ERRATUM TO MY PAPER: ON THE INVARIANT DIFFERENTIAL METRICS NEAR PSEUDOCONVEX BOUNDARY POINTS WHERE THE LEVI FORM HAS CORANK ONE

GREGOR HERBORT

While the author's article [He] was printed, it turned out, that, unfortunately the function $\mathscr{C}_{2 k}$ occuring in the statement of Theorem 1 in [He] was not correctly defined. In particular, the first part of section 5 in [He] must be changed, since part c) of Lemma 3.2 is not correct. In this short note we describe which alterations need to be made in order to get a satisfactory definition of $\mathscr{C}_{2 k}$ and proof of Theorem 1.
a) First of all, in the definition of the functions A_{l} in formula (1.5) of [He] the holomorphic tangential field L_{n} has to be replaced by a holomorphic tangential field L_{*} without zeroes on B, with the property $\partial r\left(\left[L_{a}, \bar{L}_{*}\right]\right)=0$ for $2 \leq a \leq$ $n-1$. If we assume that the submatrix $\left(\mathscr{L}_{a \bar{b}}{ }_{a, b=2}^{n-1}\right.$ is invertible throughout B, then such a holomorphic tangent field always exists. Furthermore, although L_{*} is determined only up to a multiplicative smooth factor, the estimates (1.7) and (1.9) from [He] hold independently of the choice of L_{*}.
b) The normalization of the g_{a}-functions occuring in formula (2.4) of [He] cannot be done exactly as claimed on [He], p. 30, but we can, step by step, eliminate the antiholomorphic terms from the g_{a} by a series of transformations of the form

$$
\begin{aligned}
& w_{1}^{\prime} \rightarrow w_{1}^{\prime}, \\
& w_{a}^{\prime} \rightarrow w_{a}^{\prime}+\gamma_{a} w_{n}^{\prime m_{a}}, \quad 2 \leq a \leq n-1 \\
& w_{n}^{\prime} \rightarrow w_{n}^{\prime} .
\end{aligned}
$$

Then the statement of Theorem 3 remains correct. Furthermore, part c) of Lemma 3.2 , together with its proof, should be ignored.

Received September 9, 1993.
c) Since the function $\mathscr{C}_{2 k}$ has been changed, other computations for the transformation from the normalized coordinates to the original ones are necessary. We now sketch them (The notations are as in [He]): We have to show

$$
\begin{equation*}
\sum_{l=2}^{2 k}\left(\frac{\left\|P_{l}(\cdot ; q)\right\|}{t}\right)^{\frac{2}{l}} \approx \mathscr{C}_{2 k}(z)^{2} \tag{1}
\end{equation*}
$$

(Here we write $f \approx g$ for two functions f, g, to indicate that there is a uniform constant $c>0$, satisfying $\left.\frac{1}{c} f \leq g \leq c f\right)$. Let C denote the matrix $\left(\mathscr{L}_{a, \bar{b}}\right)_{a, b=2}^{n-1}$, which is supposed to be invertible on B. Also we write $F=F(\cdot, q)$ for the transformation of [He], Theorem 3 and put $\hat{r}=\hat{r}_{q}=r^{\circ} F^{-1}$.

We choose L_{*} as follows:

$$
L_{*}=\sum_{i=2}^{n-1} s_{i} L_{i}+L_{n},
$$

where the functions s_{n}, \ldots, s_{n-1} are smooth on B and defined by

$$
\left(s_{2}, \ldots, s_{n-1}\right)=-\left(\mathscr{L}_{n \overline{2}}, \ldots, \mathscr{L}_{\overline{n-1}}\right) C^{-1}
$$

We use the notations $L^{\prime}=F_{*} L_{*}, \hat{\mathscr{L}}_{i \bar{j}}=\partial \bar{r}\left(\left[\hat{L}_{i}, \widehat{\hat{L}}_{j}\right]\right)$, and $\hat{C}=\left(\hat{\mathscr{L}}_{i j}\right)_{i, j=2}^{n-1}$, where

$$
\hat{L}_{i}=\frac{\partial}{\partial w_{i}}-\frac{\partial \hat{r} / \partial w_{i}}{\partial \hat{r} / \partial w_{1}} \frac{\partial}{\partial w_{1}}, \quad 2 \leq i \leq n .
$$

Then
(2) $\quad \hat{L}_{i \bar{j}}=\frac{\partial^{2} \hat{r}}{\partial w_{i} \partial \bar{w}_{j}}-\frac{\partial^{2} \hat{r}}{\partial w_{i} \partial \bar{w}_{1}} \frac{\partial \hat{r}}{\partial \bar{w}_{j}}-\frac{\partial^{2} \hat{r}}{\partial w_{1} \partial \bar{w}_{j}} \frac{\partial \hat{r}}{\partial w_{i}} / \frac{\partial \hat{r}}{\partial w_{1}}+\frac{\partial^{2} \hat{r} / \partial w_{1} \partial \bar{w}_{1}}{\left|\partial \hat{r} / \partial w_{1}\right|^{2}} \frac{\partial \hat{r}}{\partial w_{i}} \frac{\partial \hat{r}}{\partial \bar{w}_{j}}$

The field L_{*} transforms under F as follows:

$$
L^{\prime}=F_{*} L_{*}=-\sum_{i, j=2}^{n-1} \hat{\mathscr{L}}_{n j} \hat{\bar{j}}^{i i} \hat{L}_{\imath}+\hat{L}_{n} .
$$

where $\hat{C}^{i j}$ denotes the entries of \hat{C}^{-1}. For $l \geq 2$ we introduce the functions

$$
A_{l}^{\prime}(w)=\max \left\{\mid L^{\prime a-1} \bar{L}^{b-1} \hat{\lambda}(w) \| a, b \geq 1, a+b=l\right\}
$$

where $\hat{\lambda}=\operatorname{det}\left(\hat{\mathscr{L}}_{i j}\right)_{i, j=2}^{n}$. From the fact that

$$
\left|\operatorname{det}\left(\frac{\partial F_{i}}{\partial z_{a}}\right)_{i, a=2}^{n}\right|^{2} \equiv 4 \lambda^{\prime}(q)\left|\frac{\partial r(q)}{\partial z_{1}}\right|^{2}
$$

and

$$
\lambda_{\partial \Omega}=\left|\operatorname{det}\left(\frac{\partial F_{i}}{\partial z_{a}}\right)_{i, a=2}^{n}\right|^{2} \hat{\lambda}^{\prime} F
$$

we easily see by computation

$$
A_{l}^{\prime}(F(z))=\frac{1}{4 \lambda^{\prime}(q)\left|\frac{\partial r}{\partial z_{1}}\right|^{2}} A_{l}(z)
$$

Let us put

$$
\mathscr{C}_{2 k}^{\prime}(w)=\sum_{l=2}^{2 k}\left(\frac{A_{l}^{\prime}(w)}{\mid \hat{r}(w)\rceil}\right)^{\frac{1}{l}} .
$$

Then it is obvious that the proof of (1) will be complete once we have shown

$$
\begin{equation*}
\mathscr{C}_{2 k}^{\prime}\left(-t, 0^{\prime}\right) \simeq \frac{1}{R_{n}(t)} \tag{3}
\end{equation*}
$$

By the mean value theorem together with inf $A_{2 k}>0$, we see that in (3) we may replace ($-t, 0^{\prime}$) by 0 . Now we only need to take into account that

$$
\begin{gathered}
\frac{1}{R_{n}(t)} \simeq \max _{2 \leq I \leq 2 k} \max _{a, b \geq 1, a+b=l}\left(\frac{\left|\frac{\partial^{a+b} \hat{r}(0)}{\partial w_{n}^{a} \partial \bar{w}_{n}^{b}}\right|}{t}\right)^{1 / l} \\
\mathscr{C}_{2 k}^{\prime}(0) \simeq \max _{2 \leq l \leq 2 k} \max _{a, b \geq 1, a+b=l}\left(\frac{\left|L^{\prime a+b} \bar{L}^{b-1} \hat{\lambda}(0)\right|}{t}\right)^{1 / l}
\end{gathered}
$$

in order to see that (3) will follow from

Lemma 5.1. For any integers $a, b \geq 1$ there exists a constant $C_{a b}>0$, independent of q, such that for all sufficiently small t one has the estimate

$$
\begin{equation*}
\left|L^{\prime a-1} \bar{L}^{\prime b-1} \hat{\lambda}(0)-\frac{\hat{\lambda}^{\prime}(0)}{\left|\partial \hat{r}(0) / \partial w_{1}\right|^{2}} \frac{\partial^{a+b} \hat{r}}{\partial w_{n}^{a} \partial \bar{w}_{n}^{b}}\right| \leq C_{a b} \frac{t}{R_{n}(t)^{a+b-1}} . \tag{4}
\end{equation*}
$$

For the proof of this we need to compare the iterates of L^{\prime} and its conjugate with the mixed partial derivatives with respect to w_{n}. In order to state the relevant formulas we introduce the following sets:

For a positive integer p we put

$$
M_{p}^{\prime}=\left\{\left.\frac{\partial^{\nu+\mu} \hat{r}}{\partial w_{n}^{\nu} \partial \bar{w}_{n}^{\mu}} \right\rvert\, 1 \leq \nu+\mu \leq p\right\}
$$

and

$$
\begin{aligned}
M_{p}^{\prime \prime} & =\left\{\left.\frac{\partial^{\nu^{\prime}+\mu^{\prime}+1} \hat{r}}{\partial w_{j}^{\alpha} \partial \bar{w}_{j}^{\beta} \partial w_{n}^{\nu^{\prime}} \partial \bar{w}_{n}^{\mu^{\prime}}} \frac{\partial^{\nu^{\prime \prime}+\mu^{\prime \prime}+1} \hat{r}}{\partial w_{s}^{\gamma} \partial \bar{w}_{s}^{\delta} \partial w_{n}^{\nu^{\prime \prime}} \partial \bar{w}_{n}^{\mu^{\prime \prime}}} \right\rvert\, \alpha, \ldots, \delta, \nu^{\prime}, \ldots, \mu^{\prime \prime} \geq 0,\right. \\
2 & \left.\leq j, s \leq n-1, \alpha+\beta=1, \gamma+\delta=1, \nu^{\prime}+\cdots+\mu^{\prime \prime} \leq p\right\} .
\end{aligned}
$$

Let us denote $M_{p}=M_{p}^{\prime} \cup M_{p+1}^{\prime \prime}$, and call S_{p} the set of all functions which are smooth on B and which are rational functions in the derivatives of \hat{r} of order $\leq p$. For two sets T_{1}, T_{2} of smooth functions on B we denote by $T_{1} T_{2}$ the set of sums of products of a function from T_{1} with a function from T_{2}.

Lemma 5.2. For any positive integers a, b we have

$$
\begin{equation*}
L^{\prime a-1} \bar{L}^{b-1} \hat{\lambda}-\frac{\lambda^{\prime}}{\left|\frac{\partial \hat{r}}{\partial w_{n}}\right|^{2}} \frac{\partial^{a+b} \hat{r}}{\partial w_{n}^{a} \partial \bar{w}_{n}^{b}} \in S_{a+b} M_{a+b-1} \tag{5}
\end{equation*}
$$

Proof. The case $a=b=1$ follows from (2) and the Leibniz rule for the determinant $\hat{\lambda}$. We observe that for any positive integer p the set M_{p} satisfies $L^{\prime}\left(M_{p}\right) \subset M_{p+1}$ and $\bar{L}^{\prime}\left(M_{p}\right) \subset M_{p+1}$. The proof of the lemma now follows by induction on a. The details will be omitted, since they are based on elementary calculus.

Proof of Lemma 5.1. If we choose in (3.10) of [He] $w_{n}=R_{n}(t)$, we obtain for any function $f \in M_{p}$:

$$
|f(0)| \leqslant \frac{t}{R_{n}(t)^{p}}
$$

Applying this to $p=a+b-1$ we obtain (4).
d) If we in the definition of the functions $s_{a}(X), 2 \leq a \leq n$ replace the vector field L_{n} by L_{*}, also Theorem 2 becomes correct. The computations for converting the formula of Theorem 6 into the term $M_{\Omega}(z, X)$ are similar to those in c).

REFERENCES

[He] G. Herbort, On the invariant metrics near pseudoconvex boundary points where the Levi form has corank one, Nagoya Math. J., 130 (1993), 25-54.

Bergische Universitaet-Gesamthochschule Wuppertal
Fachbereich Mathematik
Gaussstrasse 20 D-42097 Wuppertal

