^{2}
\end{array}\right)\right) x\right) .
\end{aligned}
$$

Theorem 2. Let the notation be as above. We assume that p is an odd prime number. Let $T_{2}=T\left(1, p, p, p^{2}, p, p\right)$ and $T\left(p^{2}\right)$ be elements of Hecke ring $\mathscr{L}\left(\tilde{K}_{p}, S_{p}\right)$ defined in Section 3. Then

$$
\begin{gather*}
\left(f_{p} \mid T_{2}\right)(p x)+f_{p}(p x)=p^{2}\left\{G_{1}(x)+\left(p^{2}+p+1\right) f_{p}(p x)\right\} \tag{4.2}\\
\left(f_{p} \mid T\left(p^{2}\right)\right)(p x)=p^{4}\left(p^{2}+p+1\right) G_{2}(x)+p^{5}(p+2) G_{1}(x) \tag{4.3}\\
\quad+p^{5}(2 p+1) f_{p}(p x)
\end{gather*}
$$

The proofs of (4.2) and (4.3) are similar to that of (4.1) but more complicated, so we omit them here.

Corollary 2. Let φ_{i} be an automorphic form on D_{A}^{\times}for $i=1,2$ and Φ_{B} be the Siegel modular form constructed by them. Suppose that φ_{i} be an eigenfunction of $T(1, p)$ with eigenvalue $\lambda_{i}(p), i=1,2$. Then
(i) $\Phi_{B} \mid T_{2}=\left(p^{2} \lambda_{1}(p) \lambda_{2}(p)+p^{4}+p^{3}+p^{2}-1\right) \Phi_{B}$
(ii) $\Phi_{B} \mid T\left(p^{2}\right)=\left\{p^{4}\left(p^{2}+p+1\right)\left(\lambda_{1}(p)^{2}+\lambda_{2}(p)^{2}\right)+p^{5}(p+2) \lambda_{1}(p) \lambda_{2}(p)\right.$ $\left.-p^{4}\left(2 p^{3}+2 p^{2}+3 p+2\right)\right\} \Phi_{B}$.

In fact, φ_{i} is also an eigenfunction of $T\left(1, p^{2}\right)$ with the eigenvalue $\mu_{i}\left(p^{2}\right)=\lambda_{i}(p)^{2}-(p+1)$. Then (i) and the following (ii)' are easy consequences of Theorem 2:
(ii) $\quad_{B} \mid T\left(p^{2}\right)=\left\{p^{4}\left(p^{2}+p+1\right)\left(\mu_{1}\left(p^{2}\right)+\mu_{2}\left(p^{2}\right)\right)+p^{5}(p+2) \lambda_{1}(p) \lambda_{2}(p)\right.$

$$
\left.+p^{5}(2 p+1)\right\} \Phi_{B}
$$

We get (ii) at once from (ii)'.
It is clear that the Hecke operator $T_{3}=T(p, p, p, p, p, p)$ acts trivially on f_{p} so we have $\Phi_{B} \mid T_{3}=\Phi_{B}$.

By Theorem C of Andrianov, we know the following relation:

$$
p T_{1}=T_{0}^{2}-T\left(p^{2}\right)-p\left(p^{2}+p+1\right) T_{2}-p\left(p^{5}+p^{4}+2 p^{3}+p^{2}+p+1\right) T_{3}
$$

This gives us the eigenvalue of T_{1} :

$$
\begin{aligned}
\Phi_{B} \mid T_{1}= & \left\{p^{4}\left(\lambda_{1}(p)^{2}+\lambda_{2}(p)^{2}\right)+p^{2}\left(p^{3}+p^{2}+p-1\right) \lambda_{1}(p) \lambda_{2}(p)\right. \\
& \left.+p^{2}\left(p^{4}-p^{3}-p^{2}-2 p-1\right)\right\} \Phi_{B} .
\end{aligned}
$$

Let $f(n)$ be as defined in Theorem C and $\lambda(n)$ the corresponding eigenvalue: $\Phi_{B} \mid f(n)=\lambda(n) \Phi_{B}$. Then, using these formulas, we have

$$
H_{p, \mathscr{ष}_{B}}(t)=\sum_{n=0}^{\infty} \lambda(n) t^{n}=\prod_{i=1}^{2}\left(1-\lambda_{i}(p) p^{3} t+p^{7} t^{2}\right)\left(1-\lambda_{i}(p) p^{2} t+p^{5} t^{2}\right) .
$$

Therefore we get the following theorem.
Theorem 3. Let the notation and assumptions be as in Corollary 2. Define the L-function of φ_{i} by

$$
L\left(s, \varphi_{i}\right)=\prod_{p \neq 2}\left(1-\lambda_{i}(p) p^{-s}+p^{1-2 s}\right)^{-1} .
$$

Then, up to the Euler 2-factor, the L-function of Φ_{B} can be expressed by

$$
L\left(s, \Phi_{B}\right)=\prod_{i=1}^{2} L\left(s-3, \varphi_{i}\right) L\left(s-2, \varphi_{i}\right) .
$$

References

[1] A. N. Andrianov, Shimura's conjecture for Siegel's modular group of genus 3, Soviet Math. Dokl., 8 (1967), No. 6, 1474-1478.
[2] M. Kashiwara and M. Vergne, On the Segal-Shale-Weil representations and harmonic polynomials, Invent. Math., 44 (1978), 1-47.
[3] G. Lion and M. Vergne, The Weil representation, Maslov index and theta series, Birkhäuser, Progress in Math., 6 (1980).
[4] S. Niwa, Modular forms of half integral weight and the integral of certain theta functions, Nagoya Math. J., 56 (1974), 147-161.
[5] G. Shimura, On modular forms of half integral weight, Ann. of Math., 97 (1973). 440-481.
[6] T. Shintani, On construction of holomorphic cusp forms of half integral weight, Nagoya Math. J., 58 (1975), 83-126.
[7] H. Yoshida, Siegel's modular forms and the arithmetic of quadratic forms, Invent. Math., 60 (1980), 193-248.
[8] -, Weil's representations of the symplectic groups over finite fields, J. Math. Soc. Japan, 31 (1979), 399-426.
[9] A. Weil, Sur certains groupes d'opérateurs unitaires, Acta Math., 111 (1964), 143-211.

Department of Mathematics
Faculty of Science
Nagoya University
Chikusa-ku, Negoya 164
Japan

