
Y. Shikata and W. Klingenberg
Nagoya Math. J.
Vol. 100 (1985), 65-81

ON A PROOF OF DIVISIBILITY LEMMA, I

Y. SHIKATA AND W. KLINGENBERG

Introduction

A method to show the existence of infinitely many closed geodesies
on a manifold with non degenerate Riemannian metric is to use socalled
divisibility lemma which is conjectured to hold in [K].

Our purpose in this series of papers is, then, to show first the divi-
sibility lemma in a modified form on ^-sphere Sk (k^>3) with (strongly)
non degenerate Riemannian metric and to deduce the existence of infinitely
many closed geodesies on Sk (k^>$) using the modified divisibility lemma
by equivariant modifications of flows.

In the present paper, we prepare several algebraic tools to prove the
modified divisibility lemma and in the next paper(s) we give necessary
geometric construction to apply the algebraic tools on it and complete the
proof of the divisibility lemma in a modified form.

The algebraic tools introduced in this note are Morse complex, bary-
center Bc and cycle Z(c) over a critical point c.

Though we start this note with abstract Morse complex, it is in
reality defined to be a chain complex over critical manifold of 0 or 1
dimension for a manifold with S1 action and an invariant strongly non
degenerate energy function.

In the chain group of Morse complex, there is defined a natural
splitting Sn ® Tn by the subgroup Sn generated over critical points and the
subgroup Tn generated over critical submanifolds of 1 dimension.

The divisibility property, that is, the possibility to find a critical
point c' for a given critical point c such that m(c')9 the order of c', divides
that of c;

m(cf) I m(c)

then, is translated into a cycle and boundary problem by the notion o:

Received April 3, 1984.
Revised January 29, 1985.

65



66 DIVISIBILITY LEMMA

barycenter Bc over c and the cycle Z(c).
The barycenter Bc(x) is a homomorphism of the chain group into the

(additive) complex number space commuting with the natural Sι actions.
The essential property of the barycenter is that we have

ra(c') I m(c)

if Bc{dcf) Φ 0 for critical points c, c'.
This may be generalized by considering a cycle Z in Morse complex

with non zero barycenter over c and a bounding chain Y = Y(S) + Y(T)
(Y(S) e S, Y(T) e T) such that Bc(dY(T)) = 0 as in Theorem 1.1, which
essentially asserts the algebraic divisibility.

In the final section of this note, we construct a cycle Z(c) e Sn over
a critical point c, in case of the closed path space over Sk, if Z(c) is non
zero in H(Λ(S*)), we find a zero homologous cycle Z easily with non zero
barycenter over c, making use of the orientation reversing map #.

Thus we see that the divisibiliy lemma may be obtained under an
assumption that we can modify the bounding chain Y of Z so as to satisfy
its Γ-component Y(T) is such that Bc(d(Y(T))) = 0.

The modification is done by a geometric method under the assumption
that the fundamental group of the closed path space is zero and will be
done in the next paper (see also Appendix).

We start Section 1 of the present note with abstract Morse complex
and supply in Section 2 its geometric aspect on the space of closed curves
A(M) on a Riemannian manifold M provided that Λ(M) has an Sι in-
variant (strongly) non degenerate energy function.

There we find an S1 equivariant map if of a class of submanifolds
with boundary into the Morse complex.

Though we do not go into full detail, an expository work on them
may be found in [H]. Since K commutes with the boundary operators,
we may consider the map K as a homomorphism of L-equivalence class
of submanifolds into the homology of the Morse complex (for detail see
Fukazawa's master thesis).

The homomorphism K, which is called ^-decomposition, has its
inverse operator H obtained from handle body construction.

Though our original plan was as above, we decided to include in this
paper as appendix a rough sketch of the modification above, socalled
tunnel killing process, to meet several requests we received.
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Also the remarks in the present paper contain the topics which will
be treated in the coming paper.

We thank deeply to Prof. K. Grove, N. Kuiper, M. Nakaoka and D.
Sullivan for valuable discussions and for warm encouragement also to
Dr. T. Ozawa.

§ 1. Abstract Morse complex

We consider S1 as the quotient group of the real number E by the
integer Z and we denote by a ° x the action of a e S1 on x e S for a set
S with S1 action.

Take the projection image {1} of all the intervals {[a, β), a Φ β} in R
by the covering map p of R onto S\ Then the set of the formal elements
Ios (I e {/}, s e S) turns out to be a set with S1 action by defining

To(Ios) = Io(γoS), γ e S1 .

Among the set {J°s} of the formal elements, we introduce an equi-
valence relation ~ using the covering coordinate;

T o (p[α, j8)) o a) - p([a+f, β + f))os

for p(f) = ϊ.
If there occurs no confusion, we identify ΐ and ϊ in what follows.
The set {I°s}/~ = Γ = T(S) is well defined and have an S1 action

induced from that on {I°s}.
In case that we are given a sequence {Sn} of sets with S1 action,

we set

The free abelian groups over Sn and Tn have natural Sι action and
will be denoted again by Sn and Tn9 respectively.

For the sake of simplicity, we may divide Tn by the usual degeneracy
to have the following relation, we still use Tn for the quotient:

Pda, β))°s+ p([β, ϊ))os= p([a, ϊ))os

P ( k β)) ° (8ι + 52) = p([α, β)) o s, + p([a, β)) o s2

Assume that we are given a boundary 9 fo Sn into S ^ θ ^ . i com-
muting with S1 action and extend it to Tn+1 by
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9(P([*, β)) ° s) = p(α) o s - p(β) o 5 - p([a, β)) o 9s .

Then (SΛ θ r n , 3) turns out to be a chain complex with S1 action.

The chain complex obtained in this way from sets {Sn} and boundary

3 is defined to be an abstract Morse complex (with S1 action) associated

to {Sn} and d. The element in Sn or in Tn is said to be summit or tunnel,

respectively.

Denote by I(x) the isotropy group of x e Sn 0 Tn

The order ord (I(x)) of I(x) is called the (abstract) multiplicity m(x) of x.

We assume here m(c) is finite for any base c e Sn.

LEMMA 1. From the definition, it is obvious that m(c) = m([a, β) o c)

for c e S except for the case aoc = β<>c.

For a base c in Sn, the small circle σc on c is a subset of basis of

Sn defined by

a(c) = {gocl0^g<llm(c)}.

For an arithmetic sequence

{a, = ilkm(c) + β, i = 1, . .-,*}

the set of summit basis {at o c / £ = 1 k) or tunnel basis {α4 o Jo c / / = 1 k)

(I e {I}) is said to be evenly distributed on σ(c).

Obviously for e = βoc or Jo c the evenly distributed k elements

{atoe I i = l -k}, is invariant under the action of p/km(s) e S1 for any

natural number p. Thus the sum Σ ί at °e e Sn®Tn is also invariant

under the action of p[km(c) and is called the elementary invariant of

order k over c.

LEMMA 2. If x e Sn® Tn is invariant under a finite group G c S\

then x decomposes into a sum of elementary invariants each of which is

invariant under G.

In fact, we see first the component xc of x over the basis system on

the small circle σc of c is G invariant for any c. We see also the set of

basis which appears in xc is G invariant and therefore splits into a dis-

joint union of G invariant sets Aj = {a{ o e) on which G acts transitively.

Thus the invariance of xc implies the component of xc over the basis

Aj has the same coefficient, indicating that
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a3 e Z ,

w h e r e w e u s e Σ*c t o s y m b o l i z e t h e s u m o v e r s u m m i t e = βoc o r t u n n e l

e — Ioc lying on σc,

COROLLARY 1. For any x e Sn 0 Tn, dx also decomposes into a sum

of elementary invariants each of which is invariant under the ίsotropy I(x)

of x.

For a base c e Sn define a map Bc of the small circle σc over c onto

the unit circle of center zero in the complex number space by

Bc(aoc) = exp(2π<f^Λm(c)a) .

Extend the map Bc to a linear map over Z of Sn Θ Tn into the complex

number space, setting Bc(e) = 0 for any base e <£ σc or e e TV

The map Bc is obviously well defined and has the following property:

LEMMA 3. Bc is linear over Z and satisfies that

Bc(a o x) = exι>(2π^f::Λm(c)a)Bc(x) .

The image JBC(JC) of x e Sn ® Tn is called the barycenter of x (over c).

COROLLARY 2. For the elementary invariant yk of order k yk =

Σ« i/km(c) o c, ί/ie barycenter Bc(yk) is 1 if k = 1 and is 0 £/ £ > 1.

The case & = 1 is obvious and for k > 1 we see that the set con-

sisting of the elements

Bc(ilkm(c) o c) = exp (2ττvΛ^l i/A) i = 1, • • - , £ ,

is nothing but the set of A-th roots of unity. Therefore the coefficient of

(k — l)-th term of the equation xk — 1 = 0 agrees with the sum

- BC(Σ i/km(c) o c) = - Σ Bc(ilkm(c) o c).

Since any elementary invariant element x of order k over c is

obtained as the shift of yk9 that is, x = a<>yk for some k and α e S\ we

have

COROLLARY 3. For any elementary invariant x over c, it holds that

Bc(x)Φθ, if and only if elementary invariant x is of order 1, in other

words,

x = aoc, a e S1 .
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It follows easily from Corollaries 1 and 3 that Bc(3x)φ0 implies c is
invariant under I(x), that is, I(c) contains I(x) as a subgroup, yielding
that m(x) divides m{c). Here we have to notice that like in case x itself
is a tunnel piece loc over c for example, the statement above might
happen to say nothing special.

Therefore we rewrite it as follows:

PROPOSITION 1. For a summit element x e Sn+ί suppose there exists a

summit base c e Sn such that Bc(dx) Φ 0, then there is found a summit

base & e Sn+1 such that c belongs to dcr and m(&) divides m(c).

Take a chain x e Sn 0 Tn and an elementary decomposition of dx of

Lemma 2, which we write

using the notation in Lemma 1.
Take then the set {km(c)} of the order times the multiplicity of ele-

mentary invariants in the decomposition above and introduce a partial
order -< in the set by

p, > p2 if and only if p2\px .

We notice here that for an elementary invariant Σ ^ o β °f order k
over c, it holds that

2 at o e = Ijp o ( 2 <χt o e)

for any p < km(e). Thus the set P = {pί9 , p j of minima in the set
{km(c)} relative to the order -< satisfies that

where (1 θ 1/p) ° y stands for y — Ijp o y.

Therefore we have

LEMMA 4. For an xe Sn® Tn, there corresponds a cycle Z(x) which is

of the form

Z(x)= Πίlθl/WO)^,

where kiy m(e^) are the order and the multiplicity of elementary invariants
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in dx, respectively.

Direct computation using Lemma 3 yields

LEMMA 5. If c is a summit base, the barycenter over c of the cycle

Z(c) is as follows:

Bc(Z(c)) = Π (1 - exp (2TΓΛΓΓΪ m(c)/^m(c,)))

COROLLARY 4. For a summit base c, Bc(Z(c)) is not zero if in the

decomposition of dc there is no elementary invariant e whose multiplicity

m(e) divides m(c).

We say a cycle x e Sn 0 Tn is connected if there are no non zero

cycles xl9 xz so that x = xi + x2.

COROLLARY 5. For any summit base c, the cycle Z(c) above is connected.

Now we can formulate the first step of the divisibility as follows:

THEOREM 1. For any summit base c e Sn we have the following two

cases:

1) There appears a summit base c_ e Sn_t or a tunnel base Ioc__(c__ e Sn_2)

on the boundary dc such that

m(c_) I m(c) or m(c_ _) | m(c) .

2) Otherwise we have non zero cycle Z(c) of non zero barycenter over c.

Therefore if Z(c) or Z(c) + y is bounded by a summit element x for some

y with barycenter zero over c, then there is found a summit base c'eSn+ι

such that

m{d) I m(c).

§ 2. Morse theory on the path space

We review quickly here some of the notions and notations from the

Morse theory (A = Λ(M), E) on the space A of non trivial Hι closed

curves on a Riemannian manifold M and the energy function E on A.

([K]).

If Riemannian metric is non degenerate, then the (non-trivial) critical

point of E agrees with the closed geodesic in M and for each critical

point c there are associated the strongly stable, manifold S(c) and the

strongly unstable manifold U(c) which are open submanifolds in A:
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S(c) = fx/lim φt(x) =

U(c) = {#/ lim φt(x) == c\

where ψt is the flow on A obtained from — grad E.
Being A interpreted as a subspace of the mapping space of S1 into

M, the group S1 and Z2 act on A through the parameter shift or inversion:

θ o a(t) = a(t + θ)

$oa{t) = a(- t ) , (a e A,t,θ e S1)

The set S^Sic) = Όθes^QS(c) covers the stable manifold σ(S(c)) and
it holds that

dim U(c) = index c = codim σ(S(c))

codim S (c) = index c + 1 .

We take the set of the critical points of index n together with an
orientation in U(c) to be the set Sn in Section 1, then we contract the
abstract Morse complex over the set of the critical points.

Thus we identify the summit base c to a geometric critical point in
A or more geometrically, to the (oriented) unstable manifold U(c) around
c and we can speak of (geometric) tunnel piece and the small circle.
The abstract tunnel piece [a, β)oc over c may be considered as a set of
critical points

[a, β)oc = U toc
a<t<β

or as a submanifold (covered by)

[a,β)oU(c)= U toU(c),
a<t<β

and the small circle σc may be considered as a circle given by

σc — [J t o c .
0<t<l/m(c)

The gradient flow defines a map π of σ(S(c)) onto the small circle σc.
The map π defines a correspondence of the set of points in σ(S(c)) into
the set of summit basis on σc and also that of the set of curves in σ(S(c))
into the set of tunnel basis on σc. We notice that

LEMMA 1. If an n-submanίfold X of A (may have boundary and be
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non connected) is transversal to every stable submanifold σ(S(c)), then X

splits into a disjoint union of intersections X Π σ(S(c));

σc

and the tangent space TP(X) of X at P e X Π σ(S(c)) splits into two parts:

TP(X) =

where U projects onto the tangent space of U(π(X Π σ(S(c))) and Vprojects

down to zero by π*.

In particular for a transversal submanifold X and for critical point

c, c_ of index n, n — 1, respectively, we have that

X Π σ(S(c)) = {points}

X ίΊ σ(S(c_)) = {curves}.

Hence by π we have a correspondence Ks, Kτ of transversal n-sub-

manifold into the set of basis in Sn, Tn respectively, discarding another

intersection then these giving ^-dimensional basis. The correspondence

Ks, Kτ yields naturally a correspondence Ks, Kτ into the n-chain group

Sn, Tn, respectively. Finally, K = Ks® Kτ gives a correspondence into

the group Sn Θ Tn.

LEMMA 2. All the correspondences KSy Ks, Kτ, Kτ, K commute with

S 1 action and relative to the disjoint union of submanifolds Ks, Kτ, K turn

out to be homomorphίsm.

DEFINITION. Riemannian metric on M (and the induced energy func-

tion E on Λ{M) is said to be strongly non degenerate if it is non

degenerate and if the strongly unstable manifold U(c) is transversal to

any stable manifold <7(S(cO) for every critical points c, c'.

Remark. For our purpose, it may not be strictly necessary to have

strongly non degenerate Riemannian metric, because we may twist the

energy function induced from non degenerate Riemannian metric so as to

be S1 invariant, strongly non degenerate and to have the same critical

point as the original energy function.

Though we shall return in the coming paper to this problem of

removal of the strong non degeneracy assumption, we sketch here roughly

how it should be done: Suppose that the unstable manifold U(c) of c is
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not transversal to a stable manifold tf(S(c')) of c' with E(&) < E(c). We

may consider these manifolds are in the tangent space of c, where U(c)

appears as a linear space orthogonal to the S1 action. Then the non

transversal intersection is on the boundary ΘDε of ε disk Dε around 0 in

the tangent space and is orthogonal to the S1 action. Therefore we may

twist the tangent space keeping the direction of the S1 action fixed so as

to the intersection is transversal including the finite action of isotropy

group.

Since the twisting can be chosen to be diffeotopic to the identity by

a suitable diffeotopy ht, we define energy function E as follows:

%-«E on Dh

E outside of D±,

where D± is the ε disk of codimension 1 in Dε orthogonal to the S1

action. And we extend E trivially onto σDε by the S1 action, which is

possible by the invariance of E under the S1 action.

Therefore without loss of generality, we may assume the strong non

degeneracy in what follows, under the non degeneracy assumption.

We define boundary dc of a critical point c e Sn as follows:

Take a small ra-disk D(c) around c in the strongly unstable manifold

U(c) so that its (geometric) boundary dD(c) is transversal to the gradient

flow and set

dc = K(βD(c)) \

LEMMA 3. The definition above is independent of the choice of D and

therefore d is well-defined.

In fact, the transversality with the gradient flow implies that the flow

gives a diffeomorphism between D and a standard transversal sphere N

around c obtained from ε-sphere in the negative boundle.

Since U(c) Π σ(S(c_)) contains the flow from c to σ<>c_ as long as it

is not empty, the diffeomorphism gives the 1-1 correspondence between the

intersection of σ(S(c')) with 3D and with Nε.

COROLLARY 1. 3 commutes with the S1 action.

Let X be a compact closed submanifold in AM transversal to every

stable, unstable manifolds. We assume further that for each p e X Γ) σ(S(c))

there exists a neighbourhood N(p) in X which covers D(c) under the flow,
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which we refer X to be in the nice position.

It is obvious that if dD(c) intersects with σS(c_) (ind c_ = n — 1), then

dN(p) also intersects with it and therefore X has 1 dimensional intersec-

tion with σS(c_).

Take any non closed connected component ϊ of the 1 dimensional

intersection X Π σS(c_) which does not contain any intersection with σS(c)

(ind c = n) except both ends. Then we see that T ends with critical points

cu c2 of index n and that ϊ has point intersections with iV(cj), N(c2), which

make a part of the boundary component of dcl9 dc2. Obviously ϊ corre-

sponds to a tunnel piece over c_ and the summit part of dϊ cancels the

boundary component above from dcu dc2.

Thus in this manner we see that the summit components of {dc} of

critical points {c} of index n in X should be cancelled directly or by

tunnel pieces in X in general. In a similar way, we see that the tunnel

pieces of {dc} are cancelled and therefore we see that dK(X) = 0 for a

closed submanifold X sitting in a nice position. Since we can show that

any transversal X may be twisted into the nice position keeping K(X)

fixed, we may concluded that ddc = 0 taking X to be (the set theoretical)

boundary 3D(c) of D(c).

LEMMA 4. On Sn, d is a differential operator, that is, d o 3 = 0 on Sn

PROPOSITION 1. We can associate cannonically an abstract Morse

complex to the Morse theory on (Λ, E) provided the non degenerate condition

for (Λ, E). The summit base of the complex corresponds to the critical

point such that the dimension and the multiplicity in the Morse complex

agrees with the index in the ordinary sense and the multiplicity except

factor 2, respectively.

Only the multiplicity part may need explanation. Since the orientation

in U(c') is taken into consideration, the order of isotropy of a critical

point c may differ by factor 2, when c is consider only as a point and

when c is considered together with orientation in the unstable manifold

U(c), resulting the difference of factor 2 at most in the multiplicities.

If we take a submanifold X with boundary dX in the argument above

instead of a closed submanifold, we see that the curve ϊ obtained as

r = X Π d(S(c_)), ind (c.) - dim X - 1

may end in dX and that the totality of these points agrees with the
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summit part of d(K(X)). Since a similar argument yields this holds also
for the tunnel part, we have

PROPOSITION 2. For a transversal submanifold X in A it holds that

dK(X) = K{dX).

Thus operator K gives a natural correspondence of the set of trans-
versal submanifolds into the chain group of the Morse complex (see also
Lemma 2).

We also can construct a natural correspondnece J of the chain group
into the set of submanifolds as follows: First for a summit base ceSny

let J(c) = D(c) where D(c) is the (oriented) rc-disk in U(c) centered at c
and next for a tunnel [a, β)°c, let J([a, β)°c) = \Ja<t<βt° D(c), then for a
chain x = 2 α ^ define J(x) to be the disjoint union of at copies of J{ej).
Finally J(x) is given as a submanifold (may not be connected) without
intersection obtained from J(x) in a canonical way, so as to keep K
image fixed, making use of the dimensionality of A.

It is obvious that

LEMMA 5. KJ{x) = x for any x e Cn.

§ 3. Relations to homology

We review quickly a proof that the homology of the abstract Morse
complex associated to the Morse theory (A, E) is isomorphic to that of
the path space A under the non degenerate condition referred in page 73.

The non degeneracy admits us to decompose A into unstable manifolds
σU(c) and therefore into Xί+1 given by

σU(c)= U toU(c),
0<ί<l/ra(c)

Xκ + 1 = U σU(c)
ind c = n

so that

d(σU(c)) a\JXi9 ind c = n

(see Lemma 1, § 2)

Thus we see that the boundary definition in Section 2 agrees with
the boundary as the cell complex for each cell σU(c).

THEOREM 1. Under the non degeneracy assumption which says the
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transversality of stable and unstable manifolds, we have a canonical

isomorphism of homology groups between A and the abstract Morse complex

associated to the Morse theory (A, E).

The integral homology of the space A = A(Sn) for n sphere Sn is

computed by Schwarz [Sch]. The result is as follows:

(Z; j = 0, (2i - ί)(n - 1), (2ί - ϊ)(n - 1) + 1

Hj(A(S^))= Z2; j = 2i(n-l) + l

[0; otherwise

Since there is constructed Klingenberg homotopy w't for a rational

generator wt of H{u_1){n_1)(A{Sn)) so that

wt + UWi = dw'i,

we see that for any cycle Z in A(Sn) of dimension (2i — ί)(n — 1), there

exists a chain Yt or Y2 in Λ(Sn) such that

Z = dY: or Z + £Z = dY2,

respectively.

In general we can use the fact that Hj(A(Sn)) is generated by at most

a single generator Vj for each dimension to find a chain y3 which satisfies

v3 ± $Vj = dy3 .

Therefore we have

PROPOSITION 1. For each cycle Z on A(Sn), we have one of the following

possibilities:

1) for a chain Yu Z = dYx

2) for a chain Y29 Z + &Z = dY2

3) for a chain Y3, Z - $Z = dYz,

here we note that we may take Z, and Yt as a cycle and chains in the

abstract Morse complex, because of Theorem 1.

Identifying summit base to closed geodesic by Proposition 1.2, we

start with any closed geodesic c. First we see from Theorems 1, 2 that there

is a closed geodesic c_ of 1 (or 2) less index on dc such that m(c_)\m(c)

or there is a connected cycle Z(c) with non zero barycenter over c. Then

by Proposition 1 we have a bounding chain Yu Y2 or Y3 such that
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Zί = dY1, Z2 = Z + $Z = dY2 or Z3 = Z-$Z = dYz.

By the operator Jo, we realize Yi (£ = 1, 2 or 3) by a submanifold J0(Yi)

in Λ(Sn) so that

Zt = K(d(J0(Yt))) (i = 1, 2 or 3) .

Since Be(9Z(c)) = 0, Theorems 1, 2 imply the divisibility by c' with 1

higher index, provided Y* has no tunnel piece of non zero barycenter.

Hence we have the following first version of the divisibility lemma:

PROPOSITION 2. // it is possible to modify the bounding chain 5̂  for

any cycle Zt so as to Yt does not contain any tunnel piece of non zero

barycenter then we see that for any closed geodesic c on Sn, one of the

following two possibility holds:

1) There is a closed geodesic c_ of1 or 2 less index so that

m(c_)\2m(c), c_ e dc .

2) There is a closed geodesic & of 1 higher index so that

m{cf) 12m(c), c e dcf.

The multiple 2 comes from the orientation in the unstable manifold

(see Proposition 1, in § 2).

The proof of the assumption part in Proposition 2 will be given in

Part 2, and also in the appendix we give only a rough sketch under no

twisting assumption.

Appendix. A rough sketch of the tunnel killing process

For the sake of simplicity, we call a submanifold of AM is transversal

if it is transversal to any stable manifold in AM and we understand sub-

manifold are orientable and may have boundary, unless otherwise specified.

For a transversal submanifold A we define a class R(A) of transversal

submanifolds as the totality of compact transversal submanifold X of 1

higher dimension than that of A satisfying K(dX) = K(A).

We say for a chain c in Morse complex of AM that c is realized by

a submanifold, if there exists a transversal submanifold X of the same

dimensionality as c in AM such that K(X) = c.

Then by taking suitable copies of unstable manifolds to see the

following is easy, (see [K-S]).
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LEMMA 1. A chain c of Morse complex can be realized by a submanifold.

COROLLARY 1. For a cycle Z of Morse complex the submanifold real-

ization X of Z can be so chosen that X is connected and X e R(φ).

This is obtained by attaching 1 handles killing disconnectivity of Xo

and the critical points on dX0 at the same time to the realization Xo of
Lemma 1 ([K-S]).

COROLLARY 2. // π^ΛM) = 0 then the realization X of a cycle Z in
Corollary 1 can be chosen so that π^X) = 0 for any Z of dim Z I> 4.

In fact, obviously attaching 2 handles kills 1st homotopy of Xo of
Corollary 1. Since the handles are obtained by the thickening of 2 disks
attached to XQ at its boundary, we may avoid intersections of the handles
with any stable manifold of the critical points of dimension 3 shifting the
disks into transversal position.

A submanifold X in AM is said to admit tunnel splitting if there
exist disjoint open sets S(X), T(X) in X so that S1 action defines a foliated
structure on T(X), S(X) is not tangential in S1 direction to any (weak)
stable manifold σS(c) and the submanifolds S(X), T(X) with boundary
satisfy that

S(X)UT(X) = X.

From the construction of realizations, we deduce easily the following:

LEMMA 2. All the realizations in Lemma 1, Corollaries 1,2 of a chain

in Morse complex admit the tunnel splitting.

In the rest of this section, we assume that any summit piece c has
no tunnel on its boundary which we refer as no twisting property.

LEMMA 3. If a submanifold X admits a tunnel splitting and if
= 0, then the foliated structure on, T(X) is trivial.

In fact, if BTψφ then as a closed subset of a compact set, dT is
compact and split into 2 connected components JB+, S_, because of orient-
ability of T and of no twisting property.

Since the foliated structure is deduced from S1 action, it has the
special coordinate coming from S1 action and therefore is non compres-
sible. Thus around the closed leaf B+ or JB_, it is obviously trivial.
Continuation of the process yields Lemma.
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COROLLARY 3. Under the same assumption as in Lemma 3, we see

that any connected component C of the tunnel part of the tunnel splitting

is diffeomorphic to Bχ[0, θ] for some θ e S\ in particular the boundary 3C

of C consists of 2 components B+, B_ so that

K(B+) = θoK(B_).

The following is obvious from the duality, independent of no twisting

property;

LEMMA 4. Suppose a compact submanίfold X contains a closed con-

nected submanίfold B of codimensίon 1. // πx(X) = 0, then X — B splits

into 2 disjoint open sets.

PROPOSITION 1. Assume no twisting property and take a submanifold

X bounding connected submanίfold Z which has no tunnel in it. If X

admits a tunnel splitting and if πx{X) = 0, then we can kill tunnel part

from X, that is, we can construct a submanίfold X1 bounding Z so that

KT(X) = 0.

In fact Corollary 3 implies any connected component C is of the form

B X [0, θ] and has no intersection with Z. Thus Lemma 4 yields that X— C

splits into 2 disjoint sets X+, X_, one of which contain Z, X_ZD Z e.g.

Thus take X_ U Θ~1°X+ and attach handles along the gradient flow to

have a manifold X' bounding Z again. Since nx(X') = 0, we may continue

this process until we kill all the tunnel part from X.

Combining Proposition 1, Lemma 2 and Proposition 3 of Section 2 of

Part 1, we finish the proof of Divisibility Lemma under the assumption

of no twisting property.

Remark. The tunnel piece on the boundary of a critical point appears

in a particular way. If this happens, S(c) looses its transversality to S1

action on its boundary, in contrast with the usual tunnel piece. There-

fore taking a special consideration on this fact we may kill the tunnels

in a similar way as above assuming no twisting property only for 2

dimensional summits, all these will be done in the following part.
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