H. Tsumura

Nagoya Math. J.
Vol. 134 (1994), 57-64

ON A q-ANALOGUE OF THE LOG- Γ-FUNCTION

HIROFUMI TSUMURA

0. Introduction

For complex numbers q and u, Carlitz defined the q-Bernoulli numbers $\left\{\beta_{k}(q)\right\}$ and the q-Euler numbers $\left\{H_{k}(u, q)\right\}$ associated to u by

$$
\beta_{0}(q)=1, \sum_{j=0}^{k}\binom{k}{j} q^{j+1} \beta,(q)-\beta_{k}(q)= \begin{cases}1 & (k=1) \\ 0 & (k \geq 2)\end{cases}
$$

and

$$
H_{0}(u, q)=1, \sum_{j=0}^{k}\binom{k}{j} q^{j} H_{j}(u, q)-u H_{k}(u, q)=0 \quad(k \geq 1) .
$$

(See [2]). Note that if $q \rightarrow 1$, then $\beta_{k}(q) \rightarrow B_{k}$ and $H_{k}(u, q) \rightarrow H_{k}(u)$ where $\left\{B_{k}\right\}$ and $\left\{H_{k}(u)\right\}$ are the ordinary Bernoulli and Euler numbers defined by

$$
\frac{t}{e^{t}-1}=\sum_{k=0}^{\infty} B_{k} \frac{t^{k}}{k!},
$$

and

$$
\frac{1-u}{e^{t}-u}=\sum_{k=0}^{\infty} H_{k}(u) \frac{t^{k}}{k!} .
$$

In [4], Kobiltz constructed a q-analogue of the p-adic L-function $L_{p, q}(s, \chi)$ which interpolated the q-Bernoulli numbers at non positive integers, and suggested the following two problems.
(1) Are there complex analytic q - L-series which $L_{p, q}(s, \chi)$ can be viewed as interpolating, in the same way that $L_{p}(s, \chi)$ interpolates $L(s, \chi)$?
(2) Do Carlitz's $\beta_{k}(q)$ occur in the coefficients of some Stirling type series for p-adic or complex analytic q-log- Γ-functions?

In [5], Satoh gave an answer to the problem (1). Namely he constructed a q - L-series $L_{q}(s, \chi)$ which interpolated the generalized q-Bernoulli numbers defined in [4]. An answer to the problem (2) in the p-adic case was given by the author in [7]. But the problem (2) in the complex case is unsolved.

In the present paper, we give an answer to the problem (2) in the complex case. In §1, we construct a locally analytic function $g(x, u, q)$ in which the q-Euler numbers occur as the coefficients of the Stirling expansion. In §2, we construct a locally analytic function $G(x, q)$ in which the q-Bernoulli numbers occur as the coefficients of the Stirling expansion. In §3, we calculate the values of $L_{q}(s, \chi)$ at positive integers by using $G(x, q)$. The result is a q-analogue of the classical relation between the Dirichlet L-series and the $\log -\Gamma$-function. So we can regard $G(x, q)$ as the q-log- Γ-function which the above problem (2) in the complex case requires.

1. The function $g(\boldsymbol{x}, \boldsymbol{u}, \boldsymbol{q})$

Let \mathbf{Z}, \mathbf{R} and \mathbf{C} be the sets of rational integers, real numbers and complex numbers. Let q be a complex number with $|q|<1$, and u be a complex number with $|u|>1$. For a complex number z, we use the notation $[z]=[z ; q]=(1-$ $\left.q^{z}\right) /(1-q)$. Note that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}[n]=\frac{1}{1-q} \tag{1.1}
\end{equation*}
$$

Let

$$
\begin{equation*}
l(s, u, q)=\sum_{n=1}^{\infty} \frac{u^{-n}}{[n]^{s}} \tag{1.2}
\end{equation*}
$$

for $s \in \mathbf{C}$.

Lemma 1 (Satoh). $l(s, u, q)$ is analytic in the whole complex plane. For $k \in \mathbf{Z}$ with $k \geq 0$,

$$
l(-k, u, q)=\left\{\begin{array}{cc}
\frac{1}{u-1} & (k=0) \\
\frac{u}{u-1} H_{k}(u, q) & (k \geq 1)
\end{array}\right.
$$

Proof. See [5].

Now we define the function

$$
\begin{equation*}
g(x, u, q)=\sum_{n=0}^{\infty} u^{-n}(x+[n]) \log (x+[n]) \tag{1.3}
\end{equation*}
$$

By the condition $|u|>1$, we can see that $g(x, u, q)$ is a locally analytic function.

Proposition 1. For $x \in \mathbf{C}$ with $|x|>1 /(1-|q|)^{2}$,

$$
\begin{aligned}
g(x, u, q)= & \frac{u}{u-1}\left\{x \log x+\frac{1}{u-q}(\log x+1)\right\} \\
& \quad+\frac{u}{u-1} \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k(k+1)} H_{k+1}(u, q) \frac{1}{x^{k}} .
\end{aligned}
$$

Proof. By (1.3),

$$
\begin{align*}
g(x, u, q) & =\sum_{n=0}^{\infty} u^{-n}(x+[n]) \log x \tag{1.4}\\
& +\sum_{n=0}^{\infty} u^{-n}(x+[n]) \log \left(1+\frac{[n]}{x}\right)
\end{align*}
$$

By Lemma 1, we have

$$
\begin{aligned}
\sum_{n=0}^{\infty} u^{-n}[n] & =\frac{u}{u-1} H_{1}(u, q) \\
& =\frac{u}{u-1} \frac{1}{u-q}
\end{aligned}
$$

So the first term of (1.4) can be calculated and equals

$$
\frac{u}{u-1}\left\{x \log x+\frac{1}{u-q} \log x\right\} .
$$

On the other hand, by using the series expansion formula

$$
\log (1+z)=\sum_{k=1}^{\infty} \frac{(-1)^{k+1} z^{k}}{k}
$$

the second term of (1.4) equals

$$
\begin{equation*}
\sum_{n=0}^{\infty} u^{-n}\left\{\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} \frac{[n]^{k}}{x^{k-1}}+\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} \frac{[n]^{k+1}}{x^{k}}\right\} \tag{1.5}
\end{equation*}
$$

$$
=\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k(k+1)}\left\{\sum_{n=0}^{\infty} u^{-n}[n]^{k+1}\right\} \frac{1}{x^{k}}+\frac{u}{u-1} \frac{1}{u-q} .
$$

Note that $|[n]|<1 /(1-|q|)$ for $n=1,2,3, \ldots$. So the equation (1.5) holds for x with $|x|>1 /(1-|q|)^{2}$. By Lemma 1, we have the assertion.

$$
\text { Corollary 1. For } x \in \mathbf{C} \text { with }|x|>1 /(1-|q|)^{2}
$$

$$
g^{\prime}(x, u, q)=\frac{u}{u-1}(\log x+1)+\frac{u}{u-1} \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} H_{k}(u, q) \frac{1}{x^{k}}
$$

where $g^{\prime}(x, u, q)$ is the derivative $\frac{d}{d x} g(x, u, q)$.

2. The function $G(x, q)$

In [5], the q-Riemann ζ-function was defined by

$$
\begin{equation*}
\zeta_{q}(s)=\frac{2-s}{s-1}(1-q) \sum_{n=1}^{\infty} \frac{q^{n}}{[n]^{s-1}}+\sum_{n=1}^{\infty} \frac{q^{n}}{[n]^{s}} . \tag{2.1}
\end{equation*}
$$

Lemma 2 (Satoh). $\quad \zeta_{q}(s)$ is analytic in the whole complex plane. For $k \in \mathbf{Z}$ with $k \geq 1$,

$$
\zeta_{q}(1-k)= \begin{cases}q \beta_{1}(q) & (k=1) \\ -\frac{\beta_{k}(q)}{k} & (k \geq 2)\end{cases}
$$

Proof. See [5].

By Lemma 1, Lemma 2 and (2.1), we obtain the relation

$$
\begin{equation*}
-\frac{\beta_{k}(q)}{k}=-\frac{k+1}{k} H_{k}\left(q^{-1}, q\right)+\frac{1}{1-q} H_{k-1}\left(q^{-1}, q\right) \tag{2.2}
\end{equation*}
$$

for $k \in \mathbf{Z}$ with $k \geq 2$.
Now we define the function $G(x, q)$ by

$$
\begin{equation*}
G(x, q)=(q x-x-1) g^{\prime}\left(x, q^{-1}, q\right)+2(1-q) g\left(x, q^{-1}, q\right)+\frac{1}{1+q} \tag{2.3}
\end{equation*}
$$

Proposition 2. For $x \in \mathbf{C}$ with $|x|>1 /(1-|q|)^{2}$,

$$
G(x, q)=\left(x-\frac{1}{1+q}\right) \log x-x+\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k(k+1)} \beta_{k+1}(q) \frac{1}{x^{k}} .
$$

Proof. By Proposition 1 and Corollary 1, the left hand side of (2.3) equals

$$
\begin{aligned}
& \{(q-1) x-1\} \frac{1}{1-q}(\log x+1)+2\left(x \log x+\frac{q}{1-q^{2}}(\log x+1)\right)+\frac{1}{1+q} \\
& \quad+\{(q-1) x-1\} \frac{1}{1-q}+\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} H_{k}\left(q^{-1}, q\right) \frac{1}{x^{k}} \\
& \quad+2 \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k(k+1)} H_{k+1}\left(q^{-1}, q\right) \frac{1}{x^{k}} \\
& =\left(x-\frac{1}{1+q}\right) \log x-x+\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k}\left\{\frac{k+2}{k+1} H_{k+1}\left(q^{-1}, q\right)-\frac{1}{1-q} H_{k}\left(q^{-1}, q\right\}\right\} \frac{1}{x^{k}} .
\end{aligned}
$$

By (2.2), we have the assertion.
Remark. The formula in Proposition 2 is a q-analogue of the classical asymptotic series (see [9]).

$$
\log \frac{\Gamma(x)}{\sqrt{2 \pi}} \sim\left(x-\frac{1}{2}\right) \log x-x+\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k(k+1)} B_{k+1} \frac{1}{x^{k}},
$$

where B_{n} is the ordinary Bernoulli number.

3. Values of $\boldsymbol{L}_{\boldsymbol{q}}(s, \chi)$

For $r \in \mathbf{Z}$ with $r \geq 1$ and a function $f(x)$, let $f^{(r)}(x)$ be the r-th derivative $\frac{d^{r}}{d x^{r}} f(x)$.

Lemma 3. For $r \in \mathbf{Z}$ with $r \geq 2$,

$$
\frac{(-1)^{r}}{(r-2)!} g^{(r)}(x, u, q)=\sum_{n=0}^{\infty} \frac{u^{-n}}{(x+[n])^{r-1}}
$$

Proof. We can see that

$$
g^{(1)}(x, u, q)=\sum_{n=0}^{\infty} u^{-n}\{\log (x+[n])+1\}
$$

and

$$
g^{(2)}(x, u, q)=\sum_{n=0}^{\infty} \frac{u^{-n}}{(x+[n])} .
$$

Inductively we can see that

$$
g^{(r)}(x, u, q)=(-1)^{r}(r-2)!\sum_{n=0}^{\infty} \frac{u^{-n}}{(x+[n])^{r-1}}
$$

for $r \geq 2$. So we have the assertion.

The q - L-series was defined by

$$
\begin{equation*}
L_{q}(s, \chi)=\frac{2-s}{s-1}(1-q) \sum_{n=1}^{\infty} \frac{q^{n} \chi(n)}{[n]^{s-1}}+\sum_{n=1}^{\infty} \frac{q^{n} \chi(n)}{[n]^{s}}, \tag{3.1}
\end{equation*}
$$

where χ is a primitive Dirichlet character with conductor f. $L_{q}(s, \chi)$ interpolates the generalized q-Bernoulli numbers $\beta_{n, x}(q)$ (defined in [4]) at non positive integers. So we can regard $L_{q}(s, \chi)$ as the function which the Koblitz problem (1) requires (see [4],[5]).

Now we evaluate the values of $L_{q}(s, \chi)$ at positive integers.

Lemma 4. For $k \in \mathbf{Z}$ with $k \geq 2$,

$$
\begin{aligned}
L_{q}(k, \chi) & =\frac{2-k}{(k-1)!}(1-q) \frac{(-1)^{k}}{[f]^{k-1}} \sum_{a=1}^{f} q^{a(2-k)} \chi(a) g^{(k)}\left(q^{-a} \frac{[a]}{[f]}, q^{-f}, q^{f}\right) \\
& +\frac{1}{(k-1)!} \frac{(-1)^{k+1}}{[f]^{k}} \sum_{a=1}^{f} q^{a(1-k)} \chi(a) g^{(k+1)}\left(q^{-a} \frac{[a]}{[f]}, q^{-f}, q^{f}\right)
\end{aligned}
$$

Proof. By (3.1)

$$
\begin{align*}
L_{q}(k, \chi)= & \frac{2-k}{k-1}(1-q) \sum_{a=1}^{f} \sum_{j=0}^{\infty} \frac{q^{a+f j} \chi(a+f j)}{[a+f j]^{k-1}} \tag{3.2}\\
& +\sum_{a=1}^{f} \sum_{j=0}^{\infty} \frac{q^{a+f j} \chi(a+f j)}{[a+f j]^{k}} .
\end{align*}
$$

By using the relation

$$
\begin{gathered}
{[a+f j]=\frac{1-q^{a+f j}}{1-q}=\frac{1-q^{a}}{1-q}+q^{a} \frac{1-q^{f}}{1-q} \frac{1-q^{f i}}{1-q^{f}}} \\
\quad=[a]+q^{a}[f]\left[j ; q^{f}\right]
\end{gathered}
$$

the first term of (3.2) equals

$$
\frac{2-k}{k-1}(1-q) \frac{1}{[f]^{k-1}} \sum_{a=1}^{f} q^{a(2-k)} \chi(a) \sum_{j=0}^{\infty} \frac{q^{f j}}{\left(q^{-a} \frac{[a]}{[f]}+\left[j ; q^{f}\right]\right)^{k-1}},
$$

and the second term of (3.2) equals

$$
\frac{1}{[f]^{k}} \sum_{a=1}^{f} q^{a(1-k)} \chi(a) \sum_{j=0}^{\infty} \frac{q^{f j}}{\left(q^{-a} \frac{[a]}{[f]}+\left[j ; q^{f}\right]\right)^{k}}
$$

By Lemma 3, we have the assertion.

Proposition 3. For $k \in \mathbf{Z}$ with $k \geq 2$,

$$
L_{q}(k, \chi)=\frac{(-1)^{k}}{(k-1)!} \frac{1}{[f]^{k}} \sum_{a=1}^{f} q^{a(2-k)} \chi(a) G^{(k)}\left(q^{-a} \frac{[a]}{[f]}, q^{f}\right) .
$$

Proof. By (2.3), we can inductively see that
(3.3) $G^{(k)}(x, q)=(q x-x-1) g^{(k+1)}\left(x, q^{-1}, q\right)+(1-q)(2-k) g^{(k)}\left(x, q^{-1}, q\right)$ for $k \in \mathbf{Z}$ with $k \geq 2$. So we obtain

$$
\begin{gathered}
G^{(k)}\left(q^{-a} \frac{[a]}{[f]}, q^{f}\right)=\left\{\left(q^{f}-1\right) q^{-a} \frac{1-q^{a}}{1-q^{f}}-1\right\} g^{(k+1)}\left(q^{-a} \frac{[a]}{[f]}, q^{-f}, q^{f}\right) \\
+\left(1-q^{f}\right)(2-k) g^{(k)}\left(q^{-a} \frac{[a]}{[f]}, q^{-f}, q^{f}\right) \\
=-q^{-a} g^{(k+1)}\left(q^{-a} \frac{[a]}{[f]}, q^{-f}, q^{f}\right)+[f](1-q)(2-k) g^{(k)}\left(q^{-a} \frac{[a]}{[f]}, q^{-f}, q^{f}\right) .
\end{gathered}
$$

By Lemma 4,

$$
\begin{aligned}
& \quad L_{q}(k, \chi)=\frac{(-1)^{k}}{(k-1)!} \frac{1}{[f]^{k}} \sum_{a=1}^{f} q^{a(2-k)} \chi(a) \\
& \times\left\{[f](1-q)(2-k) g^{(k)}\left(q^{-a} \frac{[a]}{[f]}, q^{-f}, q^{f}\right)-q^{-a} g^{(k+1)}\left(q^{-a} \frac{[a]}{[f]}, q^{-f}, q^{f}\right)\right\}
\end{aligned}
$$

So we have the assertion.

Remark. By Lemma 3 and (3.3), we can see that

$$
\begin{gather*}
\frac{(-1)^{k}}{(k-1)!} G^{(k)}(x, q)=\frac{2-k}{k-1}(1-q) \sum_{n=0}^{\infty} \frac{q^{n}}{(x+[n])^{k-1}} \tag{3.4}\\
+(1+x-q x) \sum_{n=0}^{\infty} \frac{q^{n}}{(x+[n])^{k}}
\end{gather*}
$$

for $k \in \mathbf{Z}$ with $k \geq 2$. This relation is a q-analogue of the classical one

$$
\frac{(-1)^{k}}{(k-1)!} \frac{d^{k}}{d x^{k}} \log \Gamma(x)=\sum_{n=0}^{\infty} \frac{1}{(x+n)^{k}} .
$$

By considering the result in Proposition 2, Proposition 3 and (3.4), we can regard $G(x, q)$ as the q-log- Γ-function which the Koblitz problem (2) in the complex case requires.

REFERENCES

[1] R. Askey, The q-gamma and q-beta functions, Applicable Anal., 8 (1978), 125-141.
[2] L. Carlitz, q-Bernoulli numbers and polynomials, Duke Math. J., 15 (1948), 987-1000.
[3] -, q-Bernoulli and Eulerian numbers, Trans. Amer. Math. Soc., 76 (1954), 332-350.
[4] N. Koblitz, On Carlitz's q-Bernoulli numbers, J. Number Theory, 14 (1982), 332-339.
$[5]$ J. Satoh, q-analogue of Riemann's ζ-function and q-Euler numbers, J. Number Theory, 31 (1989), 346-362.
[6] -, A construction of q-analogue of Dedekind sums, Nagoya Math. J., 127 (1992), 129-143.
[7] H. Tsumura, On the values of a q-analogue of the p-adic L-function, Mem. Fac. Sci. Kyushu Univ., 44 (1990), 49-60.
[8] -, A note on q-analogues of the Dirichlet series and q-Bernoulli numbers, J. Number Theory, 39 (1991), 251-256.
[9] E. Whittaker and G. Watson, A course of modern analysis, 4-th ed., Cambridge Univ. Press: Cambridge, 1958.

[^0]
[^0]: Aoyama Gakuin High School
 4-4-25 Shibuya Shibuya-ku, Tokyo 150
 Japan

