SOLVABILITY OF THE DIOPHANTINE EQUATION $x^2 - Dy^2 = \pm \ 2$ AND NEW INVARIANTS FOR REAL QUADRATIC FIELDS

HIDEO YOKOI

In our recent papers [3, 4, 5], we defined some new D-invariants for any square-free positive integer D and considered their properties and interrelations among them. Especially, as an application of it, we discussed in [5] the characterization of real quadratic field $\mathbf{Q}(\sqrt{D})$ of so-called *Richaud-Degert* type in terms of these new D-invariants.

Main purpose of this paper is to investigate the Diophantine equation $x^2 - Dy^2 = \pm 2$ and to discuss characterization of the solvability in terms of these new D-invariants. Namely, we consider the equation $x^2 - Dy^2 = \pm 2$ and first provide necessary conditions for the solvability by using an additive property and the multiplicative structure of D (Proposition 2). Next, we provide necessary and sufficient conditions for the solvability in terms of an unit of the real quadratic field $\mathbf{Q}(\sqrt{D})$ (Theorems 1,2). Finally, we provide sufficient conditions for the solvability in terms of new D-invariants (Theorems 3,4). It is conjectured with a great expectation for these conditions to be also necessary conditions.

Throughout this paper, for any square-free positive integer D we denote by $\varepsilon_D = (t_D + u_D \sqrt{D})/2$ (> 1) the fundamental unit of the real quadratic field $\mathbf{Q}(\sqrt{D})$ and by N the norm mapping from $\mathbf{Q}(\sqrt{D})$ to the rational number field \mathbf{Q} . Moreover, we denote (/) the Legendre's symbol and by [x] the greatest integer less than or equal to x.

On Pell's equation, we know already the following result by Perron (cf. [1], p. 106-109):

PROPOSITION 1 (O. Perron). For any positive square-free integer $D \neq 2$, at most only one of the following three equations is solvable in integers:

Received April 19, 1993.

$$x^{2} - Dy^{2} = -1$$
, $x^{2} - Dy^{2} = 2$, $x^{2} - Dy^{2} = -2$.

We may first provide the following necessary condition for solvability of the equation $x^2 - Dy^2 = \pm 2$:

PROPOSITION 2. For any positive square-free integer D, if the Diophantine equation $x^2 - Dy^2 = \pm 2$ has an integral solution, then

$$D\equiv 2 \text{ or } 3 \pmod 4$$
 and $Narepsilon_D=1$

hold.

Moreover, if the equation $x^2 - Dy^2 = 2$ is solvable, then

$$b \equiv \pm 1 \pmod{8}$$

holds for any odd prime factor p of D, and if the equation $x^2-Dy^2=-2$ is solvable, then

$$q \equiv 1 \text{ or } 3 \pmod{8}$$

holds for any odd prime factor q of D.

Proof. When $x^2 - Dy^2 = \pm 2$ has an integral solution (x, y) = (a, b), if we assume $D \equiv 1 \pmod{4}$, then we get

$$a^2 - Db^2 \equiv a^2 - b^2 \equiv 0 \text{ or } \pm 1 \pmod{4},$$

which contradicts with $a^2 - Db^2 = \pm 2$.

Hence $D \equiv 2$ or $3 \pmod{4}$ holds.

On the other hand, if we assume $N\varepsilon_D=-1$, then the equation $x^2-Dy^2=-1$ is solvable, which contradicts with solvability of $x^2-Dy^2=\pm 2$ by Proposition 1. Hence $N\varepsilon_D=1$ holds.

Moreover, if the equation $x^2 - Dy^2 = 2$ is solvable, then for any odd prime factor p of D, we get (2/p) = 1, and so $p \equiv \pm 1 \pmod{8}$ holds.

If the equation $x^2 - Dy^2 = -2$ is solvable, then for any odd prime factor q of D, we get (-2/q) = 1, and so $q \equiv 1$ or (mod 8) holds.

Now we may provide the following necessary and sufficient conditions through an unit of the associated real quadratic field $\mathbf{Q}(\sqrt{D})$ with the equation $x^2-Dy^2=\pm 2$:

THEOREM 1. For any positive square-free integer D, it is necessary and sufficient

for the equation $x^2 - Dy^2 = 2$ to be solvable that there exists an unit $\varepsilon = (t + u\sqrt{D})/2 > 1$ of the real quadratic field $\mathbf{Q}(\sqrt{D})$ such that

$$N\varepsilon = 1$$
 and $t = Dm + 2$

for a positive integer m satisfying $m \equiv 2 \pmod{8}$.

Proof. If the equation $x^2 - Dy^2 = 2$ has an integral positive solution

$$(x, y) = (n_1, n_2),$$

i.e. $n_1^2 - Dn_2^2 = 2$ holds, then

$$(t, u) = (2n_1^2 - 2, 2n_1n_2)$$

is an integral positive solution of the Diophantine equation $t^2 - Du^2 = 4$, and hence $\varepsilon = (t + u\sqrt{D})/2 > 1$ is an unit of $\mathbf{Q}(\sqrt{D})$ and satisfies $N\varepsilon = 1$.

Moreover, if we put $m=2n_2^2$, then

$$t = 2n_1^2 - 2 = Dm + 2$$

holds, and from $n_2 \equiv 1 \pmod{4}$ we get immediately

$$m=2n_2^2\equiv 2\ (\mathrm{mod}\ 8).$$

Conversely, if there exists an unit $\varepsilon = (t + u\sqrt{D})/2 > 1$ of $\mathbf{Q}(\sqrt{D})$ such that $N\varepsilon = 1$ and t = Dm + 2 for a positive integer m satisfying $m \equiv 2 \pmod 8$, then from $N\varepsilon = 1$ we get

$$Du^2 = t^2 - 4 = D(Dm + 4)m$$
, and so $u^2 = (Dm + 4)m$.

On the other hand, $m \equiv 2 \pmod 8$ implies (Dm + 4, m) = 2. Hence, there exist two positive integers n_1 , n_2 such that

$$Dm + 4 = 2n_1^2$$
, $m = 2n_2^2$, $((n_1, n_2) = 1, u = 2n_1n_2)$,

and hence $n_1^2 - Dn_2^2 = 2$ holds.

Therefore, the equation $x^2 - Dy^2 = 2$ has an integral positive solution

$$(x, y) = (n_1, n_2).$$

For the equation $x^2 - Dy^2 = -2$, we can prove the following analogous theorem:

Theorem 2. For any positive square-free integer D, it is necessary and sufficient for the equation $x^2 - Dy^2 = -2$ to be solvable that there exists an unit $\varepsilon = (t + 1)^2$

 $u\sqrt{D}$) /2 > 1 of the real quadratic field $\mathbf{Q}(\sqrt{D})$ such that

$$N\varepsilon = 1$$
 and $t = Dm - 2$

for a positive integer m satisfying $m \equiv 2 \pmod{8}$.

For any positive square-free integer D, we put

$$\mathbf{A}_D = \{a : 0 \le a < D, \ a^2 \equiv 4N\varepsilon_D \ (\text{mod } D)\},\$$

and

$$(A, B)_{D} = \{(a, b) : a \in \mathbf{A}_{D}, a^{2} - 4N\varepsilon_{D} = bD\}.$$

Then, we obtained in [5] the following result:

There are uniquely determined non-negative integer m_D and (a_D, b_D) in $(A, B)_D$ such that

$$\begin{cases} t_{D} = D \cdot m_{D} + a_{D} \\ u_{D}^{2} = D \cdot m_{D}^{2} + 2a_{D} \cdot m_{D} + b_{D}. \end{cases}$$

Now, we may prove first the following:

PROPOSITION 3. Under the assumption $D \neq 2.5$,

$$a_D = 2$$
 if and only if $b_D = 0$,

and

$$a_D = D - 2$$
 if and only if $b_D = D - 4$.

Proof. $a_D=2$ implies $b_DD={a_D}^2-4N\varepsilon_D=4(1-N\varepsilon_D)$, and hence from $D\neq 2$, we get $N\varepsilon_D=1$ and $b_D=0$.

Conversely, $b_D = 0$ implies

$$a_D^2 = b_D D + 4N\varepsilon_D = 4N\varepsilon_D,$$

and so we get

$$N\varepsilon_{p}=1$$
 and $a_{p}=2$.

Moreover, $a_D = D - 2$ implies

$$b_D D = a_D^2 - 4N\varepsilon_D = (D-2)^2 - 4N\varepsilon_D = (D-4)D + 4(1-N\varepsilon_D),$$

and hence from $D \neq 2$, we get

$$N\varepsilon_D = 1$$
 and $b_D = D - 4$.

Conversely, $b_D = D - 4$ implies

$$a_D^2 = b_D D + 4N\varepsilon_D = (D-4)D + 4N\varepsilon_D = (D-2)^2 - 4(1-N\varepsilon_D),$$

and hence from $D \neq 5$, we get

$$N\varepsilon_D = 1$$
 and $a_D = D - 2$.

We can now provide the following sufficient conditions of the equation $x^2 - Dy^2 = \pm 2$ in terms of such invariants a_D , b_D and m_D :

THEOREM 3. If $(a_p, b_p) = (2,0)$ holds, then we have the following:

- (1) $N\varepsilon_D = 1$,
- $(2) \quad m_D \equiv 2 \pmod{8},$
- (3) $x^2 Dy^2 = 2$ is solvable in integers.

Proof. We assume $(a_D, b_D) = (2,0)$, i.e.

$$t_D = Dm_D + 2$$
 and $u_D^2 = Dm_D^2 + 4m_D$.

Then, we can first get

$$4N\varepsilon_D=t_D^2-Du_D^2=4,$$

and hence $N\varepsilon_D = 1$.

Next, we assert $(Dm_D + 4, m_D) = 2$.

If we assume $(Dm_D+4, m_D)=1$, then it follows from $u_D^2=(Dm_D+4)m_D$ that there exist two positive integers n_1 , n_2 such that

$$Dm_D + 4 = n_1^2$$
, $m_D = n_2^2$ with $(n_1, n_2) = 1$, $u_D = n_1 n_2$,

and hence $n_1^2 - Dn_2^2 = 4$ holds.

However, since $n_1 > 1$, $u_D = n_1 n_2$ is greater than n_2 , which contradicts with minimum property of u_D .

If we assume $(Dm_D+4,\,m_D)=4$, then similarly there exist two positive integers $n_1,\,n_2$ such that

$$Dm_D + 4 = 4n_1^2$$
, $m_D = 4n_2^2$ with $(n_1, n_2) = 1$, $u_D = 4n_1n_2$,

and hence $n_1^2 - Dn_2^2 = 1$ holds. However, $u_D = 4n_1n_2$ is greater than n_2 , which contradicts with minimum property of u_D .

Therefore, we get

$$(Dm_D+4, m_D)=2,$$

and moreover it follows from $u_D^2 = (Dm_D + 4)m_D$ that there exist two positive integers n_1, n_2 such that

$$Dm_D + 4 = 2n_1^2$$
, $m_D = 2n_2^2$ with $(n_1, n_2) = 1$, $u_D = 2n_1n_2$,

and hence we get $n_1^2 - Dn_2^2 = 2$.

Furthermore, since $n_2 \equiv 1 \pmod{2}$, we get finally

$$m_D = 2n_2^2 \equiv 2 \pmod{8}$$
.

THEOREM 4. If $(a_D, b_D) = (D-2, D-4)$ holds, then we have the following:

- (1) $N\varepsilon_D = 1$,
- $(2) \quad m_D \equiv 1 \pmod{8},$
- (3) $x^2 Dy^2 = -2$ is solvable in integers.

Proof. We assume $(a_D, b_D) = (D-2, D-4)$, i.e.

$$t_D = Dm_D + D - 2$$
 and $u_D^2 = Dm_D^2 + 2(D-2)m_D + D - 4$

Then, we can first get

$$4N\varepsilon_D=t_D^2-Du_D^2=4,$$

and hence we get $N\varepsilon_D=1$. Moreover, we get immediately

$$u_D^2 = (Dm_D + D - 4)(m_D + 1).$$

Next, we assert $(Dm_D + D - 4, m_D + 1) = 2$.

If we assume $(Dm_D+D-4,\,m_D+1)=1$, then it follows from $u_D^{\ 2}=(Dm_D+D-4)\,(m_D+1)$ that there exist two positive integers $n_1,\,n_2$ such that

$$Dm_D + D - 4 = n_1^2$$
, $m_D + 1 = n_2^2$ with $(n_1, n_2) = 1$, $u_D = n_1 n_2$,

and hence ${n_1}^2-D{n_2}^2=-4$ holds, which contradicts with $N\varepsilon_D=1$.

If we assume $(Dm_D+D-4, m_D+1)=4$, then similarly there exist two positive integers n_1, n_2 such that

$$Dm_D + D - 4 = 4n_1^2$$
, $m_D + 1 = 4n_2^2$ with $(n_1, n_2) = 1$, $u_D = 4n_1n_2$,

and hence $n_1^2 - Dn_2^2 = -1$ holds, which also contradicts with $N\varepsilon_D = 1$.

Therefore, we get

$$(Dm_D + D - 4, m_D + 1) = 2.$$

Moreover, it follows from $u_D^2 = (Dm_D + D - 4)(m_D + 1)$ that there exist two positive integers n_1 , n_2 such that

$$Dm_D + D - 4 = 2n_1^2$$
, $m_D + 1 = 2n_2^2$ with $(n_1, n_2) = 1$, $u_D = 2n_1n_2$,

and hence $n_1^2 - Dn_2^2 = -2$ holds.

Furthermore, since $n_2 \equiv 1 \pmod{2}$, we get finally

$$m_D = 2n_2^2 - 1 \equiv 1 \pmod{8}$$
.

COROLLARY 1. In the case $(a_D, b_D) = (2,0)$ (resp. (D-2, D-4)), the integral solution $(x, y) = (n_1, n_2)$ of the equation $x^2 - Dy^2 = 2$ (resp. $x^2 - Dy^2 = -2$) induced from the fundamental unit ε_D of $\mathbf{Q}(\sqrt{D})$ in the proof of Theorem 3 (resp. 4) is the minimal positive solution.

Proof. In the case $(a_D, b_D) = (2,0)$, let $(x, y) = (n_1, n_2)$ be the integral solution induced from the fundamental unit ε_D of $\mathbf{Q}(\sqrt{D})$, and $(x, y) = (m_1, m_2)$ be the minimal positive integral solution of the equation $x^2 - Dy^2 = 2$. Then,

$$n_1 \ge m_1$$
, $n_2 \ge m_2$ and $u_D = 2n_1n_2$

hold, and hence we get immediately

$$u_D \geq 2m_1m_2$$
.

On the other hand, from the proof of Theorem 1

$$(x, y) = (2m_1^2 - 2, 2m_1m_2)$$

is a positive integral solution of the equation $x^2 - Dy^2 = 4$, and hence we get $u_D \le 2m_1m_2$, by the minimum property of u_D . Therefore, we obtain $u_D = 2m_1m_2$, which implies $n_1 = m_1$, $n_2 = m_2$.

In the case $(a_D, b_D) = (D-2, D-4)$, we can also prove Corollary 1 in analogous way to the case $(a_D, b_D) = (2,0)$.

Corollary 2. If D=q or 2q for a prime number q congruent to $3 \pmod 4$, then $N\varepsilon_D=1$ holds.

Moreover, if $q \equiv -1 \pmod{8}$, then $a_D = 2$ holds and $x^2 - Dy^2 = 2$ is solvable in integers.

If $q \equiv 3 \pmod{8}$, then $a_D = D - 2$ holds and $x^2 - Dy^2 = -2$ is solvable in integers.

Proof. If we assume $N\varepsilon_D=-1$, then Pell's equation $x^2-Dy^2=-4$ is solvable in integers, and so $q\equiv 1\pmod 4$ holds for any prime factor q of D which contradicts with $q\equiv 3\pmod 4$. Hence $N\varepsilon_D=1$ holds.

Next, since $t_D = Dm_D + a_D$, $N\varepsilon_D = 1$ implies

$$Du^{2} = t_{D}^{2} - 4 = m_{D}(Dm_{D} + 2a_{D})D + (a_{D}^{2} - 4),$$

and hence

$$(a_D - 2)(a_D + 2) = a_D^2 - 4 \equiv 0 \pmod{D}.$$

Therefore, in the case D = q,

$$a_D \equiv 2 \text{ or } -2 \pmod{D}$$
,

and hence

$$a_{\rm D} = 2 \text{ or } D - 2.$$

In the case D=2q, $t_D\equiv 0\pmod 2$ implies $a_D\equiv 0\pmod 2$, and so

$$a_D - 2 \equiv a_D + 2 \equiv 0$$
, i.e. $a_D \equiv \pm 2 \pmod{2}$.

On the other hand, $a_D \equiv 2 \text{ or } -2 \pmod{q}$ holds, and so we get

$$a_D \equiv 2 \text{ or } -2 \pmod{D}$$
,

which implies directly

$$a_{D} = 2 \text{ or } D - 2.$$

Consequently, Corollary 2 is follows from Propositions 2,3 and Theorems 3.4. With regard to insolubility of $x^2-Dy^2=\pm 2$, we obtain easily the following:

COROLLARY 3. If we assume

D = p for a prime p congruent to $1 \mod 4$,

or

D=2p for a prime p congruent to $5 \mod 8$,

then

$$N\varepsilon_{D}=-1$$

holds and

$$x^2 - Dy^2 = \pm 2$$

is insoluble.

158

167

2q

q

1

1

- 2

Proof. If D=p ($p\equiv 1 \mod 4$), or D=2p ($p\equiv 5 \mod 8$), then we get $N\varepsilon_D=-1$ (cf. for instance [2]).

Hence by Proposition 2 $x^2 - Dy^2 = \pm 2$ is insoluble.

$$(a_D, b_D) = (2,0)$$
 $t_D = Dm_D + a_D$
 $n_1 = \sqrt{D \cdot m_D/2 + 2}$
 $u_D^2 = Dm_D^2 + 2a_D m_D + b_D$
 $n_2 = \sqrt{m_D/2}$
 $a_D^2 - 4 = b_D D$
 $n_3 = \sqrt{m_D/2}$
 $n_4 = \sqrt{m_D/2} + 2$
 $n_5 = Dm_D + 2$
 $n_5 = 2n_1 \cdot n_2$

 $m_D = [t_D/D] = 2n_2^2 \equiv 2 \pmod{8}$

 $n_1^2 - Dn_2^2 \equiv 2$

98

2

88

13

7

1

D	type	$h_{\scriptscriptstyle D}$	r	$m_{\scriptscriptstyle D}$	n_1	n_2
191	q	1		94178	2999	217
194	2 p	2	- 2	2	14	1
199	q	1		163479362	127539	9041
206	2 q	1		578	244	17
223	q	3	- 2	2	15	1
238	2 pq	2		98	108	7
239	q	1		51842	2489	161
254	2q	3	- 2	2	16	1
263	q	1		1058	373	23
287	þq	2	- 2	2	17	1
302	2 q	1		28322	2068	119
311	q	1		108578	4109	233
322	$2q_1q_2$	4	- 2	2	18	1
359	q	3	- 2	2	19	1
383	q	1		98	137	7
386	2 p	2		578	334	17
391	þq	2		37538	2709	137
398	2q	1	- 2	2	20	1
431	q	1		703298	12311	593
439	q	5	- 2	2	21	1
446	2q	1		494018	10496	497
479	q	1		12482	1729	79
482	2 p	2	- 2	2	22	1

Prime p is congruent to $1 \mod 8$; $p \equiv 1 \pmod 8$.

Prime q is congruent to $-1 \mod 8$; $q \equiv -1 \pmod 8$.

 $h_{\scriptscriptstyle D} = -$ n means that $N \varepsilon_{\scriptscriptstyle D} = -$ 1 and $h_{\scriptscriptstyle D} = n$.

r represents the integer such that $D = k^2 + r$, $-k < r \le k$ and $4k \equiv 0 \pmod{r}$ for real quadratic field $\mathbb{Q}(\sqrt{D})$ of \mathbb{R} - \mathbb{D} type.

$$(a_D, b_D) = (D-2, D-4)$$

$$t_{D} = Dm_{D} + a_{D}$$

$$u_{D}^{2} = Dm_{D}^{2} + 2a_{D}m_{D} + b_{D}$$

$$a_{D}^{2} - 4 = b_{D}D$$

$$n_{1} = \sqrt{D(m_{D} + 1)/2 - 2}$$

$$n_{2} = \sqrt{(m_{D} + 1)/2}$$

$$t_{D} = D(m_{D} + 1) - 2$$

$$u_{D} = 2n_{1} \cdot n_{2}$$

$$m_D = [t_D/D] = 2n_2^2 - 1 \equiv 1 \pmod{8}$$
 $n_1^2 - Dn_2^2 = -2$

D	type	$h_{\scriptscriptstyle D}$	r	m_D	n_1	n_2
2	2	- 1	- 2	1		1
3	q	1	- 2	1	1	1
6	2q	1	2	1	2	1
11	q	1	2	1	3	1
19	q	1		17	13	3
22	2q	1		17	14	3
38	2q	1	2	1	6	1
43	q	1		161	59	9
51	þq	2	2	1	7	1
59	q	1		17	23	3
66	$2q_1q_2$	2	2	1	8	1
67	q	1		1457	221	27
83	2q	1	2	1	9	1
86	2q	1		241	102	11
102	2 pq	2	2	1	10	1
107	q	1		17	31	3
114	$2q_{1}q_{2}$	2		17	32	3
118	2q	1		5201	554	51
123	pq	1		1	11	1
131	q	1		161	103	9
134	2q	1		2177	382	33
139	q	1		1116017	8807	747
146	2 p	2	2	1	12	1
163	q	1		786257	8005	627
178	2 p	2		17	40	3
179	q	1		46817	2047	153
187	þq	2		17	41	3
211	q	1				

D	type	$h_{\scriptscriptstyle D}$	r	$m_{\scriptscriptstyle D}$	n_1	n_2
214	2 q	1				
227	q	1	2	1	15	1
246	2 pq	2		721	298	19
251	q	1		29281	1917	121
258	2 pq	2		1	16	1
262	2 q	1		801377	10246	633
267	þq	2		17	49	3
278	2 q	1		17	50	3
283	q	1		977201	11759	699
291	þq	4	2	1	17	1
307	q	1		576737	9409	537
326	2 q	3		1	18	1
339	þq	2		577	313	17
347	q	1		3697	801	43
354	$2q_1q_2$	2		1457	508	27
358	2q	1				
374	2 pq	2		17	58	3
402	$2q_1q_2$	2		1	20	1
411	þq	2		241	223	11
418	$2q_1q_2$	2		161	184	9
419	q	1		1289617	16437	803
422	2q	1		33281	2650	129
443	q	3	2	1	21	1
451	þq	2		206081	6817	321
454	2q	1				
467	q	1		6961	1275	59
498	$2q_1q_2$	2		721	424	19
499	q	5		17	67	3

Prime p is congruent to $1 \mod 8$; $p \equiv 1 \pmod 8$ Prime q is congruent to $3 \mod 8$; $q \equiv 3 \pmod 8$.

REFERENCES

- [1] O. Perron, Die Lehre von den Kettenbruchen, Chelsea Publ. Comp., 1929.
- [2] T. Takagi, Syoto-sesuron-kogi (Japanese), Kyoritu Publ. Comp., 1953.
- [3] H. Yokoi, Some relations among new invariants of prime number p congruent to 1 mod 4, Advances in Pure Math.,13 (1988), 493-501.

- [4] —, The fundamental unit and bounds for class numbers of real quadratic fields, Nagoya Math. J., **124** (1991), 181–197.
- [5] —, New invariants and class number problem in quadratic fields, Nagoya Math. J., **132** (1993), 175-197.

Graduate School of Human Informatics Nagoya University Chikusa-ku, Nagoya 464-01 Japan