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SOLVABILITY OF THE DIOPHANTINE EQUATION

x2 - Dy2 = ±2 AND NEW INVARIANTS FOR REAL

QUADRATIC FIELDS

HIDEO YOKOI

In our recent papers [3, 4, 5], we defined some new Z)-invariants for any

square-free positive integer D and considered their properties and interrelations

among them. Especially, as an application of it, we discussed in [5] the character-

ization of real quadratic field Q(\/2?) of so-called Richaud-Degert type in terms of

these new /^-invariants.

Main purpose of this paper is to investigate the Diophantine equation x —

Dy — ± 2 and to discuss characterization of the solvability in terms of these

new D-invariants. Namely, we consider the equation x — Dy = ± 2 and first

provide necessary conditions for the solvability by using an additive property and

the multiplicative structure of D (Proposition 2). Next, we provide necessary and

sufficient conditions for the solvability in terms of an unit of the real quadratic

field Q(/D) (Theorems 1,2). Finally, we provide sufficient conditions for the sol-

vability in terms of new Z)-invariants (Theorems 3,4). It is conjectured with a

great expectation for these conditions to be also necessary conditions.

Throughout this paper, for any square-free positive integer D we denote by
£D = (^D ~^~ uDτ/D)/2 ( > 1) the fundamental unit of the real quadratic field

Q(/D) and by N the norm mapping from Q(v77) to the rational number field Q.

Moreover, we denote ( / ) the Legendre's symbol and by [x] the greatest integer

less than or equal to x.

On Pell's equation, we know already the following result by Perron (cf. [1],

p. 106-109):

PROPOSITION 1 (0. Perron). For any positive square-free integer D Φ 2, at most

only one of the following three equations is solvable in integers:
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x2 - Dy2 = - 1, x2 - Dy2 = 2, x2 - Dy2 = - 2.

We may first provide the following necessary condition for solvability of the

equation x — Dy = + 2:

PROPOSITION 2. For any positive square-free integer D, if the Diophantine equa-

tion x2 — Dy2 = ± 2 has an integral solution, then

D = 2 or 3 (mod 4) and NεD = 1

hold.

Moreover, if the equation x — Dy = 2 is solvable, then

p = ± 1 (mod 8)

holds for any odd prime factor p of D, and if the equation x — Dy = — 2 is solv-

able, then

q=lor3 (mod 8)

holds for any odd prime factor q of D.

Proof. When χ2 — Dy2 = ± 2 has an integral solution (x, y) = (a, b), if

we assume D = 1 (mod 4), then we get

which contradicts with a — Db = ± 2.

a2 - Db2 = a - b2 = 0 or + 1 (mod4),

ith a - Db2 ~-

Hence D = 2 or 3 (mod 4) holds.

On the other hand, if we assume Λfê  = — 1, then the equation x — Dy =

— 1 is solvable, which contradicts with solvability of x — Dy = ± 2 by Prop-

osition 1. Hence iVε^ = 1 holds.

Moreover, if the equation x — Dy = 2 is solvable, then for any odd prime

factor p of D, we get (2/p) = 1, and so p = + 1 (mod 8) holds.

If the equation x — Dy = — 2 is solvable, then for any odd prime factor q

of D, we get (— 2/q) = 1, and so q = 1 or (mod 8) holds.

Now we may provide the following necessary and sufficient conditions

through an unit of the associated real quadratic field Q(\/5) with the equation

x2 - Dy2 = ± 2 :

THEOREM 1. For any positive square-free integer D, it is necessary and sufficient
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for the equation x — Dy — 2 to be solvable that there exists an unit ε — (t +

uyfD) /2 > 1 of the real quadratic field Q(/D) such that

Nε = 1 and t = Dm + 2

for a positive integer m satisfying m = 2 (mod 8).

Proof If the equation x — Dy = 2 has an integral positive solution

(x, y) = (nlf n2),

i.e. nx — Dn2 = 2 holds, then

(f, u) = (2n2 - 2, 2n1w2)

is an integral positive solution of the Diophantine equation t2 — Du2 — 4, and

hence ε = (t + u y/ΊJ) /2 > 1 is an unit of Q(\^D) and satisfies Λfe = 1.

Moreover, if we put m — 2n2 , then

t = 2n2 - 2 = Dm + 2

holds, and from n2 = 1 (mod 4) we get immediately

m = 2n2 = 2 (mod 8).

Conversely, if there exists an unit ε = (t + u\[D) /2 > 1 of Q(/D) such

that Nε = 1 and t = Dm + 2 for a positive integer m satisfying m = 2 (mod 8),

then from Λfe = 1 we get

Du2 = t2 — 4 = D(Dm + 4)m, and so u2 = CDm + 4) m.

On the other hand, m = 2 (mod 8) implies (Dm + 4, m) = 2. Hence, there

exist two positive integers nv n2 such that

Dm + 4 = 2^x

2, m = 2n2 , ((w1} w2) — 1, w = 2 ^ ^ ) ,

and hence nL — D/ί2 = 2 holds.

Therefore, the equation x — Dy — 2 has an integral positive solution

(x,y) = (nl9 n2).

For the equation x — Dy — — 2, we can prove the following analogous

theorem:

THEOREM 2. For any positive square-free integer D, it is necessary and sufficient

for the equation x — Dy = — 2 to be solvable that there exists an unit ε — (t +
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u /D) /2 > 1 of the real quadratic field Q(/D) such that

Nε = 1 and t = Dm - 2

for a positive integer m satisfying m = 2 (mod 8).

For any positive square-free integer Z), we put

AD = {a : 0 ^ a < D, a = 4NεD (mod /))},

and

(A, B)Ό = {(a, b):atΞ \ D i a

2 - 4NεD = bD).

Then, we obtained in [5] the following result:

There are uniquely determined non-negative integer mD and (aD, bD) in

(A, B)D such that

(tD = D mD + aD

[uD

2 = D rnD

2 + 2aD rnD + bD.

Now, we may prove first the following:

PROPOSITION 3. Under the assumption D Φ 2,5,

aD — 2 if and only if bD = 0,

and

aD = D — 2 if and only if bD = D — 4.

Proof. aΏ — 2 implies bDD = aD

2 — 4NεD = 4 ( 1 — NεD), and hence from

D Φ 2, we get NεD = 1 and bD = 0.

Conversely, bD — 0 implies

aD

2 = bDD + 4 ^ = ±NεDi

and so we get

NεD = 1 and ^ = 2.

Moreover, aD = D — 2 implies

bDD = aD

2 - 4NεD = (D - 2Ϋ - 4NεD = (D - 4)2) + 4(1 - NeD),

and hence from D Φ 2, we get
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NεD = 1 and bD = D - 4.

Conversely, bD — D — 4 implies

a2 = bDD + ANεD - (2) - 4)2) + ANεD = (2) - 2) 2 - 4(1 - Λ ^ ) ,

and hence from D Φ b, we get

iVε̂  = 1 and aD = D — 2.

2

We can now provide the following sufficient conditions of the equation x —

Dy = ± 2 in terms of such invariants ##, ^ and mD :

THEOREM 3. If (aD, bD) — (2,0) /lo/ds, then we have the following:

(1) iVε,, = 1,

(2) m ^ - 2 (mod 8),

(3) x — Dy = 2 is solvable in integers.

Proof. We assume ( ^ , ft^) = (2,0), i.e.

/# = DmD -f 2 and w^2 = DmD

2 4- 4^^.

Then, we can first get

4NεD = t2 - Du2 = 4,

and hence NεD = 1.

Next, we assert (DmD + 4, mD) = 2.

If we assume (DmD + 4, mD) — 1, then it follows from uD = (DmD + 4:)mD

that there exist two positive integers nv n2 such that

DmD + 4 = nλ , mD — n2 with (nlf n2) = 1, uD = nγn2,

and hence nx — Dn2 = 4 holds.

However, since nx > 1, uD = nγn2 is greater than n2, which contradicts with mini-

mum property of uD.

If we assume (DmD + 4, mp) = 4, then similarly there exist two positive

integers nlr n2 such that

DmD + 4 = 4nx

2, m ΰ = 4n2

2 with (nv n2) ~ 1, uD — Anλn2i

and hence nι — Dn2 — 1 holds. However, uD — 4 ^ ^ 2 is greater than n2, which

contradicts with minimum property of uD.

Therefore, we get
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(DmD + 4, mD) = 2,

and moreover it follows from uD = (DmD + 4)mD that there exist two positive

integers nvn2 such that

DmD + 4 = 2 ^ 2 , m^ = 2^2

2 with (nlt n2) = 1, uD = 2nxn2,

and hence we get n2 — Dn2 = 2.

Furthermore, since n2 = 1 (mod 2), we get finally

m# = 2n2 = 2 (mod 8).

THEOREM 4. // (a^, £#) = (D — 2, /) — 4) /w/ds, ί/î n w /ιαw the following:

(1) ^ = 1,

(2) m^ = 1 (mod 8),

(3) x — Dy — — 2 is solvable in integers.

Proof. We assume (aD, bD) = (D — 2, D — 4), i.e.

fa = ΰm^ + Z) - 2 and % 2 = DmD

2 + 2{D ~ 2)mD + D - 4

Then, we can first get

4iVεfl = tD

2 - DuD

2 = 4,

and hence we get Afê  = 1. Moreover, we get immediately

uD

2= (DrnD + D-4)(rnD + l).

Next, we assert (DmD + D — 4, mD + 1) = 2.

If we assume (DmD + D — 4, mD + 1) = 1, then it follows

from uD = (DmD + D — 4) (m^ + 1) that there exist two positive integers nv n2

such that

DmD + D — 4 = nx

2, mD + 1 — n2 with (« x, n2) — \, uΌ — nxn2J

and hence nγ — Dn2 = — 4 holds, which contradicts with iVε̂  = 1.

If we assume (DmD + Z) — 4, w β + 1) = 4, then similarly there exist two

positive integers nlf n2 such that

DmD + D — 4 = 4wx , mD + 1 = 4n2 with (wlf w2) = 1, MD = 4 n ^ 2 ,

and hence nx — Dn2 = — 1 holds, which also contradicts with iVε̂  = 1.

Therefore, we get
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(DmD + D - 4, mD + 1) = 2.

Moreover, it follows from uD — (DmD + D — 4) (mD + 1) that there exist

two positive integers nv n2 such that

DmD + D — 4 — 2^L , mD + 1 — 2n2 with (nlt n2) = 1, uD = 2nγn2,

and hence n2 — Dn2

2 — — 2 holds.

Furthermore, since n2 = 1 (mod 2), we get finally

m^ = 2n2 — 1 = 1 (mod 8).

COROLLARY 1. In the case (aD, bD) = (2,0) (resp. (D — 2, D — 4)), the integ-

ral solution (x, y) — (nlf n2) of the equation x — Dy — 2 {resp. x — Dy —

— 2) induced from the fundamental unit εD of Q(/O) in the proof of Theorem 3 (resp.

4) is the minimal positive solution.

Proof In the case (aD, bD) — (2,0), let (x, y) — (nv n2) be the integral

solution induced from the fundamental unit ε^ of Q(/D), and (x, y) — (mv

m2) be the minimal positive integral solution of the equation x — Dy — 2. Then,

nx ^ ml9 n2 ^ m2 and uD ~ 2nxn2

hold, and hence we get immediately

uD ^ 2mιm2.

On the other hand, from the proof of Theorem 1

Cr, y) = (2m1

2 — 2, 2mιm2)

is a positive integral solution of the equation x — Dy ~ 4, and hence we get uD

^ 2m1m2, by the minimum property of uD. Therefore, we obtain uD = 2mιm2,

which implies nx — mί9 n2 — m2.

In the case (aD, bD) — (D — 2, D — 4), we can also prove Corollary 1 in

analogous way to the case (aD, bD) — (2,0).

COROLLARY 2. If D ~ q or 2q for a prime number q congruent to 3 (mod 4),

then NεD — 1 holds.

Moreover, if q = — 1 (mod 8), then aD = 2 holds and χ2 — Dy2 = 2 is solvable

in integers.

Ifq = 3 (mod 8), then aD = D — 2 holds and χ2 — Dy2 — — 2 is solvable in

integers.
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Proof. If we assume NεD = — 1, then Pell's equation x — Dy = — 4 is

solvable in integers, and so q = 1 (mod 4) holds for any prime factor q of D

which contradicts with q = 3 (mod 4). Hence NεD = 1 holds.

Next, since tD = DmD + aD, NεD = 1 implies

Du = tD

2 - 4 = mD(DmD + 2aD)D + (aD

2 - 4),

and hence

(aD - 2)(aD + 2) = aD

2 - 4 = 0 (mod/)).

Therefore, in the case D = q,

aD = 2 or - 2 (mod £>),

and hence

tfp = 2 or Z) - 2.

In the case Z) = 2q, tD = 0 (mod 2) implies aD = 0 (mod 2), and so

flj, - 2 = tfp + 2 = 0, i.e. 0D = ± 2 (mod2).

On the other hand, aD = 2 or — 2 (mod #) holds, and so we get

aD = 2 or - 2 (mod/)),

which implies directly

fla = 2 or Z) - 2.

Consequently, Corollary 2 is follows from Propositions 2,3 and Theorems 3.4.

ing:

2 2

With regard to insolubility of x — Dy — ± 2, we obtain easily the follow-

COROLLARY 3. If we assume

D — p for a prime p congruent to 1 mod 4,

6>r

D = 2p for a prime p congruent to 5 mod 8,

then

NεD=-l

holds and
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x2 - Dy2 = ± 2

is insoluble.

Proof. If D = /> (p = 1 mod 4), or D = 2p (p = 5 mod 8), then we get

εΰ = — 1 (cf. for instance [2]).

Hence by Proposition 2 x — Dy = ± 2 is insoluble.

(aD, bD) = (2,0)

^ = DmD + aD

uD — DmD + 2aDmD

aD

2 ~ 4 = bDD

nλ = y/D mD/2 + 2

^ 2 = yίrnD72

tD = DmD + 2

^ = [tD/D] = 2n2

2 = 2 (mod 8) n2 - On2 = 2

7

14

23

31

34

46

47

62

71

79

94

103

119

127

142

151

158

167

type

Q

2q

q

Q

2p
2q

q
2q

q

q

2q

q

pq
q

2q

q

2q
q

1

1

1

1

2

1

1

1

1

3

1

1

2

1

3

1

1

1

r

2
o

- 2

o

- 2

o

c\

- 2

m
D

2

2

2

98

2

1058

2

2

98

2

45602

4418

2

74498

2

22889378

98

2

3

4

5

39

6

156

7

8

59

9

1464

477

11

2175

12

41571

88

13

n
2

1

1

1

7

1

23

1

1

7

1

151

47

1

193

1

3383

7

1
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D
191

194

199

206

223

238

239

254

263

287

302

311

322

359

383

386

391

398

431

439

446

479

482

type

q

2P
q

2q

q

2pq

q

Iq

q

pq
U
q

2?itf
2

q

q

ip

pq
2q

q

q

2q

q

2p

h
D

1

2

1

1

3

2

1

3

1

2

1

1

4

3

1

2

2

1

1

5

1

1

2

r

- 2

- 2

- 2

- 2

- 2

- 2

- 2

- 2

- 2

m
D

94178

2

163479362

578

2

98

51842

2

1058

2

28322

108578

2

2

98

578

37538

2

703298

2

494018

12482

2

2999

14

127539

244

15

108

2489

16

373

17

2068

4109

18

19

137

334

2709

20

12311

21

10496

1729

22

n
2

217

1

9041

17

1

7

161

1

23

1

119

233

1

1

7

17

137

1

593

1

497

79

1

Prime p is congruent to 1 mod 8 p =

Prime q is congruent to — 1 mod 8 q

hD = — n means that NεD = — 1 and

r represents the integer such that D

for real quadratic field Q(/JD) of

1 (mod

= _

h
D
 =

= k
2

R-D

1
:
 n.

+

8).

(mod

r, -
1
 type.

8).

k< ^ k and 4/c = 0(mod r)



tD = DmD + aD

uD = DmD + 2a L

aD

2 ~ 4 = bDD
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(aD, bD) = (D - 2, D - 4)

= y/D(mD
- 2

+ 1) - 2

147

- 1 = 1 (mod 8) x — Dn2 = ~ 2

Z)
2

3

6

11

19

22

38

43

51

59

66

67

83

86

102

107

114

118

123

131

134

139

146

163

178

179

187

211

type

2

Q

2q

q

Q

2q

2q

Q

PQ
q

2 q
x
q
2

q

2q

2q

2pq

q

2?itf
2

2q

pq
q

2q

q

2p

q

2p

q

pq
q

h
D

- 1

1

1

1

1

1

1

1

2

1

2

1

1

1

2

1

2

1

1

1

1

1

2

1

2

1

2

1

r

— 2

2

2

2

2

2

2

2

2

1

1

1

1

17

17

1

161

1

17

1

1457

1

241

1

17

17

5201

1

161

2177

1116017

1

786257

17

46817

17

n
γ

1

2

3

13

14

6

59

7

23

8

221

9

102

10

31

32

554

11

103

382

8807

12

8005

40

2047

41

n
2

1

1

1

1

3

3

1

9

1

3

1

27

1

11

1

3

3

51

1

9

33

747

1

627

3

153

3
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D
214
227
246
251
258
262
267
278
283
291
307
326
339
347
354
358
374
402
411

418
419
422
443
451
454

467
498
499

type

2q

Q
2pq

Q
ipq

2q

PQ
2q

Q
pq

Q
2q
Pq
Q

2q
2pq

pq

Q
2q

Q
Pq
2q

Q

2qiQ2
q

hD
1
1
2
1
2
1
2
1
1
4
1
3
2
1
2
1
2
2
2
2
1
1
3
2
1
1
2
5

r

2

2

2

mD

1

721
29281

1

801377

17
17

977201

1

576737

1

577
3697

1457

17
1

241
161

1289617

33281

1
206081

6961

721
17

nx

15
298
1917

16
10246

49
50

11759

17
9409

18
313
801
508

58
20
223
184

16437

2650

21
6817

1275

424
67

n2

1

19
121
1

633
3
3

699
1

537
1
17
43
27

3
1
11

9
803
129
1

321

59
19
3

Prime p is congruent to 1 mod 8 p = 1 (mod 8)
Prime q is congruent to 3 mod 8 q = 3 (mod 8).
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