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CRITERIA FOR RECURRENCE AND TRANSIENCE OF

SEMISTABLE PROCESSES
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1. Introduction

The definition of semistable laws was originally given by Levy in [11]. Two

books, Kagan, Linnik and Rao [6] and Ramachandran and Lau [13], call a probabil-

ity measure on R "semistable" when it is nondegenerate and its characteristic

function (ch.f.) f(z) does not vanish on R and satisfies a functional equation of the

form

(1.1) f ( z ) = f ( b z ) c , V z e R

for some real numbers b (0 < | b | < 1) and c > 1. This is essentially the same as

Levy's definition. Ramachandran and Lau [13] assert in Theorem 3.2.2 that they

give a necessary and sufficient condition for "semistable1' laws in terms of the

Levy representation of infinitely divisible laws, and in Corollary 3.2.3 that every

stable law is "semistable". But the sufficiency part of the first assertion is not

true. The second assertion is also incorrect, since, if

l o g / ω = iγz- c\z\a, γΦO, a e (0, 1) U (1,2], c > 0,

then it is stable (in the ordinary sense as well as in their sense), but not "semi-

stable" in their sense. Professor K. Sato indicated that this error could be avoided

if the notions of semistable laws and strictly semistable laws are defined approp-

riately and distinguished from each other. Thus, we make a new definition of semi-

stable laws as follows: a probability measure μ on R or its ch.f. /(z) is semi-

stable if it is not a delta measure, /(z) does not vanish, and there exist b ^ R,

c e R, and γ <= Rd such that 0 < | b | < 1, c > 1, and

(1.2) /(z) =/(&z)V r z , V z e R r f .

Further, we define strictly semistable laws as follows: a probability measure μ on

R or its ch.f. /(z) is strictly semistable if it is not a delta measure, /(z) Φ 0 and
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t h e r e e x i s t r e a l b a n d c s u c h t h a t 0 < | & | < l , c > l a n d

(1 .3 ) /(z) = f(bz)\ V zeRd.

The exponent a of a semistable law satisfying (1.2) or a strictly semistable law

satisfying (1.3) is defined by

(1.4) c\b\a=l.

Shimizu [16] and Kruglov [10] found characterization of a semistable law on

R as the limit distribution of a normalized subsequence {anSkn + bn} of sums

{Sn} of independent identically distributed random variables with lim^^ kn+1/kn

= r for some r. Extension to higher dimensions including Hubert spaces was done

by [8,9]. Jajte [4] made extension to operator semistable measures on R , which

have been treated and further generalized in [5,7,12].

Since a semistable law is infinitely divisible, it induces a Levy process, which

we call a semistable process. A Levy process in this paper means a homogeneous

Levy process in the sense of [3], that is, a process with stationary independent in-

crements starting at 0 with sample functions being right-continuous and having

left limits. A Levy process induced by a strictly semistable law is called a strictly

semistable process.

The purpose of the present paper is to determine whether a semistable pro-

cess with exponent a is recurrent or transient. Besides this purpose, we obtain

representations for semistable and strictly semistable laws on R in the same man-

ner as is done for stable and strictly stable laws on R (see Sato [14,15]). The

characterization is similar to that of [8] but includes the case b < 0.

This paper is organized as follows. In Section 2, we begin with showing the

infinite divisibility of semistable laws and give necessary and sufficient conditions

for a probability measure to be semistable or strictly semistable. We then add

some consequences. In Section 3 we obtain three results: the first is that a semi-

stable process with exponent a ^ [1,2] on R is recurrent if and only if it is

strictly semistable; the second is that any semistable process with exponent a ^

(0,1) on R is transient; the third is that a genuinely 2-dimensional semistable

process with exponent a e (0,2] on R is recurrent if and only if it is strictly

semistable with a — 2. These results are analogous to the ones known for stable

processes (see [15]) and in accordance with Professor K. Sato's conjecture.

Acknowledgement. The author would like to express her utmost gratitude to

Professor K. Sato, who guided her to this study and provided her with his conjec-

ture and his helpful suggestions. Also he carefully read the manuscript and gave
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valuable comments. These comments greatly improved the presentation of this pap-

er. Proposition 2.6 is due to is due to him.

2. Semistable and strictly semistable laws on R

For any non-vanishing ^-dimensional characteristic function /(z), the func-

tion log/(z) is understood as the distinguished logarithm in the sense of Lemma

2.1.4 of [15] (see [1], Section 7.6, for d = 1) and the function /(z) is understood
, , ClOg/(2)

to be e

For x, z e R , we denote the inner product of x and z by xz and the Eucli-

dean norm of x by | x |. We denote log/(z) by 0(z).

LEMMA 2.1. If a ch.f f(z) is semistable satisfying (1.2), then, for any positive

integer n,

(2.1) φ(z) = cnφ(bnz) + iσnz,

where σn = r(Σi;:l\b\'jabi).

Proof. By mathematical induction, we can get this. If n = 1, then (2.1) is the

same as (1.2). If (2.1) is true for some n, then it is easy to show (2.1) for n + 1. •

LEMMA 2.2. Every semistable law is infinitely divisible.

Proof Denote φ(bnz) + ic~nσnz by gn(z). Then, by Lemma 2.1, gn(z) =

c~nφ(z) —• 0 as w—• °°, since c > 1. Hence,

exp {cn(f(bnz)exp(ic~nσnz) — 1)} = exp {cn(exp(φ(bnz) + ic~nσnz) — \)}

= exp{cn(gn(z) + 0{g2

n(z)))} = exp {0(z)( l + O(gn(z)))} ->/(z),

as n—* °°. By De Finetti's theorem/ is infinitely divisible. O

Let S = {x e Rd : | x | = 1}, the unit sphere in Rd, and let R + = (0, °o), the

open half line. For E c R + and B c S, we denote by £1? the set of points x such

that x = uξ, u <^ E, ξ ^ B. The class of Borel subsets of a set T is denoted by

®(T) in general. The set (x ^ R : x = by, y ^ 5} is denoted by bB, and the set

( - l)B is denoted by - B. The set { χ G R d : x ^ 0 } will be denoted by Rd - {0}.

For any measure λ on S the measure λ is defined by λ{B) = λ(— B). The set ίx :

I x I < 1} is denoted by D and the indicator function of D is denoted by l^ίx).
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Levy showed that μ is a d-dimensional infinitely divisible distribution if and

only if the distinguished logarithm of its characteristic function has the form

1 r
ψ(z) = iγoz — -KΊAL + I G(z, x)v(dx),

where

G(z, x) = £ ί Z X — 1 — izxlD(x),

70 is a vector in R , A is a symmetric nonnegative definite operator, and v is a me-

asure (called Levy measure) on R — {0} such that

ί I x \2v(dx) < °° and I v(dx) < °°.
J0<|χ|<l J\x\>l

This representation is unique and called the Levy representation.

PROPOSITION 2.3. Fix b and c such that 0 < | b \ < 1 and c > 1. Define a by

(1.4). In order that a ch.f. f(z) be semistable satisfying (1.2) with some j , it is neces-

sary and sufficient that it is infinitely divisible and the Levy representation satisfies

one of the following conditions:

( i ) a = 2 and v = 0.

(ii) 0 < a < 2, A = 0, and

v(EB) = f λ(dξ) fd{- Hξ

/i is α /inΐte measure on S, Hξ(u) is nonnegative, right-continuous in u and

Borel measurable in ξ, Hξ(u)u~a is nonincreasing in u, Hξ(l) = 1 and, in addition,

the following (2.2) or (2.3) holds:

(2.2) δ > 0 and Hξ(bu) = Hξ(u)

(2.3) b < 0, λ and λ are mutually absolutely continuous, and H^(— bu) —

H_ξ(u)c(ξ), where c(ξ) is a positive measurable function such that λ(dξ) —

Outline of Proof Suppose that /(z) is semistable satisfying (1.2). Then we

have either a = 2 and v = 0, or 0 < a < 2, A = 0, and v(bEB) = | b \~av(EB).

Suppose that 0 < a < 2. Define λ(B) = v((l, oo)β) and Nir, B) = v((r, 00)5)

for r ^ R+. Then, for any r ^ R+, we can choose n such that r > (b2)n > 0, so

that
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0 < N(r, B) < N((b2)\ B) = (b2)~naλ(B).

Hence, N(r, B) is absolutely continuous with respect to λ. Thus, for each r G R+>

there is a nonnegative measurable function Nξ(r) of ξ such that

N(r, B) = f Nξ(r)λ(dξ), B e S(S).

By the same method as in [14, 15] for stable probability measures, we can choose

Nξ(r) in such a way that, for Λ-almost every ξ, Nξ(r) is nonincreasing right-

continuous in r, and we can show that

v(EB) = - fλidξ) f dNξ(u).
JR JR

If b < 0, we have that

λ(B) = v((- oo, - 1)5) < v((- oo, ft)β) = \b\av({b\ oo)B) = \ b\a(b2Γa λ(B),

and hence also λ(B) < \ b \a(b2)~a λ(B). Thus, if b < 0, then λ and /i are mutual-

ly absolutely continuous, so that there is a positive measurable function c{ξ) such

that λ(dξ) = c(ξ)λ(dξ) and we have that

b\a f N_ξ(- br)c(ξ)λ(dξ).

Hence one of the following (2.4) and (2.5) holds:

(2.4) b > 0 and Nξ(bu) =\b\'a Nξ(u)

(2.5) b < 0 a n d N _ Λ ~ bu) ~\b \~a Nξ (

Set Nξ(u) — Hξ(u)u . Then we can show (2.2) and (2.3). The converse assertion

is easy to check. •

Note that, in (ii) of Proposition 2.3,

0(z) = ιγoz + fλ(dξ) f G(z, uξ)d{- HΛu)u~a}.

Remark 1. Let μ be a semistable law with exponent a (0 < α < 2). Then

both / I x \βμ(dx) and / | x |̂ y (dx) are finite for 0 < β < a and infinite for
J Jίχl>l

β > a I I x I^Wx) is finite for β > a and infinite for β < a.
J!χί<l
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Proof. Denote by vλ and v0 the restrictions of v to the sets {| x | > 1} and

{| x I < 1}, respectively. By Proposition 2.3, we have that

x IVWx) = fλ(dξ) f uβd{- Hξ(u)u~a},

[\x\βv0(dx)= Γ
J

and see that

uBd{- H

C uβd{- Hξ

-a} = Σ

a} = Σ {

ίa-m f uBd{- Hξ

n=0

Hence / | x \βvQ(dx) is finite if β — a > 0, and infinite if β — a < 0

J I x Γ^Wx) is finite if a — β > 0, and infinite if a — β < 0. Using Theorem

5.2.3 of [15], we conclude that J | x \βμ(dx) is finite for 0 < β < a and infinite

for β > α.

Remark 2. Fix b and c such that 0 < | b \ < 1 and c > 1. Define a by (1.4).

If 0 < a < 2 and a ch.f. /(z) is semistable satisfying (1.2) with some 7, then the

log/(z) has the form

= iTlz-\z a(R(z)

where j ^ e R , i?(z) is a real-valued continuous bounded function on R — {0},

satisfying R(bnz) = R(z) and /(z) is a real-valued continuous function on R —

{0} satisfying I(bnz) = /(z) for a Φ 1 and

/«Λz) - 7(z) - z I z Γ 1 ^ - (6 I ft Γ1)" ro - αw),

where σw = 7 ( Σ " = 0 | δ | JbJ), for α = 1. Moreover, if R is spanned by the sup-

port of v, then inf{iv?(z) : 0 < | z | < °°} > 0.

Proof. We use Proposition 2.3. For 0 < a < 2 we have that

R(z)= fλ(dξ) Γ (1 ~ cos(ξz\z\~ιv))d{- Hξ(υ\z\~ι)v~a}f

so that i?(z) is continuous and R(bnz) = i?(z). Boundedness of i?(z) follows from
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these properties. For 0 < a < 1, by Remark 1, we have that

/(z) = - fλidξ) Γ sin(ξz\z\~1v)d{- Hξ(v\z\~ι)υ~a}

and Tι~ To~ I ξλ(dξ) I ud{— Hξ(u)u~a}, so that /(z) is continuous and
S (0 1)

I(bnz) — /(z). For 1 < a < 2, by Remark 1, we have that

X Γ°° 1-1 -1 -1 -a

λ(dξ) I (ξz I z I f — s i n ( ξ z | z υ))d\— Hξ(v z )υ }

and 7Ί = 70 + / ξλ(dξ) I u d{— Hξ(u)u~a}, so that /(z) is continuous and

I(bnz) — /(z). For α = 1 we have that

/(z) =

I Λ(dξ) I (ξz I z Γ1^ 1(0,1)(f I z I X) ~ sin(ξz | z | ιυ))d{— Hξ(v \ z I"1)?;"1}
S 0

and 7X = γ0, so that /(z) is continuous and, from Lemma 2.1, we have that

I(b"z) = 7(z) - z I z ΓHro - (ft I ft Γ 1 )" To ~ σn).

If R is spanned by the support of v, then, by Lemma 7.4.8 of [15], there exists

δ > 0 such that Re{~ 0(z)} ^ (positive constant) | z | > 0 for every 0 <

I z I < δ. Since R e { - ψ(z)} = \ z \R(z), R(z) > 0 for every 0 < | z | < δ. There

exists n0 such that (b2)n° < δ. From R(bnz) = R(z) and continuity of i?(z), we

can easily check that

inf{i?(z) : 0 < I z I < oo} = jnf{i?(z) : (b2)n°+1 <\z\< (bY0} > 0. D

The following Proposition 2.4 is obtained in the same manner as is done for

strictly stable laws on R in [15]. The case of d = 1 of Proposition 2.4 gives cor-

rection of Theorem 3.2.2 of [13]. Another necessary and sufficient condition in the

case d — 1 and — 1 < b < 0 is given by Watanabe [17].

PROPOSITION 2.4. Fix b and c such that 0 < | b \ < 1 and c > 1. Define a by

(1.4). Suppose that a ch.f. /(z) is semistahle satisfying (1.2) with some γ. In order that

/(z) be strictly semistahle satisfying (1.3). It is necessary and sufficient that ψ(z) has

one of the following forms:

( l ) a = 2 and ψ(z) = - (l/2)zΛz.



9 8 GYEONG SUCK CHOI

(ii) 0 <a< 1 andφiτ) = [ λ(dξ) [ {eMz - l)d{- HΛu)u'Ί.

(iii) 1 < a < 2 and ψ(z) = f λ(dξ) Γ {eiuξz - 1 - iuξz}d{- HΛu)u~a).
•Js Λ

(iv) a=\,

0(z) = ίVoZ + f ΛWί) f {emz - 1 - (i«ξz)l(0!,(«)}</{- HΛu)u~1}

and, in addition,

fξλ(dξ) f ud{-Hξ(u)u~1} = 0 if b>0,
JS Jlb,l)

fξλidξ) f udi- HΛu)u~1} = 2γ0 if b < 0.

Proo/. Use the uniqueness of the Levy representation and Remark 1 together

with Proposition 2.3. •

Remark 3. Let μ be a semistable law with exponent a ^ (1,2) on R . Then

we have that

0(z) = iγ2z + ΓΛW© Γ &UξZ ~ 1 ~ iuξz)d{- Hξ(u)u~a}

with some y2 ^ R . Using Property 1.2.5 (ix) of [15], we can check that γ2 ^s the

mean of μ. By Proposition 2.4, μ is strictly semistable if and only if μ has mean

zero.

PROPOSITION 2.5. Exponent a of a semistable law is uniquely determined.

Proof. If μ is a semistable law with exponent 2, then it is Gaussian and

we have that J \ x \βμ(dx) < °°, V β > 0. Hence, by Remark 1, the exponent a

is the supremum of β e (0,2] such that J | x |*μ(dx) is finite. Therefore the

exponent is unique. •

The following proposition shows that even if /(z) satisfies (1.2) with 7 ^ 0 ,

it can be strictly semistable. In order to determine whether a given semistable law

is strictly semistable or not, it is important to know in what situation such a thing
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can happen. Propositions 2.6-2.8 answer this question.

PROPOSITION 2.6. / / / ( z ) is semistable with exponent 1 satisfying (1.2) with — 1

< b < 0, then fix) is strictly semistable with exponent 1 satisfying /(z) =

fkb z)

Proof. We have/(z) = f(bz)cetrz and f(bz) = f(b2τ)cerbz. Hence,

/(*) = {f(b z) e } e = f(b z) e

Since ftc = — 1, we obtain /(z) = f(b2z)c. D

PROPOSITION 2.7. Suppose that /(z) ts semistable with exponent 1 satisfying

(1.2) wnf/i 7 ^ 0 . // 0 < 6 < 1, ffom /(z) cαwwί ^ 5ίrkίfy semistable. If - 1 < b

< 0, ί/ien fftere is no bx satisfying f"(z) = f(b{L)c\ — 1 < 6X < 0, cx | bι \ — 1.

. Suppose that there exists ^! ̂  R such that 0 < | bλ \ < 1 and

bx I 0(z) = φ(bλz). Then we divide the proof into three cases: (i) b > 0 and δL >

0, (ii) b > 0 and bλ < 0, and (iii) b < 0 and bλ < 0.

(i) b > 0 and &! > 0. Using the uniqueness of the Levy representation, we see that

and

fξλidξ) f ud{- HΛu)u~1} = - γ
JS J[b,\)

fξλ(dξ) f ud{- HΛu)u~1} = 0.
JS Jίbvl)

Hence we have that

(2.6) fξλ(dξ) f ud{- HΛu)u~1} = - nγ
JS J[bn,l)

and

(2.7) f ξλ(dξ) f ud{- Hξ{u)u~ι) = 0.
Js Jibli)

Since γ Φ 0, we have lim sup | f ξλ(dξ) f ud{- HΛu)u~1} \ = oo by (2.6).
β | 0 JS Jίa,l)

On the other hand, since
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fξλ(dξ) f ud{-Hζ(u)u'1) = fξλ(dξ) f udi-

for b"+1 <a<bn

x, we have limsυp | f ξλ(dξ) f ud{- HΛu)u~1} | < oo by

a I 0 ^5 J[a,D

(2.7). This leads to contradiction.

(ii) b > 0 and ft: < 0. In this case, we have that bx ψ(z) = φ(bx z). Hence we

have a contradiction by (i).

(iii) b < 0 and bγ < 0. In this case, we have that bfiiψiz) — iγz) = φib^z). On

the other hand, b^(z) = φ{b{i). Hence we have a contradiction by (i). D

PROPOSITION 2.8. Suppose that /(z) is semistable with exponent a satisfying

(1.2) t^iί/ι γΦO.IfaΦl, thenfiz) cannot be strictly semistable.

Proof. Suppose that there exists bλ ^ R and cx ^ R such that 0 < | bx \ < 1,

cγ > 1, and

/(z) =/(M)CS VzeRd.

Define α x by q | ^ Γ1 = 1. Then α = aλ by Proposition 2.5. If a = 2, then we get

obvious contradiction by Proposition 2.4. Consider the case of 0 < a < 1. Then

we have that

φ(z) = iγ3z + fλidξ) Γ ieiuξ* -ίidi- HΛu)u'a)

b\a

rwith some γ3. Since | b\a(φ(z) — iγz) = φ(bz), we have that γ3 =

I b Γ — b
Similarly it follows from | bλ \aφ(z) = ψibfl) that γ3 = 0. Hence γ — 0. This is

contradiction. In the same way we get contradiction in the case of 1 < a < 2. D

EXAMPLE 1. It is well-known that a probability measure with ch.f. /(z) is

stable if and only if, for any c > 1, there exist 0 < b < 1 and γ ^ R satisfying

(1.2). Similarly, a probability measure with ch.f. /(z) is strictly stable if and only

if, for any c > 1, there exists 0 < b < 1 such that (1.3) holds. Hence every stable

law is semistable; every strictly stable law is strictly semistable.

EXAMPLE 2. For d — 1, every strictly stable law with exponent 1 has a sym-

metric Levy measure. But there are strictly semistable laws with nonsymmetric

Levy measures even in case a—\ and d — 1. We consider two examples for
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d=l.

(i) This is similar to examples in [10, 17]. For - 1 < b < 0 and 0 < a < 2, let

Hι{u)uΓa — I h(\ogv)v~(a+1)dv
o

and

( - b))v-(a+1)dv,= Γ
where h(υ) is a nonnegative measurable bounded periodic function on (0, °°)

with period - 2 l o g ( - b). Then Hx{- bu) = H_x{u)y Hλ(b2u) = Hλ(u) and

H_γ{b2u) = H^iu). Let λ({l}) = λ({- 1}) = 1 and consider φ(z) described in

Proposition 2.4 (ii), (iii), (iv). We obtain a strictly semistable law satisfying (1.3)

with — 1 < b < 0 and exponent a. In fact, in case a = 1, we choose a constant γ0

such that

Γ «l[_>1)(«)rf{-ff1(w)fΓ1}+ Γ

and consider

= iγoz + f {eiuz - 1 -i

+ f° {e'uz - 1 -i«2l,_!,„,(«)}</{#_!(I « I) I « Γ 1}.

Note that this has nonsymmetric Levy measure in general.

(ii) In [11], there is a semistable example with discrete Levy measure. Modifying

it, we consider the case — 1 < b < 0. Let d = l , 0 < α < 2 , and

H1(u)u~a= Σ (~b)2na

(-bΓm>u

and

H__λ(u)u = Σ (— b)
( _ 6 ) - ( 2 n + i ) > M

Then # ! ( - 6w) = ^_ x(w), ^ ( 6 2 ^ ) = ^ ( M ) and H_x(b2u) = ^ ( M ) . Hence we

obtain a strictly semistable law with nonsymmetric Levy measure similarly to (i).

In this example, in case a — 1, we choose jQ equal to — 1/2 and consider

= ιγoz + Σ (e — 1 - ib z) \ b \ + Σ (e ~ 1) | b \ .
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3. Criteria for recurrence and transience of the semistable processes

Let {X(f)} be a Levy processes on R . If X(l) has a semistable law with ex-

ponent a, then we call {X(f)} a semistable process with exponent a. If X(\) has a

strictly semistable law with exponent a, then we call {X(t}} a strictly semistable

process with exponent α. Let /(z) be the ch.f. of the distribution X(l) and

ψ(z) = log/(z). Denote (Re{- ψ(z)})~1 = H(z), R e ί l / ( - φ(z))} = G(z),

Re{- 0(z)} = ϋΓ(z), and Im{- 0(z)} = /(z).

THEOREM 3.1. Assume that {X(f)} is a semistable process with exponent a €=

[1,2] on R. T/iβn {X(£)} ts recurrent if and only if {X(f)} is strictly semistable.

Proof. Corollary 7.4.5 in [15] says that if I G(z)dz = °° for some δ > 0,

then the process is recurrent. Since G(z) is an even function, we need only to

consider / G{z)dz. Suppose that (X(f)} is strictly semistable with exponent
o

a e [1,2] and satisfies (1.3). Since it is nondegenerate, there exists δ > 0 such

that K(z) > 0 for every z ^ (0, δ] by Theorem 2, §14 in [2]. Since G(z) is con-

tinuous, there exists C > 0 such that G(z) > C on [b δ, <5], Hence

X δ ^δ

G(z)dz > C J 2 dz> 0.

We claim that J" Gfe)& = Σ / 2 n + i G(z)dz = Σ (62)n(1" f f ) J ] G(z)ώ. Indeed,

noticing that Lemma 2.1 holds with σn = 0, we have that K(b z) —

(bYaK(z) and J(b2nz) = (b2)naJ(z). Hence

rb
2nδ rb

2nδ

/ Gω&= / ί:ω/{ίcω2 + / ω 2 } ^
*J f.2n+2* %Jι.2n+2 s|

It follows that / G(z)dz = °o, because (δ2)1"^ > 1. Hence {X(ί)l is recurrent.

Suppose that {X(t)} is not strictly semistable. Then consider three cases: (i) a

= 1, (ii) a = 2, and (iii) 1 < a < 2.

(i) a=\. We will show lim sup 1 Re{(^ — ψ(z))~1)dz < °°, which implies
Ho *Ό
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transience of {X(f)} by Theorem 7.4.4 in [15]. Since {X(t)} is not strictly semi-

stable, b has to be positive by Proposition 2.6. We have that

dz.
Ό K{zΫ+J(zΫ

By Remark 2, we have that K(z) = \ z\ R(z) and inf{R(z) : z e (0, °°)} > 0.

Hence

(3.1) f r o
J p2 + K(z)2

dz= [ " - ~2 dz< Γ } -dz
Jo pz + z2R(z) J° l+z2R(pzΫ

< 1 + Γ (zR(pz))~2dz < 1 + (inί{R(z) : z e (0, oo)})"2 Γ z~
2 dz<™.

By Lemma 2.1, we have — φ(b"z) = — b"φ(z) + inb"γz, where 7 # 0. Hence

and / ( Λ ) = 6"/(z) + w&Vz. Thus we have

Γδ K(z) Γδ

JΓ — ~ — ^ r f z = X G ω & '
/ G(2)rf2 = b" / G(όM2)d2

Jbn+1δ Jbδ

= bn f {bnK(z)}/{(b"K(z))2 + (bnj(z) + nbnγz)2)dz
Jbδ

= f° K(z)/{K(z)2 + (J(z) + nγz)2}dz,

and

n fn+ι G(z)dz= f K{z)/{{K{zΫ/n) + ((J(z)/n) + γz)2}dz

r δ 2 2

—• / K(z)/(γ z)dz a s n — ^ c o .

G(z)dz < (positive constant)/(w ). Thus,

(3.2) f G(z)dz=Σζ=0 f G(z)dz <oo.
fc/Q %/^2W+2£

By (3.1) and (3.2), lim sup Γ Re{(̂ ? - ψ(z)Yι)dz< °° . Hence the process is
P lo Jo

transient.
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(ii) a — 2. The distribution of X(l) is Gaussian with EX(1) Φ 0. Hence we know

through Theorem 7.4.13 in [15] that {X(t)} is transient.

(iii) 1 < a < 2. By Remark 3 we have that EX(1) Φ 0. Hence {X(t)} is transient.

D

THEOREM 3.2. Assume that {X(t}} is a semistable process with exponent a ^

(0, 1) on R. Then {X(f)} is transient.

Γδ

Proof. If / H(z)dz < °°, then the process is transient (Corollary 7.4.5 in
— δ

[15]). We have I H(z)dz = 2 I H(z)dz. By a similar discussion to the proof of
J-δ Jo

Theorem 3.1, there exist δ > 0 and C> 0 such that H(z) < C on [b2δ, δ].

Hence / H{z)dz is finite. We have that
Jb2δ

f H(z)dz= Σ f H(z)dz.
J0 n=0 Jb2n+2δ

Using Lemma 2.1, we get that

{H{b2nz)Yι = K(b2nz) = (b2)naK(z) = (b2)'

Hence,

Γ H(z)dz = b2n f H(b2nz)dz= (bYa~a) [ H{z)dz.
9Jb2n+2β *^b2δ **b2δ

Thus, we have that

H(z)dz = Σ (b2)na-a) [ H(z)dz < oo,
n=0 Jb2δ

because (b ) a < 1. Hence {X(/)l is transient. •

THEOREM 3.3. Assume that {X(t)} is a semistable process with exponent a ^

(0,2] on R , w/igrtf R w spanned by the support Σ o/ {X(0). The support Σ 0/

is defined to be the set of points x such that, for each ε > 0, there exists t ^ 0

- x I < ε) > 0. T/iβn {X(t)} is recurrent if and only if {X(t)} is

strictly semistable with a — 2.
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Proof, (i) We first consider the case of a = 2. We know that E \ X(l) \2

< oo. By Theorem 7.4.11 of [15], {X(f)} is recurrent if EX(l) = 0 {X(f)} is

transient if EX(1) Φ 0.

(ii) 0 < a < 2. By Lemma 7.4.8 of [15], there exists δ > 0 such that K(z) >

(positive constant) | z | for | z | < δ. Hence H(z) is continuous on the set {z : 0

< I z I < δ} and the integral C = / H(z)dz is finite. Let £/ = {z : | z
Λ2<5<lzl<<5

< <5} and E/ = {z : £2(M+1)<5 < I z I < δ 2 w δ}. We have that

f H(z)dz= Σ Γ £Γ(z)rfz.
J ( 7 «=0 J ί/ W

Since K(b2"z) = (bz)"aK(z), we have that

f H(z)dz= f f Hiucos θ, usin θ)ududθ

X
2π /*δ

I H{u cos u, u sin u)u du dσ.
Jb2δ

Hence, J H(z)dz — Σ (b Y C < °°. Therefore the process is transient. O

Remark 4. Let d > 3. If {X(ί)l is a Levy process on R such that R is

spanned by the support Σ of iX(t)}, then {X(t)} is transient, by Theorem 7.4.7

of [15].
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