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THE MEAN VALUES OF DIRICHLET /.-FUNCTIONS

AT INTEGER POINTS AND CLASS NUMBERS

OF CYCLOTOMIC FIELDS

MASANORI KATSURADA* AND KOHJI MATSUMOTO

1. Introduction

Let q be a positive integer, and L(s, χ) the Dirichlet L-function correspond-

ing to a Dirichlet character χ mod q. We put

Vq= Σ 1 1 ( 1 , χ ) | 2 ,
χ(mod q)

where χ runs over all Dirichlet characters mod q except for the principal charac-

ter χ0.

At first we consider the case q — p is a prime number. Let ζ(s) be the

Riemann zeta-function. The classical result

Vp = ζ(2)p + O((logp)2)

of Paley and Selberg (see Ankeny-Chowla [1]) was improved by Slavutskiϊ [7] [8],

who proved

(1.1) Vp = ζ(2)p ~ (XogpΫ + Oilogp).

Further refinements were given by Zhang. He improved the error estimate in (1.1)

to O(log\ogp) in [17], and then in [18], he obtained

(1.2) Vp - ζ(2)p ~ (logp)2 - (l + ζ(2) + 2A - £ CiyΫdy) + θ ( ^ ) ,

where

^ log(n + 1)
A ~ £ n(n + 1) a n d
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In the present paper, by a method quite different from those of Slavutskiϊ and

Zhang, we will prove the following asymptotic expansion:

THEOREM 1. For any integer N > 1, we have

(1.3) Vp = ζ(2)p - (\ogp)2 + (rl - 2Tι - 3ζ(2)) - (γ2

0 - 2Tl - 2ζ(2))p~ι

+ 2(1 -p'1) ΓΣ ( - l) w ζ(l - n)ζ(l + n)p-n + O(p'N)}9

where the 0-constant depends only on N, and the constants γ0 and γ1 are the Laurent

expansion coefficients of ζ(s) at s — 1 defined by

(1.4) ζ(s) = τ ^

In the right-hand side of (1.3) (and also throughout this paper), the sum Σ w = 1 is to be

considered as the empty sum if N = 1.

Remark. Comparing (1.2) with (1.3), we see

(1.5) 1 + 2A- f C{y)2dy = - γ2

0 + 2Tl + 2ζ(2).

We will give a direct proof of this relation in Section 4.

We define the Bernoulli numbers Bn by

(1.6) — — - Σff/ (U|<2τr).
e - 1 A=O ^

It is well known that

(1.7)

— 2" if n = 0,

B
n+1 is odd,

n + 1

0 if n is even (n > 2)

(see (2.4.3) of Titchmarsh [10], noting that the definition of Bernoulli numbers is

different in Titchmarsh's book). Therefore we can rewrite (1.3) to

Vp = ζ(2)p ~ (logp)2 + (r0

2 - 2Tl - 3ζ(2)) - (r2

0 - 2Tl - 2ζ(2))p~'
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2(1 -p'1) \\ ζ(2)p-' - Σ f ^ ζ(l + 2m)p-2m + O(p~N)}y

so the coefficients of the asymptotic expansion of Vp can be written by using the

values of ζ(s) at odd integers.

We can show the similar type of asymptotic expansions at any other integer

points. For any integer m (Φ 1) and q ( > 2), we put

Uq(m) = φ(q)~ι Σ I L(m, χ) |2,

χ(mod#)

where φ(q) is Euler's function. Let Γ{z) be the gamma-function, and define

Πz + 1)
ίz\

nl Γ(z-n+l)n\

for any complex z and any non-negative integer n. Then,

THEOREM 2. For any integers m and N satisfying 2 < wi < N, we have

Up(m) = ζ(2m) + 2pι~2m{- l)m {2m~2)\ζ{2m - 1)
{{m— 1)!)

/ 2m-2 Λ Γf \

•(-\ogp+ Σ -r-7o + V(2m-l))-p-2m(ζ(mΫ-2S*(m;p)),
x h=m n ^ 7

= Σ

THEOREM 3. For any integer m ^ 0, w /ιaw the following finite expression:

t/»(— m) = L\— 2m) — p C{— m) + (.— 1) p
(m\Ϋ

( m ) m-+p-ι
2 Σ ( m ) ζ ( - iff - »)ζ(- in + n)pm-+p-

2

(m + I)2

We will prove Theorem 1 in Section 2, and Theorems 2 and 3 in Section 3.

Also, we can show generalizations of the above theorems to the case of any compo-

site modulus q, which will be discussed in the last section.

Let



1 5 4 MASANORI KATSURADA AND KOHJI MATSUMOTO

zd
(1.8) fix, z)= —

e - 1

and define the Bernoulli polynomials Bn(x) as the Taylor expansion coefficients of

fix, z):

oo Ώ (γ)

(1.9) f(x,z)= Σ^^z" (U|<2τr).

Then it is known that, for any positive integer q and any Dirichlet character

χ mod q, the relation

(1.10) U-m, χ) = -^VτΣ

holds for any non-negative integer m (see, e.g., Theorem 4.2 of Washington [13]).

It should be noted that Theorem 3 can also be deduced from this formula (see Sec-

tion 4).

Now let p be an odd prime, and hp the class number of the cyclotomic exten-

sion Qie πt ) of the rational number field Q. Then it is classically known that

(1.11) htRp = 2 p p / \ { p l ) n

where Rp is the regulator of Q(# ) and

Ap= Π
ximodp)

By using the inequality Ap < iVp/ip - 2)ΫP'2)/2 and (1.1), Slavutskiϊ [7] [8]

(p-2)/2

Vp

proved

hp < 20

Recently, Wang [12] improved this result to

(1.12) A * < 1

Wang's basic idea is to divide Ap = ApA'p, where

A'p= Π | L ( 1 , χ ) | , A;= Π 1 1 ( 1 , χ ) I,
χ(mod^) χ(moάp)

χ odd χ even

and treat each product separately.
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Combining our Theorem 1 with Walum's [11] result

^ I τ ίΛ v ι2 (p — 1) (p — 2) 2
Σ | L ( 1 , χ ) | = - π,

xiτnodp) \2p
x:odd

we get the asymptotic formula

Σ I L(l, χ) Γ = \ ζ(2)/> - (log/))2 + (To - 2Tl - ζ(2))
χ (rnod^) Δ

χ even

V-l

• 2 ( 1 - .

which itself is of some interest. Applying this formula to Ap, we can show an im-

provement of (1.12).

However, we do not state the result here, because we can prove a better esti-

mate, by refining Wang's argument. In the Appendix we will prove that for any

small ε > 0,

(1.13) K = θ((-^p)(P 2 ) / 2exp/ * ~
π2

where the O-constant depends only on ε.

The present paper is a continuation of the authors' previous paper [5], which

is inspired by Motohashi's article [6]. Therefore, we can say that the origin of our

method lies in the classical paper of Atkinson [2].

The authors would like to thank Professors Shigeki Egami and Yuji Kida for

valuable suggestions, and Professor Tauno Metsankyla for informing them of the

existence of Wang's paper [12].

2. The mean square of L(l, χ)

In this and the next section p denotes an arbitrary prime number. First we

quote the formula [5, (4.7) and (1.11)]:

(2.1) ( ^ - l Γ 1 Σ L(u,χ)L(υ,χ)
χ(modp)

= ζ(« + υ) - p~u~υζ(u)ζ(v) + px'u'vΓ(M + v - l )ζ(» + v - 1)
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(Γ(l - u) Γ{\ - υ)\

A Γ(v) + Γ(u) I

ZJ P 11 )P ζ(u — n)ζiv-r n)-r ( )p Qiv — nsQiu

w=o ι \ n I \ n I

+ p~v~NRN{u, v p) + ^"w~^ i?^(z;, u £)

for any N > 1, where

(2.2) * „ ( « , * ; * ) = * ' " ' ' ( 1 " r ) J V 1

with

h(N)(x + k~ιτy)xu~ιdτdxdy

(The factor yv+ + in [5, (1.11)] should be read as yv+ ~\) In [5] we remark that

the integral in the right-hand side of (2.2) is convergent absolutely for

0 < 3t(tt) <N+ 1, m(v) > -N+ 1. Hence (2.1) is valid in the region

{(«, t;) I 0 < 9l(«) < N+ 1, 0 < 91 (0) < Af+ 1} as an identity of meromorphic

functions. In particular, for any N> 1, (2.1) is valid near u = v = 1. We put

w = 0 = 1 + δ with a small positive δ in (2.1) to obtain

(2.3) ( ^ - l Γ 1 Σ \L(l + δ, χ)\2

ximoάp)
XΦXϋ

= - (p- D ^ d -p'ι~δ)2ζ(l + δ)2 + ζ(2 + 2δ) -/>" 2 " 2 δ ζ(l + δ)2

+ 2p~ι~2>Γ{\ + 2δ)Γ(- δ)Γ(l + δΓ'ζd + 2<5) + 2p~1~δζ(l + δ)2

+ 2 ^ - 2 - M Γ Σ ( ~ X ~ 5)p1+'-χa + δ-n)ζ(l + δ + n)

+ pι+δ-NRN(l + δ, l + δ p)}.

From (1.4) we see

ζ(l + δΫ = δ~2{l + 2γ0δ + (γt + 2rι)δ2 + O(δ3)},

so

(2.4) {- (p - lΓ'a - p-'-'Ϋ - p~2~U + 2p-1~d) ζ(l + δΫ

+ 2(γ0 - \ogp)δ + (T-O + 2Tl + ~=j (\ogp)2 - Aγa
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+ O(<53)).

It is well known that Γ'(l) = - γ0. Let φ(y) = (Γ'/Γ)(y). Then the formulas

(2.5) φ(y) = - γ0 - I

and

(2.6) ψ'(y) = Σ 2
n=0 (// + ^)

are also well known. Putting y — 1 in (2.6), we can see / ^ ( l ) — γ0 + ζ(2). Hence

1

Γ(l + δ) = 1 — γoδ +

and by using this formula and (1.4) we can deduceL
(2.7) 2p-1~2δΓa + 2δ)Γ(~ δ)Γ(l + <5ΓLζ(l + 2δ)

\ + ( - r0 + log/>)<5 + (2r0log/> - 2Tl - ζ(2) -

O(<53)).

Substituting (2.4) and (2.7) into the right-hand side of (2.3), and letting δ~»0, we

obtain

(2.8) (p - 1)-% = ζ(2) +p~ι [rl - 2Tl - 2ζ(2) - ^ y (log/))2}

(- l)Bζ(l - n)ζ(l + n)/-" + / - " i ^

Since i?Λτ(l, 1 \p) is bounded with respect to p, as has been shown in [5, Sect. 1],

the assertion of Theorem 1 immediately follows from (2.8).

3. The mean square at other integer points

Let 7} be a small positive constant, and define the contour % which consists of

the half-line on the positive real axis from infinity to η, a circle of radius η coun-

terclockwise round the origin, and the other half-line on the positive real axis

from rj to infinity. In [5, (5.1)] we have shown
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( 3 1 ) R N { U '
 v ; k ) = - - D

v+N-l

X
v + N l

i h(N>(x + k~ιτy)χu~1dxdydτ.
* ey — 1 J($

Since the above integral is convergent absolutely if 9ϊ(w) < N+ 1, the identity

(2.1) is valid if ξR(w) < N + 1 and 9ϊ(f) < N + 1, as an identity of meromorphic

functions. Hence the formula [5, (1.7)], which is obtained by putting u = σ + it

and v = σ — it in (2.1), is valid in the region σ < N + 1, except for the points at

which some factor in the right-hand side of [5, (1.7)] has a singularity.

Let m ( > 2) be an integer. If N > m, then (2.1) holds near the point u = v
= m. At the point u—v — m some factors in the right-hand side of (2.1) have

singularities, so we need additional calculations to obtain the asymptotic expan-

sion of Up(m). Putting u = υ = m + δ in (2.1), we obtain

(3.2) ( ^ - l ) " 1 Σ \L(m + δ, χ)
χimodp)

|2

= ζ(2m + 23) - p~2m'2δζ(m + δ)2

+ 2p1'2m~2δΓ{2m -l + 2δ)Γ(l-m- δ)Γ(m + δV\(2m - 1 + 25)

+ 2p (-1)

+ 2p~2m~2!S*(m + δ p),

where

p) = Σ ( " S ) ζ(s ~ n)ζ(s + n)ps-n + p s ~ N RN(s, s p).
n0<n<N-l

nΦm-l

We can see

ι~2m~2δΓ(2m 1 + 2δ)Πl tn δ)Πm + δ)~pι~2m~2δΓ(2m - 1 + 2δ)Πl - tn - δ)Πm + δ)~\(2m - 1 + 25)

= pι~2m(- l)mΓ(2m - l)Γ(m)"2ζ(2m - l)δ~ι

- 2 log^? + 2φ(2m - 1) - 2φ(m) +2j-(2rn- l))δ + O(δ2)}

and

1 Ί

= pι~2m(- l)m'ιΓ(2m - l)Γ(m)~2ζ(2m - Dδ'1
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•jl + (~\ogp + φ(2rn- 1) - φ(m) +γQ + ί{2rn- 1))<5 + O(δ2)}.

Also we note

φ(n + 1) = 1 + \ + • + \ - ΐo

for any positive integer n. Substituting these relations into (3.2), and letting <5

0, we obtain the assertion of Theorem 2.

Next we proceed to the proof of Theorem 3. First we prove the following

LEMMA 1. For any integer m > 0, we have

RN(— rn, — w ; k)

ifN=m
2(m + l

0 ifN>m + 2.

Proof. Since Γ(u)(e2π'" — 1) tends to the value (— 1) m2πi/m\ as u tends

to — m, from (3.1) we have

N{- m,-m;k) = (

• / hiN) (x + k~ιτy)x~m~ιdxdydτ.
J(β

We can replace the integrals along % by the integrals along %(f}), the circle of

radius η round the origin. Hence by a residue calculus, we see that the inner

integral is equal to 2πih +m (λf τy)/m\, so

f /-.I (Λ \N-1 _ -m+N-ί

(3.3) RN{- rn, -rn k) =^-j ( M _ Ί ) t I — h (k τy)dydτ.

Since

/ — 1 ;=0 J' 1=0
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j3 * (N+m+l) > n \

Z J Δa
j=0 /=0

the inner integral in the right-hand side of (3.3) is equal to

cy ' \ΓΛ lJjtl \\J) .i—l \m—N-

Also we see

because

h(n\o) =

~2 if n = 0,

Hence we have

RN(— m, —
nJn2rn-j+2

m-N+l
V

from which the desired result follows.

>jJD2m-j+2

•
Now we can deduce Theorem 3 easily by using Lemma 1. We fix the value of

N arbitrarily. If we choose the value of TV < m + 1, then putting u—v— — m

+ δ in (2.1), and letting δ—* 0, we obtain Theorem 3 (by noticing (1.7)). If we

start with the larger value of N ^ m + 2, the following expression is suitable:

(p-lΓ1 Σ | L ( - m + <5,χ)|2

χ(mod p)

= ζ ( - 2m + 2δ) -p2m-2δζ(- m + δ)2

+ 2p1+2m~2δΓ(- 2m-1+ 2δ)Γ(l + m - δ)Γ(-m + <5)"1ζ(- 2m- 1 + 23)

+ 2(m " f ) ζ ( - 2m - 1 + <5)ζ(l + δ ) ^ " 1 + 2/) 2 M"M5**(- m + δ p),
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where

S**(s;p)= Σ (~S)ζ(s-n)ζ(s + ή)ps-"+ps-NRN(s, s P ) .
0<n<N-l v n '

Letting δ—> 0 in the above and using Lemma 1, we obtain the same conclusion of

Theorem 3.

4. Supplementary proofs

In this section we describe two supplementary arguments. We first show a

direct elementary proof of (1.5). Since

C'(y) = Σ ϊ=Ψ'(y) -
n=i (n + y) y

(see (2.6)) and C(l) = 1, we have

C(y) = φ{y) + ̂  + r0.

Hence, with (2.5) it follows that

SO

X I

Using the formula

(4.1) Σ i = log

we have

« = i n=ι n

hence

(4.2) / CiyYdy = - 1 + 2γ0
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where

if1 dy 2 _ f1 dy 1 1
U (» + «)(» + «) m + l J o ?/ + « (m + l)(w + l)J

logOV + 1)

Applying (4.1) to the last two terms of the above, we obtain

(4.3) ΣX(ΛO = 1 + (1 - 7o)2 + 2Σ 2 0V) - (log(iV+ I ) ) 2

where

- m)

n n~ι 1 1
, Σ ΊΓ + Σ l

= Σ3(Λ0 + Σ4(Λ0, say.

We see, by using (4.1),

Σ30V) = Σ ~ Σ (log n - log(l + w)}

i Ϋ

n n ι 1 1 + m ^ m

= Σ log Ί , Σ ΊΓ + Σ log Σ

^ logik + 1) v 1
= Σ ,. l0gW+l) Σ -rk<N-l

= Σ l 0 s v ' V ^ -(iogN)z-ro\ogN +

and

Σ4(A0 = Σ \ Σ ίlogd + m) - \ogm)
k<N-l K m<N-k

= Σ /^~+ Σ y
k<N-l κ k<N-l K
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so

(4.4) Σ2UV) = Σ - ^ - T + Σ TΓlogll ~ ΊΓr) + 01-ητr-i.
k<N k<iN—l iV/ \ IV /

Also we have

_ - log (A: + 1) _ Γ log (A: + 1) _ log(fc + 1 ) |
A: (A: + 1) ~" m 1 k /c + l i '

hence, combining with (4.2), (4.3) and (4.4), we obtain

1 + 2A - C C(y)2dy

= - 7o + lim ((logOV + I))2 - 2 Σ ^f^ - 2 Σ i l
N^°° l k<N+l K k<N-l K

Since

γx — lim I-^ (log(iV+ I ) ) 2 — Σ — ΰ

(see e.g., Theorem 1.3 in Ivic [4]), we have

1 + 2A- f CiyΫdy = - j \ + 2γλ - 2 lim Σ ylo^

-x)

^ τ

which is the desired result.

Next we show how we can deduce Theorem 3 from (1.10). Define

(4.5) F(z,w) = Σi

for I z I < 27Γ, I w I < 2τr. Using the expression (1.8), we have

t\z, w) = zw\exp\—T—) — 1) + zw{e — 1) l e x p l — r — I — 1
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zw(ew - I)"1 (exp(^y^) - l) - zw(ez - 1 Γ V - I)"1,

and, using the relation (1.6) in the right-hand side of the above, we obtain

(4.6) F(eiθz, e~wz)

/2cos θ\~ι ~ Bj /2cos θ V

-W.-1 (2 cos θ\~ι ~ Bk _iθ k ~ Bh (2 cos θ \h

cos 0

2 cos y ,
) z

+ S z £0(j-h)M

On the other hand, from (1.9) and (4.5), we have

(4.7) 7^- Γ F(eiez, e~iβz)dθ = Σ (Σ Bk{a/p)2) Λ

Therefore, ((w + 1)!)~2 Σalΐ Bm+1(a/p)2 coincides with the coefficient of 2 2 m + 2

in the left-hand side of (4.7), which is, by using the expression (4.6), equal to

( 2 M +

%T2 ! 'V"<2, r t- J[ cos' θdθ

i(2m+2-2h)θ
/ * ill

-f «<<:

If a + β > 1, then the formula

X π/2

cos (to - β)θ) cos β + ί" 2 θdθ =- β-l)2a+B~1B(a, β)

holds, where B{,) denotes the beta-function (Whittaker-Watson [14], Chapter
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XII, Miscellaneous Examples 39, p.263). Hence

cos((2m + 1 - h)θ)cos θdθ =

for any h ^ 1. Therefore we now obtain

(4.8) «m + l ) \ y 2 p Σ y

a=\

τ>

2*"1ιw!

2m+l h~2m

(m\Ϋ(2m + 1)

ψ Bm+1_kBm+1+k (k + l) Λk + m) -m-k

kr0 (w + 1 - k)! (m + 1 + k)!' m! p

+ (- D*

From (1.10) it follows that

Up{- m) = p2mim + I ) " 2 * Σ Bm+1(a/p)2.
α=l

Substituting (4.8) into the right-hand side of the above, and using (1.7), we arrive

at the assertion of Theorem 3.

5. The composite case

In this section q denotes an arbitrary positive number ( > 2), and by μ(n) we

mean the Mόbius function. In [5], the following formula is implicitly included.

LEMMA 2. For any N > 1, we have

(5.1) φ(qYι Σ L(u, χ)L(v, χ)
χ(modq)

= - φiqY'Uu, χo)L(v, χ0) + ζ(u + υ) Π (1 - p""")
P\q

+ q~u~vφ(q)Γ(u + υ — l)ζ(u + v — ΐ)

+ q~u~v Σ μ(q/k)(S(u, υ k) + S(v, u k)),
k\q

where k runs over all positive divisors of q, p runs over all prime divisors of q, and
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o\u, v k) = 2J [ ) QKU — n)ζ(v + n)k + k RN{u, v k).

In fact, applying the same method as that developed in [5, Sect. 4] to the each

term in the second sum of the right-hand side of [5, (2.7)], and combining with [5,

(2.2)], we obtain Lemma 2. We have used Lemma 2 in the proof of [5, (1.3) and

(1.4)], the details being omitted in [5]. (Here we mention the existence of the re-

lated articles of Balasubramanian [3] and Zhang [15] [16], which we have missed

in the references of [5].)

LetP(s) = Uplq(l -p~s). Then, noting φ(q) = qPil) and

Σμ(q/k)ks = qsP(s),
k\q

from Lemma 2 we have

|2
( 5 . 2 ) φ i q Γ 1 Σ \L(l + δ , χ )

χ(modq)

δ)2ζ(l + δΫ + ζ(2 + 2<5)P(2 + 2<5)

2δ) f^+

δ)

δ) ζ(l + 2δ) + 2q-ι-δP(l + <5)ζ(l + δ)2

+ 2q~2-2δ Σμ(q/k)\NΣ ( ~ * ~ δ)ζ(l + δ-n)ζ(l + δ + ή)kι+δ~n

k\q ι«=i x n I

+ k 1 + δ ~ N R N { 1 + δ, l + δ k)}.

We take the limit δ —* 0 as in Section 2. Since

) 2 ζ ( l + δ)2<5)2ζ(l + δ)2

)2(2P(l)2r0 + 2 P ( Ό P ' ( 1 ) ) < Γ

) 2 (r 2+ P(l)2(r0

2 + 2TΊ) + 4P(l)P'(l)r0

2q~1~2δP(l)Γa + 2δ)Γ(~ δ)Γ(l + δΓ'ζil + 2δ)

= 2q~1P(l) {- \ (Γ2 + (- r0 + log Q)δ~1 - 27l - ζ(2) + 2γ0 log q

- (\ogq)2

and

+ δ)2

(P(l)(2γ0-logq)+P'ω)δ-ϊ
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) (fi + 2Tι - 2γ0 log q + \ (log qf)

+ P ' ( l ) (2r 0 - log?)+ |p"( l ) J

letting δ—> 0 in (5.2) we have

= q-ιP{l) [rt - 2Tι - (log q)2 -2ζ(2) - 2 ψ (1) log «? - ( ~ (I))'}

+ ζ(2)P(2) + 2q-2Σμ(q/k) Γ Σ (- l)"ζ(l - n)ζ(l + n)*1"" +AX"X(1, 1 k)}.
k\q ln=l J

Hence, noting

we now obtain

THEOREM 4. For any integer N > 1, we have

(5.3)

X = q'1 Π (1 -p'1) \γ2

0 ~ 2Tι - ( l o g ί )
2 - 2ζ(2) - 2( lo g ί ) Σ

Σ kμ(q/k) Γ Σ (- l)"ζ(l - n)ζ(l

This is a refinement of Zhang's formula [18], which asserts

ψ{q)~\ = - q-2ψ(q) ll + 2A - f C\y)dy + (log q + Σ
I JQ \ p]q

p]q

(see the Remark in Section 1). We should note that (5.3) is not the "asymptotic ex-

pansion" in the strict sense. In particular, the sum with respect to k in the

right-hand side of (5.3) includes the term corresponding to k = 1, with the error

0(1). But this term can be calculated explicitly, and the errors corresponding to k

> 1 are decreasing as N-+ °°. Hence, for instance in case q = pa is a prime pow-

er, we can deduce the asymptotic expansion of Vq with respect to p.
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Lemma 2 is valid, as an identity of meromorphic functions, in the region

{(w, υ) I m(u) < N+ 1, ΪR(v) < N+ 1}, by (3.1). Hence the formula [5, (1.3)] is

valid in the region σ < N + 1, except for the points at which some factor in the

right-hand side of [5, (1.3)] has a singularity. As for the exceptional points, we

can show generalizations of Theorems 2 and 3 to the case of general modulus. We

conclude this paper with the statements of these results. The proofs are simple

generalizations of the argument in Section 3, and are omitted. (Theorem 6 can also

be deduced from (1.10).)

THEOREM 5. For any integers m and N satisfying 2 < rn < N, we have

Uq(m) = ζ(2m) Π (1 - p~2m) + 2q-2mφ{q) ( - l)m ( 2 m ~ 2 ) \ ζ(2m - 1)
p\9 ((m — 1)!)

Inα i) 2m~2 1 Γ '

iogί-Σ^ + Σ £-r. + t
p\qP L h=m n <»

2q~2mΣμ(q/k)S*(m;k).

THEOREM 6. For any integer m > 0, we have the following finite expression of

Uq(~ m) :

(- m) = (- lΓ-yVί> (2iΓ+l)! ζ ( ~ 2m ~ 1 }

+ 2q2mΣμ(q/k) Σ ( W ) ζ ( - m ~ »)ζ(- m

"a . 2 r

\m + 1) P\«

Appendix

Here we give the proof of (1.13). Satz 3 of Zimmert [19] asserts, in our case,

that

(A.I) Rp > 2c(a)p(g(ά)){p-ι)/2

for any a > 0, where

cia) = \ (1 + a) (1 + 2α)exp(- 3 - 2a"1)
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and

g(a) = {2yfπ)~ιΓ{\ + α ) r ( | + α)exp{-

Using (2.5) and (2.6), we see that

I
j + n)\~ + a

which is negative for a > 0, hence g(cd is monotonically decreasing in the same

range of a. Since g(0) = e2r°, we have

(A.2) Rp >2K(ε)p(e27o-ε)(p-1)/2

for any ε > 0, with the constant K(ε) depending only on ε.

Combining (1.11) with (3), (4), (5) and (13) in Wang [12], we get

(A3)

where v is the order of 2 modp, and

(p-2}/2
I ]r\rr ton

(p-2)/2 /

— Σ (log tan

Wang proved an asymptotic formula of S ([12, formula (11)]). However, to obtain

an upperbound of hp, it is enough to use the inequality

(A.4) S < -Q~p — -K (log/?)2 + ί y H—τς~-) logp.

To prove his asymptotic formula, Wang divided 5 = Sλ + S2 + S3 + S4 + 55. As

for Sι and S5, we use Wang's result Sx — -ξrp and S5 < —^— logp. Wang also
o o

proved

σ rot I ~h /?
δ ^ υ ι 2/?/ '

with a certain remainder integral R. Instead of Wang's estimates of S4 and R, we

use the simple facts S4 < 0 and R < 0. Then we obtain (A.4). Hence the proof of
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(A.4) is simpler than that of Wang's asymptotic formula, and actually it gives bet-

ter results. Applying (A.2) and (A.4) to (A.3), we obtain

(«»• - ε)~\p - 3) Ϋ He*'- eΓVp'
4 ^ l A l I f ) 16

where

4(log/>)2 __8_/l 2\/3\4(log/>) __8_/l

and

"

Since v tends to infinity as p tends to infinity, and

lim (2V - l ) 4 / v = 16,

it follows that for any ε > 0, there exists a sufficiently large p0 — po(ε), for which

the inequalities

1 - X(p) > 1 - ε,

and

Yp<~(p- 2)log 2 - ^j^-logX, + { + ε

1 - ε 2 1
< — (p — 2)log 2 — (logp) + -r + 2ε

7Γ 4

hold for any p > pQ. Substituting these inequalities into (A.5), we obtain

7Γ

(here, ε's are not necessarily the same in each occurrence). Since

50.7549 > 50, taking a sufficiently small value of a, we obtain (1.13).

Remark. The inequality (A.2) can be generalized to arbitrary number fields.

Let F be an algebraic number field, RF the regulator of F, wF the number of the

roots of unity included in F, YX (resp. 2r2) the number of real (resp. complex)

embeddings of F into the complex number field. Zimmert's theorem can be stated
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as

(A.6) RF/wF > c(a)f(a)rig(a)r\

where

α + a
f(ά) = jΠl + α)exp(- i\ + a)

and c(a), g(a) are as above. By choosing a = 1 in (A.6), we have RF/wF >

0.08 expCO^β^ + 0.1r2). This is stated by Zimmert himself, and used by both

Slavutskiϊ [7] [8] and Wang [12]. Slavutskiϊ [9] considered the case a = 1/2, and

proved RF/wF > 0.00136 exp(0.81rx + 0.57r2). We have already proved in the

above that giod is monotonically decreasing. It is also true for/(α), because

(I +a\2 - 1
= - (—9—) Σ Γ

*=0 ( i ^ + n) (1 + α + n)

Therefore, noting log/(0) = log 2 — γ0, for any ε > 0 we obtain

RF/wF > ΛΓ(ε)exp((log2 + γ0 - ε)rx + (2γ0 - ε)r2).

We note log 2 + r0 = 1.2703 and 270 = 1.1544 . Though K(ε) (= c(ά))

tends to 0 as ε —> 0, the coefficients of rx and r2 are more important when we con-

sider the situation at least one of rx and r2 is large.
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