SOLVABILITY OF THE DIOPHANTINE EQUATION $x^{2}-D y^{2}= \pm 2$ AND NEW INVARIANTS FOR REAL QUADRATIC FIELDS

HIDEO YOKOI

In our recent papers $[3,4,5]$, we defined some new D-invariants for any square-free positive integer D and considered their properties and interrelations among them. Especially, as an application of it, we discussed in [5] the characterization of real quadratic field $\mathbf{Q}(\sqrt{D})$ of so-called Richaud-Degert type in terms of these new D-invariants.

Main purpose of this paper is to investigate the Diophantine equation $x^{2}-$ $D y^{2}= \pm 2$ and to discuss characterization of the solvability in terms of these new D-invariants. Namely, we consider the equation $x^{2}-D y^{2}= \pm 2$ and first provide necessary conditions for the solvability by using an additive property and the multiplicative structure of D (Proposition 2). Next, we provide necessary and sufficient conditions for the solvability in terms of an unit of the real quadratic field $\mathbf{Q}(\sqrt{D})$ (Theorems 1,2). Finally, we provide sufficient conditions for the solvability in terms of new D-invariants (Theorems 3,4). It is conjectured with a great expectation for these conditions to be also necessary conditions.

Throughout this paper, for any square-free positive integer D we denote by $\varepsilon_{D}=\left(t_{D}+u_{D} \sqrt{D}\right) / 2(>1)$ the fundamental unit of the real quadratic field $\mathbf{Q}(\sqrt{D})$ and by N the norm mapping from $\mathbf{Q}(\sqrt{D})$ to the rational number field \mathbf{Q}. Moreover, we denote (/) the Legendre's symbol and by $[x]$ the greatest integer less than or equal to x.

On Pell's equation, we know already the following result by Perron (cf. [1], p. 106-109):

Proposition 1 (O. Perron). For any positive square-free integer $D \neq 2$, at most only one of the following three equations is solvable in integers:

Received April 19, 1993.

$$
x^{2}-D y^{2}=-1, \quad x^{2}-D y^{2}=2, \quad x^{2}-D y^{2}=-2
$$

We may first provide the following necessary condition for solvability of the equation $x^{2}-D y^{2}= \pm 2$:

Proposition 2. For any positive square-free integer D, if the Diophantine equation $x^{2}-D y^{2}= \pm 2$ has an integral solution, then

$$
D \equiv 2 \text { or } 3(\bmod 4) \quad \text { and } \quad N \varepsilon_{D}=1
$$

hold.
Moreover, if the equation $x^{2}-D y^{2}=2$ is solvable, then

$$
p \equiv \pm 1(\bmod 8)
$$

holds for any odd prime factor p of D, and if the equation $x^{2}-D y^{2}=-2$ is solvable, then

$$
q \equiv 1 \text { or } 3(\bmod 8)
$$

holds for any odd prime factor q of D.
Proof. When $x^{2}-D y^{2}= \pm 2$ has an integral solution $(x, y)=(a, b)$, if we assume $D \equiv 1(\bmod 4)$, then we get

$$
a^{2}-D b^{2} \equiv a^{2}-b^{2} \equiv 0 \text { or } \pm 1(\bmod 4),
$$

which contradicts with $a^{2}-D b^{2}= \pm 2$.
Hence $D \equiv 2$ or $3(\bmod 4)$ holds.
On the other hand, if we assume $N \varepsilon_{D}=-1$, then the equation $x^{2}-D y^{2}=$ -1 is solvable, which contradicts with solvability of $x^{2}-D y^{2}= \pm 2$ by Proposition 1 . Hence $N \varepsilon_{D}=1$ holds.

Moreover, if the equation $x^{2}-D y^{2}=2$ is solvable, then for any odd prime factor p of D, we get $(2 / p)=1$, and so $p \equiv \pm 1(\bmod 8)$ holds.

If the equation $x^{2}-D y^{2}=-2$ is solvable, then for any odd prime factor q of D, we get $(-2 / q)=1$, and so $q \equiv 1$ or $(\bmod 8)$ holds.

Now we may provide the following necessary and sufficient conditions through an unit of the associated real quadratic field $\mathbf{Q}(\sqrt{D})$ with the equation $x^{2}-D y^{2}= \pm 2$:

Theorem 1. For any positive square-free integer D, it is necessary and sufficient
for the equation $x^{2}-D y^{2}=2$ to be solvable that there exists an unit $\varepsilon=(t+$ $u \sqrt{D}) / 2>1$ of the real quadratic field $\mathbf{Q}(\sqrt{D})$ such that

$$
N \varepsilon=1 \quad \text { and } \quad t=D m+2
$$

for a positive integer m satisfying $m \equiv 2(\bmod 8)$.
Proof. If the equation $x^{2}-D y^{2}=2$ has an integral positive solution

$$
(x, y)=\left(n_{1}, n_{2}\right),
$$

i.e. $n_{1}^{2}-D n_{2}^{2}=2$ holds, then

$$
(t, u)=\left(2 n_{1}^{2}-2,2 n_{1} n_{2}\right)
$$

is an integral positive solution of the Diophantine equation $t^{2}-D u^{2}=4$, and hence $\varepsilon=(t+u \sqrt{D}) / 2>1$ is an unit of $\mathbf{Q}(\sqrt{D})$ and satisfies $N \varepsilon=1$.

Moreover, if we put $m=2 n_{2}{ }^{2}$, then

$$
t=2 n_{1}^{2}-2=D m+2
$$

holds, and from $n_{2} \equiv 1(\bmod 4)$ we get immediately

$$
m=2 n_{2}^{2} \equiv 2(\bmod 8)
$$

Conversely, if there exists an unit $\varepsilon=(t+u \sqrt{D}) / 2>1$ of $\mathbf{Q}(\sqrt{D})$ such that $N \varepsilon=1$ and $t=D m+2$ for a positive integer m satisfying $m \equiv 2(\bmod 8)$, then from $N \varepsilon=1$ we get

$$
D u^{2}=t^{2}-4=D(D m+4) m, \quad \text { and so } \quad u^{2}=(D m+4) m .
$$

On the other hand, $m \equiv 2(\bmod 8)$ implies $(D m+4, m)=2$. Hence, there exist two positive integers n_{1}, n_{2} such that

$$
D m+4=2 n_{1}^{2}, m=2 n_{2}^{2}, \quad\left(\left(n_{1}, n_{2}\right)=1, u=2 n_{1} n_{2}\right),
$$

and hence $n_{1}{ }^{2}-D n_{2}^{2}=2$ holds.
Therefore, the equation $x^{2}-D y^{2}=2$ has an integral positive solution

$$
(x, y)=\left(n_{1}, n_{2}\right)
$$

For the equation $x^{2}-D y^{2}=-2$, we can prove the following analogous theorem:

Theorem 2. For any positive square-free integer D, it is necessary and sufficient for the equation $x^{2}-D y^{2}=-2$ to be solvable that there exists an unit $\varepsilon=(t+$
$u \sqrt{D}) / 2>1$ of the real quadratic field $\mathbf{Q}(\sqrt{D})$ such that

$$
N \varepsilon=1 \quad \text { and } \quad t=D m-2
$$

for a positive integer m satisfying $m \equiv 2(\bmod 8)$.
For any positive square-free integer D, we put

$$
\mathbf{A}_{D}=\left\{a: 0 \leqq a<D, a^{2} \equiv 4 N \varepsilon_{D}(\bmod D)\right\}
$$

and

$$
(A, B)_{\mathrm{D}}=\left\{(a, b): a \in \mathbf{A}_{D}, a^{2}-4 N \varepsilon_{D}=b D\right\}
$$

Then, we obtained in [5] the following result:
There are uniquely determined non-negative integer m_{D} and (a_{D}, b_{D}) in $(A, B)_{D}$ such that

$$
\left\{\begin{array}{l}
t_{D}=D \cdot m_{D}+a_{D} \\
u_{D}^{2}=D \cdot m_{D}^{2}+2 a_{D} \cdot m_{D}+b_{D}
\end{array}\right.
$$

Now, we may prove first the following:

Proposition 3. Under the assumption $D \neq 2,5$,

$$
a_{D}=2 \quad \text { if and only if } b_{D}=0
$$

and

$$
a_{D}=D-2 \text { if and only if } b_{D}=D-4
$$

Proof. $a_{D}=2$ implies $b_{D} D=a_{D}{ }^{2}-4 N \varepsilon_{D}=4\left(1-N \varepsilon_{D}\right)$, and hence from $D \neq 2$, we get $N \varepsilon_{D}=1$ and $b_{D}=0$.

Conversely, $b_{D}=0$ implies

$$
a_{D}^{2}=b_{D} D+4 N \varepsilon_{D}=4 N \varepsilon_{D}
$$

and so we get

$$
N \varepsilon_{D}=1 \quad \text { and } \quad a_{D}=2
$$

Moreover, $a_{D}=D-2$ implies

$$
b_{D} D={a_{D}}^{2}-4 N \varepsilon_{D}=(D-2)^{2}-4 N \varepsilon_{D}=(D-4) D+4\left(1-N \varepsilon_{D}\right),
$$

and hence from $D \neq 2$, we get

$$
N \varepsilon_{D}=1 \quad \text { and } \quad b_{D}=D-4
$$

Conversely, $b_{D}=D-4$ implies

$$
a_{D}^{2}=b_{D} D+4 N \varepsilon_{D}=(D-4) D+4 N \varepsilon_{D}=(D-2)^{2}-4\left(1-N \varepsilon_{D}\right),
$$

and hence from $D \neq 5$, we get

$$
N \varepsilon_{D}=1 \quad \text { and } \quad a_{D}=D-2
$$

We can now provide the following sufficient conditions of the equation $x^{2}-$ $D y^{2}= \pm 2$ in terms of such invariants a_{D}, b_{D} and m_{D} :

Theorem 3. If $\left(a_{D}, b_{D}\right)=(2,0)$ holds, then we have the following:
(1) $N \varepsilon_{D}=1$,
(2) $m_{D} \equiv 2(\bmod 8)$,
(3) $x^{2}-D y^{2}=2$ is solvable in integers.

Proof. We assume $\left(a_{D}, b_{D}\right)=(2,0)$, i.e.

$$
t_{D}=D m_{D}+2 \quad \text { and } \quad u_{D}^{2}=D m_{D}^{2}+4 m_{D}
$$

Then, we can first get

$$
4 N \varepsilon_{D}=t_{D}^{2}-D u_{D}^{2}=4
$$

and hence $N \varepsilon_{D}=1$.
Next, we assert $\left(D m_{D}+4, m_{D}\right)=2$.
If we assume $\left(D m_{D}+4, m_{D}\right)=1$, then it follows from $u_{D}{ }^{2}=\left(D m_{D}+4\right) m_{D}$ that there exist two positive integers n_{1}, n_{2} such that

$$
D m_{D}+4=n_{1}^{2}, m_{D}=n_{2}^{2} \quad \text { with } \quad\left(n_{1}, n_{2}\right)=1, u_{D}=n_{1} n_{2}
$$

and hence $n_{1}{ }^{2}-D n_{2}{ }^{2}=4$ holds.
However, since $n_{1}>1, u_{D}=n_{1} n_{2}$ is greater than n_{2}, which contradicts with minimum property of u_{D}.

If we assume $\left(D m_{D}+4, m_{D}\right)=4$, then similarly there exist two positive integers n_{1}, n_{2} such that

$$
D m_{D}+4=4 n_{1}^{2}, m_{D}=4 n_{2}{ }^{2} \quad \text { with } \quad\left(n_{1}, n_{2}\right)=1, u_{D}=4 n_{1} n_{2},
$$

and hence $n_{1}^{2}-D n_{2}{ }^{2}=1$ holds. However, $u_{D}=4 n_{1} n_{2}$ is greater than n_{2}, which contradicts with minimum property of u_{D}.
Therefore, we get

$$
\left(D m_{D}+4, m_{D}\right)=2
$$

and moreover it follows from $u_{D}{ }^{2}=\left(D m_{D}+4\right) m_{D}$ that there exist two positive integers n_{1}, n_{2} such that

$$
D m_{D}+4=2 n_{1}^{2}, m_{D}=2 n_{2}^{2} \quad \text { with } \quad\left(n_{1}, n_{2}\right)=1, u_{D}=2 n_{1} n_{2},
$$

and hence we get $n_{1}{ }^{2}-D n_{2}{ }^{2}=2$.
Furthermore, since $n_{2} \equiv 1(\bmod 2)$, we get finally

$$
m_{D}=2 n_{2}^{2} \equiv 2(\bmod 8) .
$$

Theorem 4. If $\left(a_{D}, b_{D}\right)=(D-2, D-4)$ holds, then we have the following:
(1) $N \varepsilon_{D}=1$,
(2) $m_{D} \equiv 1(\bmod 8)$,
(3) $x^{2}-D y^{2}=-2$ is solvable in integers.

Proof. We assume $\left(a_{D}, b_{D}\right)=(D-2, D-4)$, i.e.

$$
t_{D}=D m_{D}+D-2 \quad \text { and } \quad u_{D}^{2}=D m_{D}^{2}+2(D-2) m_{D}+D-4
$$

Then, we can first get

$$
4 N \varepsilon_{D}=t_{D}^{2}-D u_{D}^{2}=4
$$

and hence we get $N \varepsilon_{D}=1$. Moreover, we get immediately

$$
u_{D}^{2}=\left(D m_{D}+D-4\right)\left(m_{D}+1\right)
$$

Next, we assert $\left(D m_{D}+D-4, m_{D}+1\right)=2$.
If we assume $\left(D m_{D}+D-4, m_{D}+1\right)=1$, then it follows
from $u_{D}{ }^{2}=\left(D m_{D}+D-4\right)\left(m_{D}+1\right)$ that there exist two positive integers n_{1}, n_{2} such that

$$
D m_{D}+D-4=n_{1}^{2}, m_{D}+1=n_{2}^{2} \quad \text { with } \quad\left(n_{1}, n_{2}\right)=1, u_{D}=n_{1} n_{2}
$$

and hence $n_{1}{ }^{2}-D n_{2}{ }^{2}=-4$ holds, which contradicts with $N \varepsilon_{D}=1$.
If we assume $\left(D m_{D}+D-4, m_{D}+1\right)=4$, then similarly there exist two positive integers n_{1}, n_{2} such that

$$
D m_{D}+D-4=4 n_{1}^{2}, m_{D}+1=4 n_{2}^{2} \quad \text { with } \quad\left(n_{1}, n_{2}\right)=1, u_{D}=4 n_{1} n_{2}
$$

and hence $n_{1}{ }^{2}-D n_{2}{ }^{2}=-1$ holds, which also contradicts with $N \varepsilon_{D}=1$.
Therefore, we get

$$
\left(D m_{D}+D-4, m_{D}+1\right)=2
$$

Moreover, it follows from $u_{D}{ }^{2}=\left(D m_{D}+D-4\right)\left(m_{D}+1\right)$ that there exist two positive integers n_{1}, n_{2} such that

$$
D m_{D}+D-4=2 n_{1}^{2}, m_{D}+1=2 n_{2}^{2} \quad \text { with } \quad\left(n_{1}, n_{2}\right)=1, u_{D}=2 n_{1} n_{2}
$$

and hence $n_{1}{ }^{2}-D n_{2}{ }^{2}=-2$ holds.
Furthermore, since $n_{2} \equiv 1(\bmod 2)$, we get finally

$$
m_{D}=2 n_{2}^{2}-1 \equiv 1(\bmod 8) .
$$

Corollary 1. In the case $\left(a_{D}, b_{D}\right)=(2,0)$ (resp. $(D-2, D-4)$), the integral solution $(x, y)=\left(n_{1}, n_{2}\right)$ of the equation $x^{2}-D y^{2}=2$ (resp. $x^{2}-D y^{2}=$ -2) induced from the fundamental unit ε_{D} of $\mathbf{Q}(\sqrt{D})$ in the proof of Theorem 3 (resp. 4) is the minimal positive solution.

Proof. In the case $\left(a_{D}, b_{D}\right)=(2,0)$, let $(x, y)=\left(n_{1}, n_{2}\right)$ be the integral solution induced from the fundamental unit ε_{D} of $\mathbf{Q}(\sqrt{D})$, and $(x, y)=\left(m_{1}\right.$, m_{2}) be the minimal positive integral solution of the equation $x^{2}-D y^{2}=2$. Then,

$$
n_{1} \geqq m_{1}, n_{2} \geqq m_{2} \quad \text { and } \quad u_{D}=2 n_{1} n_{2}
$$

hold, and hence we get immediately

$$
u_{D} \geqq 2 m_{1} m_{2} .
$$

On the other hand, from the proof of Theorem 1

$$
(x, y)=\left(2 m_{1}^{2}-2,2 m_{1} m_{2}\right)
$$

is a positive integral solution of the equation $x^{2}-D y^{2}=4$, and hence we get u_{D} $\leqq 2 m_{1} m_{2}$, by the minimum property of u_{D}. Therefore, we obtain $u_{D}=2 m_{1} m_{2}$, which implies $n_{1}=m_{1}, n_{2}=m_{2}$.

In the case $\left(a_{D}, b_{D}\right)=(D-2, D-4)$, we can also prove Corollary 1 in analogous way to the case $\left(a_{D}, b_{D}\right)=(2,0)$.

Corollary 2. If $D=q$ or $2 q$ for a prime number q congruent to $3(\bmod 4)$, then $N \varepsilon_{D}=1$ holds.

Moreover, if $q \equiv-1(\bmod 8)$, then $a_{D}=2$ holds and $x^{2}-D y^{2}=2$ is solvable in integers.

If $q \equiv 3(\bmod 8)$, then $a_{D}=D-2$ holds and $x^{2}-D y^{2}=-2$ is solvable in integers.

Proof. If we assume $N \varepsilon_{D}=-1$, then Pell's equation $x^{2}-D y^{2}=-4$ is solvable in integers, and so $q \equiv 1(\bmod 4)$ holds for any prime factor q of D which contradicts with $q \equiv 3(\bmod 4)$. Hence $N \varepsilon_{D}=1$ holds.

Next, since $t_{D}=D m_{D}+a_{D}, N \varepsilon_{D}=1$ implies

$$
D u^{2}=t_{D}^{2}-4=m_{D}\left(D m_{D}+2 a_{D}\right) D+\left(a_{D}^{2}-4\right),
$$

and hence

$$
\left(a_{D}-2\right)\left(a_{D}+2\right)=a_{D}^{2}-4 \equiv 0(\bmod D)
$$

Therefore, in the case $D=q$,

$$
a_{D} \equiv 2 \text { or }-2(\bmod D),
$$

and hence

$$
a_{D}=2 \text { or } D-2 .
$$

In the case $D=2 q, t_{D} \equiv 0(\bmod 2)$ implies $a_{D} \equiv 0(\bmod 2)$, and so

$$
a_{D}-2 \equiv a_{D}+2 \equiv 0, \quad \text { i.e. } \quad a_{D} \equiv \pm 2(\bmod 2)
$$

On the other hand, $a_{D} \equiv 2$ or $-2(\bmod q)$ holds, and so we get

$$
a_{D} \equiv 2 \text { or }-2(\bmod D),
$$

which implies directly

$$
a_{D}=2 \text { or } D-2 .
$$

Consequently, Corollary 2 is follows from Propositions 2,3 and Theorems 3.4.
With regard to insolubility of $x^{2}-D y^{2}= \pm 2$, we obtain easily the follow. ing:

Corollary 3. If we assume

$$
D=p \quad \text { for a prime } p \text { congruent to } 1 \bmod 4,
$$

or

$$
D=2 p \quad \text { for a prime } p \text { congruent to } 5 \bmod 8
$$

then

$$
N \varepsilon_{D}=-1
$$

holds and

$$
x^{2}-D y^{2}= \pm 2
$$

is insoluble.

Proof. If $D=p(p \equiv 1 \bmod 4)$, or $D=2 p(p \equiv 5 \bmod 8)$, then we get $N \varepsilon_{D}=-1$ (cf. for instance [2]).

Hence by Proposition $2 x^{2}-D y^{2}= \pm 2$ is insoluble.

$$
\left(a_{D}, b_{D}\right)=(2,0)
$$

$$
t_{D}=D m_{D}+a_{D}
$$

$$
n_{1}=\sqrt{D \cdot m_{D} / 2+2}
$$

$$
u_{D}^{2}=D m_{D}^{2}+2 a_{D} m_{D}+b_{D}
$$

$$
n_{2}=\sqrt{m_{D} / 2}
$$

$$
a_{D}{ }^{2}-4=b_{D} D
$$

$$
t_{D}=D m_{D}+2
$$

$$
u_{D}=2 n_{1} \cdot n_{2}
$$

$$
m_{D}=\left[t_{D} / D\right]=2 n_{2}^{2} \equiv 2(\bmod 8) \quad n_{1}^{2}-D n_{2}^{2} \equiv 2
$$

D	type	h_{D}	r	m_{D}	n_{1}	n_{2}
7	q	1	-2	2	3	1
14	$2 q$	1	-2	2	4	1
23	q	1	-2	2	5	1
31	q	1		98	39	7
34	$2 p$	2	-2	2	6	1
46	$2 q$	1		1058	156	23
47	q	1	-2	2	7	1
62	$2 q$	1	-2	2	8	1
71	q	1		98	59	7
79	q	3	-2	2	9	1
94	$2 q$	1		45602	1464	151
103	q	1		4418	477	47
119	$p q$	2	-2	2	11	1
127	q	1		74498	2175	193
142	$2 q$	3	-2	2	12	1
151	q	1		22889378	41571	3383
158	$2 q$	1		98	88	7
167	q	1	-2	2	13	1

D	type	h_{D}	r	m_{D}	n_{1}	n_{2}
191	q	1		94178	2999	217
194	$2 p$	2	-2	2	14	1
199	q	1		163479362	127539	9041
206	$2 q$	1		578	244	17
223	q	3	-2	2	15	1
238	$2 p q$	2		98	108	7
239	q	1		51842	2489	161
254	$2 q$	3	-2	2	16	1
263	q	1		1058	373	23
287	$p q$	2	-2	2	17	1
302	$2 q$	1		28322	2068	119
311	q	1		108578	4109	233
322	$2 q_{1} q_{2}$	4	-2	2	18	1
359	q	3	-2	2	19	1
383	q	1		98	137	7
386	$2 p$	2		578	334	17
391	$p q$	2		37538	2709	137
398	$2 q$	1	-2	2	20	1
431	q	1		703298	12311	593
439	q	5	-2	2	21	1
446	$2 q$	1		494018	10496	497
479	q	1		12482	1729	79
482	$2 p$	2	-2	2	22	1

Prime p is congruent to $1 \bmod 8 ; p \equiv 1(\bmod 8)$.
Prime q is congruent to $-1 \bmod 8 ; q \equiv-1(\bmod 8)$.
$h_{D}=-n$ means that $N \varepsilon_{D}=-1$ and $h_{D}=n$.
r represents the integer such that $D=k^{2}+r,-k<r \leqq k$ and $4 k \equiv 0(\bmod r)$ for real quadratic field $\mathbf{Q}(\sqrt{D})$ of $\mathbf{R - D}$ type.

$$
\left(a_{D}, b_{D}\right)=(D-2, D-4)
$$

$$
\begin{array}{ll}
t_{D}=D m_{D}+a_{D} & n_{1}=\sqrt{D\left(m_{D}+1\right) / 2-2} \\
u_{D}^{2}=D m_{D}^{2}+2 a_{D} m_{D}+b_{D} & n_{2}=\sqrt{\left(m_{D}+1\right) / 2} \\
a_{D}^{2}-4=b_{D} D & t_{D}=D\left(m_{D}+1\right)-2 \\
& u_{D}=2 n_{1} \cdot n_{2}
\end{array}
$$

$$
m_{D}=\left[t_{D} / D\right]=2 n_{2}^{2}-1 \equiv 1(\bmod 8) \quad n_{1}^{2}-D n_{2}^{2}=-2
$$

1 type	h_{D}	r	m_{D}	n_{1}	n_{2}	
2	2	-1	-2	1		1
3	q	1	-2	1	1	1
6	$2 q$	1	2	1	2	1
11	q	1	2	1	3	1
19	q	1		17	13	3
22	$2 q$	1		17	14	3
38	$2 q$	1	2	1	6	1
43	q	1		161	59	9
51	$p q$	2	2	1	7	1
59	q	1		17	23	3
66	$2 q_{1} q_{2}$	2	2	1	8	1
67	q	1		1457	221	27
83	$2 q$	1	2	1	9	1
86	$2 q$	1		241	102	11
102	$2 p q$	2	2	1	10	1
107	q	1		17	31	3
114	$2 q_{1} q_{2}$	2		17	32	3
118	$2 q$	1		5201	554	51
123	$p q$	1		1	11	1
131	q	1		161	103	9
134	$2 q$	1		2177	382	33
139	q	1		1116017	8807	747
146	$2 p$	2	2	1	12	1
163	q	1		786257	8005	627
178	$2 p$	2		17	40	3
179	q	1		46817	2047	153
187	$p q$	2		17	41	3
211	q	1				

D	type	h_{D}	r	m_{D}	n_{1}	n_{2}
214	$2 q$	1				
227	q	1	2	1	15	1
246	$2 p q$	2		721	298	19
251	q	1		29281	1917	121
258	$2 p q$	2		1	16	1
262	$2 q$	1		801377	10246	633
267	$p q$	2		17	49	3
278	$2 q$	1		17	50	3
283	q	1		977201	11759	699
291	$p q$	4	2	1	17	1
307	q	1		576737	9409	537
326	$2 q$	3		1	18	1
339	$p q$	2		577	313	17
347	q	1		3697	801	43
354	$2 q_{1} q_{2}$	2		1457	508	27
358	$2 q$	1				
374	$2 p q$	2		17	58	3
402	$2 q_{1} q_{2}$	2		1	20	1
411	$p q$	2		241	223	11
418	$2 q_{1} q_{2}$	2		161	184	9
419	q	1		1289617	16437	803
422	$2 q$	1		33281	2650	129
443	q	3	2	1	21	1
451	$p q$	2		206081	6817	321
454	$2 q$	1				
467	q	1		6961	1275	59
498	$2 q_{1} q_{2}$	2		721	424	19
499	q	5		17	67	3

Prime p is congruent to $1 \bmod 8 ; p \equiv 1(\bmod 8)$
Prime q is congruent to $3 \bmod 8 ; q \equiv 3(\bmod 8)$.

REFERENCES

[1] O. Perron, Die Lehre von den Kettenbruchen, Chelsea Publ. Comp., 1929.
[2] T. Takagi, Syoto-sesuron-kogi (Japanese), Kyoritu Publ. Comp., 1953.
[3] H. Yokoi, Some relations among new invariants of prime number p congruent to 1 mod 4, Advances in Pure Math.,13 (1988), 493-501.
[4] -. The fundamental unit and bounds for class numbers of real quadratic fields, Nagoya Math. J., 124 (1991), 181-197.
[5] -, New invariants and class number problem in quadratic fields, Nagoya Math. J., 132 (1993), 175-197.

Graduate School of Human Informatics
Nagoya University
Chikusa-ku, Nagoya 464-01
Japan

