EXPLICIT FORMULAS FOR LOCAL FACTORS: ADDENDA AND ERRATA

PAUL FEIT

Introduction

In [3], the author studied certain local integrals derived from Fourier coefficient computations on Eisenstein series. Members of a family of Dirichlet series were characterized as a product of an explicit term with a mysterious polynomial factor. In a recent letter to the author, Professor Shoyu Nagaoka asked specific questions concerning the polynomial factor. Several of these questions can be answered by the techniques in [3]. In Part I of that paper, the relevant term is described precisely; however, in Part II, the term is described as a mysterious, albeit finite, sum. The present paper complete [3] by recording what little is known of that sum.

We illustrate our tables by settling one of the questions raised in Professor Nagaoka's letter. Let F is a totally real number field and let K / F be a purely imaginary quadratic extension. Let \mathscr{D} be the discriminant of K / F, and let $h \in \mathscr{D}^{-1}$. For a finite prime \mathscr{P} of F,

$$
\bar{\alpha}_{\mathscr{P}}^{(2)}\left(S,\left[\begin{array}{cc}
h & 0 \tag{1}\\
0 & 0
\end{array}\right]\right)=\left(1-q^{-s}\right)\left(1-\psi(\mathscr{P}) q^{1-s}\right)\left(1-\psi(\mathscr{P}) q^{2-s}\right)^{-1}\left(\sum_{j=0}^{b} q^{\prime(3-s)}\right)
$$

where the α-series derives from Eisenstein series for the hermitian modular group of genus $2, \phi$ is the ideal character of K / F (normalized to be 0 if \mathscr{P} ramifies), $q=N \mathscr{P}$, and \mathscr{P}^{b} devides the ideal $(h) \mathscr{D}$ while \mathscr{P}^{b+1} does not.

1. The α-series

Let F be a local of any characteristic except 2 and let R be (a choice of) the ring of integers of F. Let \mathscr{P} be the prime of R, and put

$$
\begin{equation*}
q=N \mathscr{P} . \tag{2}
\end{equation*}
$$

Received January 19, 1993.

Let A be a semi-simple finite dimensional F-algebra, and let B be the corresponding maximal order of A. For $k \in \mathbf{N}$, let B^{k} be the right B-module of $k \times 1$ column vectors. For $k, r \in \mathbf{N}$ such that $k \geq r$, an $r \times k$ matrix M with entries in B is called primitive if there is a $(k-r) \times k$ matrix N such that

$$
\binom{N}{M} \in G L_{k}(B) .
$$

If L is a B-module and $K \subseteq L$ is a submodule, let [$L: K$] be the cardinality of $|L / K|$. If L and K are B-submodules of A^{k} for some $k \in \mathbf{N}$, then define $[L: K]=[L: L \cap K] /[K: L \cap K]$ if each index on the right is finite. For $k \in \mathbf{N}$, define $v: G L_{k}(A) \rightarrow \mathbf{Q}$ by

$$
\begin{equation*}
q^{v(T)}=\left[B^{k}: T \cdot B^{k}\right] \tag{3}
\end{equation*}
$$

In practice, the function $q^{v(T)}$ is $|d t(T)|_{\mathscr{P}}{ }^{-d}$, where $d t$ is some sort of reduced norm function $G L_{k}(A) \rightarrow F, \|_{\mathscr{Q}}$ is a normalized valuation at \mathscr{P} and d is a positive constant. In [3] and in what follows, we work with the function v instead of determinants and valuations. For this reason, our α-series differ by a constant exponent from the usual ones, as used in [1] or [4]. We will comment on this later.

Let $k \in \mathbf{N}$. For $T \in M_{k}(A)$, define $j(T)$ by

$$
\begin{equation*}
q^{j(T)}=\left[T B^{k}+B^{k}: B^{k}\right] . \tag{4}
\end{equation*}
$$

Another interpretation for $j(T)$ is as follows. Express $T=D^{-1} C$ where ($C D$) is a primitive $k \times(\dot{2} k)$ matrix. Then $j(T)=v(D)$. Again, in other treatments, the j-factor is typically replaced by $|d t(D)|_{\mathscr{P}}{ }^{-1}$.

Fix a non-trivial group character χ from the additive group of F to the unit circle of \mathbf{C}. For our present purposes, any character will do. When we refer to Professor Nagaoka's question, we adopt the standard choice. Extend χ to $M_{k}(A)$ for each $k \in \mathbf{N}$ by composing the original character with the reduced trace, as described in [3].

Let ρ be an involution for A / F. Let $U(\rho)$ be the set of B-units ε such that $\varepsilon \varepsilon^{\rho}=1$. For $\varepsilon \in U$, a (ρ, ε)-hermitian lattice is a free B-module M of finite rank paired with an R-bilinear form (,) : $M \times M \rightarrow A$ such that for $x, y \in M$ and $b, c \in B$.

$$
\begin{align*}
& (b x, c y)=b \cdot(x, y) \cdot c^{\rho} \tag{5.a}\\
& (x, y)=\varepsilon(y, x)^{\rho} . \tag{5.b}
\end{align*}
$$

Let $k \in \mathbf{N}$. For each $\varepsilon \in U$, put

$$
\begin{align*}
& \sum(k, \varepsilon)=\left\{T \in M_{k}(A): T=\varepsilon\left({ }^{t} T^{o}\right)\right\} \tag{6}\\
& \sum(k, \varepsilon, B)=\sum(k, \varepsilon) \cap M_{k}(B)
\end{align*}
$$

and also

$$
\begin{equation*}
\sum(k, \varepsilon, B) \#=\left\{T \in \sum\left(k, \varepsilon^{o}\right): \chi\left(T \cdot \sum(k, \varepsilon, B)\right)=\{1\}\right\} \tag{7}
\end{equation*}
$$

The lattice $\Sigma(k, \varepsilon)$ obviously corresponds to all (ρ, ε)-hermitian forms on B^{k}. We refer to its members as being (ρ, ε)-hermitian. The function which takes $T \in \sum(k, \varepsilon, B) \#$ to the function $X \rightarrow \chi(T X)$ identifies the additive group of $\sum(k, \varepsilon, B) \#$ with the character group of $\sum(k, \varepsilon, B)$; for that reason, we refer to the former as the dual lattice.

Because most of the work in [3] deals with dual lattices, we set the problem in a manner in which the members of the dual lattice are (ρ, ε)-hermitian. For this reason, we set up the α-series as a sum over $\sum\left(k, \varepsilon^{\rho}\right)$ instead of $\sum(k, \varepsilon)$.

Let ρ be an involution of A, let $\varepsilon \in U(\rho)$, let $m \in \mathbf{N}$ and let $N \in \sum\left(m, \varepsilon^{\rho}\right.$, $B)$ \# . Define the α-series for this data by

$$
\begin{equation*}
\alpha(N, t)=\sum_{x \in \Sigma\left(m, \varepsilon^{\rho}\right) / \Sigma\left(m, \varepsilon^{\rho}, B\right)} \chi(N x) \cdot t^{j(x)}, \tag{8}
\end{equation*}
$$

where t is a formal variable. This is the correct form of [3; (5.10)], with B playing the role of S. The Dirichlet α-series used by Nagaoka [1] or Shimura [4] have the form

$$
\begin{equation*}
\alpha(N, s)=\alpha\left(N, q^{-s / d}\right), \tag{9}
\end{equation*}
$$

where the constant d is the exponent factor characterized by $q^{v(T)}=|d t(T)|_{\mathscr{Q}}{ }^{-d}$ Tautologically, for any $u \in G L_{k}(B), \alpha\left(u N^{t} u^{o}, t\right)=\alpha(N, t)$

Analysis of the α-series divides into two cases. First, suppose $A=\Delta \oplus \Delta^{\circ}$, where Δ is a simple F-algebra and Δ° is its opposite, and ρ is defined by $(b, c) \rightarrow$ (c, b). In this case, the involution ρ and the choice of ε is irrelevant. The α-series (8) can be rephrased as an infinite sum over $M_{k}(\Delta)$. The reformulation is analyzed in [3; Part I]. The analysis is complete, and we will make no additions to it here.

2. Hermitian lattices

With the split case settled, all other situations reduce to the hypothesis
A is a division F-algebra,
F is the fixed field of ρ on the center of A.

Under assumption (10), we hereafter denote A by Δ and the ring B by S. Fix $\varepsilon \in U(\rho)$. From now on, for T a square matrix, put

$$
\begin{array}{rlr}
T^{*} & ={ }^{t} T^{\rho}, & \quad \text { and } \tag{11}\\
T^{-*} & =\left(T^{*}\right)^{-1} & \text { if } T \text { is invertible. }
\end{array}
$$

For $k \in \mathbf{N}, N \in M_{k}(\Delta)$ and $C \in G L_{k}(\Delta)$, put $N[C]=C^{-1} N C^{-*}$.
Let \mathbf{m} be the maximal ideal of S, and let π be a generator of \mathbf{m}. Define a logarithmic valuation \mathfrak{l} on $\Delta^{*}=\Delta-\{0\}$ by

$$
\begin{equation*}
\forall x \in \Delta^{*}, \pi^{-l(x)} x \in S-\mathbf{m} \tag{12}
\end{equation*}
$$

We adopt the convention that $\mathfrak{l}(0)=\infty$. For $X \subseteq \Delta$ a non-empty set, put

$$
\mathfrak{I}(X)=\inf \{\mathfrak{r}(x): x \in X\}
$$

For M a hermitian lattice, define

$$
\begin{equation*}
s(M)=\mathfrak{l}(\{(x, y): x, y \in M\}) \tag{13}
\end{equation*}
$$

For $n \in \mathbf{Z}$, put

$$
\begin{align*}
& \Delta_{n}=\{d \in \Delta: l(d) \geq n\}, \tag{14}\\
& A_{n}=\left\{b+\varepsilon b^{\rho}: b \in \Delta_{n}\right\} .
\end{align*}
$$

Put

$$
\begin{align*}
& \mathscr{D}=\left\{d \in \Delta: \forall b \in S, \chi\left(b d+b^{\rho} d^{\rho}\right)=1\right\}, \tag{15}\\
& \delta=1(\mathscr{D}) .
\end{align*}
$$

For $n \in \mathbf{Z}$, let $\operatorname{Cat}(\rho, \varepsilon, n)$ be the class of all (ρ, ε)-hermitian lattices M such that

$$
\begin{align*}
& s(M) \geq n, \quad \tag{16}\\
& \forall v \in M, \quad(v, v) \in A_{n} .
\end{align*}
$$

In [3; Section 8], we define a notion of morphism between members of $\operatorname{Cat}(\rho, \varepsilon, n)$, and turn the class into a category. That structure is technical, and is omitted here. Certain lattices in this category have a special property, and are called n-modular; again, the precise definition is omitted, and we refer the reader to [3] for proof of the properties of n-modular lattices which we need. The hyperbolic lattices of denominator $-n$ are n-modular.

Parameters $\sigma, \sigma_{1}, \sigma_{2}, \sigma_{3}, \sigma_{4}$ and σ_{5} are defined in [3; (5.8) and (5.9)]. Except for σ_{2}, these are usually trivial to calculate. To get σ_{2}, use the fact [3; Lemma 5.1]

$$
\begin{equation*}
\sigma_{1}+\sigma_{2}+\sigma_{3}=\sigma_{4}+\sigma \tag{17}
\end{equation*}
$$

Depending on these parameters and on n, the category $\operatorname{Cat}(\rho, \varepsilon, n)$ is classified as one of four types, in [3; (8.19)]. The category relevant to our calculation is Cat (ρ, $\varepsilon, \delta)$. It is also a consequence of [3; Lemma 5.1] that, for $k \in \mathbf{N}, \sum\left(k, \varepsilon^{\rho}, S\right) \#$ is the set of all matrices which correspond to member of $\operatorname{Cat}(\rho, \varepsilon, \delta)$ of rank k.

The function v_{1}, on square, invertible matrices, is introduced in [3; Definition 7.1]. The only comments that we make here are (a) v_{1} depends on ρ and ε, and (b) like $v, v_{1}(T)$ has the form $|d t(T)|_{\mathscr{P}}{ }^{-d_{1}}$ where d_{1} is some constant dependent on the raw data.

3. Definite exponents

For the next part of the argument, fix $m \in \mathbf{N}$. Fix $N \in \Sigma\left(m, \varepsilon^{\rho}, S\right) \# \cap$ $G L_{m}(\Delta)$. Express

$$
\begin{equation*}
m=2 g_{0}+\lambda_{0}, \text { where } g_{0} \in \mathbf{Z} \text { and } \lambda_{0} \in\{0,1\} \tag{18}
\end{equation*}
$$

We now add a parameter not in [3]. Depending on the type of $\operatorname{Cat}(\rho, \varepsilon, \delta)$, define λ_{1} as

$$
\lambda_{1}= \begin{cases}\lambda_{0} & \text { for Type I, } \tag{19}\\ 0 & \text { for Type II or IV } \\ 1 & \text { for Type III. }\end{cases}
$$

Let

$$
\begin{equation*}
Y(N)=\left\{C \in G L_{m}(\Delta) \cap M_{m}(S): N[C] \in \sum\left(m, \varepsilon^{\rho}, S\right) \#\right\} \tag{20}
\end{equation*}
$$

Note that $G L_{m}(S)$ acts on Y on the right, and the quotient $Y(N) / G L_{m}(S)$ is finite. Following Siegel, our first major result is that $\alpha(N, t)$ is a sum of terms, one for each $C \in Y / G L_{m}(S)$. The term for C has to do with the structure of $N[C]$ in $\operatorname{Cat}(\rho, \varepsilon, \delta)$.

For

$$
\begin{equation*}
g, h \in \mathbf{N} \cup\{0\}, \lambda, \mu \in\{0,1\} \text { and } \eta \in\{-1,1\} \tag{21}
\end{equation*}
$$

define a polynomial in the indeterminate t by

$$
\begin{align*}
& R(g, h, \lambda, \eta, \mu ; t)=\prod_{j=0}^{g+h+\lambda-1}\left(1-q^{j \sigma_{3}} t^{\sigma_{3}}\right) \tag{22}\\
& \times\left\{\left(1+\eta(1-\mu) q^{(g+h) \sigma_{3}+\sigma_{1}+\sigma_{2}-\sigma} t^{\sigma_{3}}\right) \prod_{i=1}^{g+h-1}\left(1+q^{i \sigma_{3}+\sigma_{1}+\sigma_{2}-\sigma} t^{\sigma_{3}}\right)\right\},
\end{align*}
$$

where the bracketed part is set equal to 1 if $g+h=0$. Equation (22) is the correct form of (9.22) in [3]. We only consider this function when $\mu \leq h, \eta=1$ if $\lambda=1$, and $\lambda=0$ if $\mu=1$.

The significance of (22) is as follows. Let $M \in \sum\left(m, \varepsilon^{\rho}, S\right) \# \cap G L_{m}(\Delta)$. Regard M as a hermitian structure on S^{m}. Then M is isomorphic to an orthogonal sum $L \perp D$ where L is δ-modular and $s(D)>\delta$. Define $(g, h, \lambda, \eta, \mu)=(g(M)$, $h(M), \lambda(M), \eta(M), \mu(M))$ to be the unique tuple which satisfies (21) and

$$
\begin{align*}
& \operatorname{rank}(L)=2 \mathrm{~g}+\lambda, \tag{23}\\
& \operatorname{rank}(D)=h
\end{align*}
$$

$\eta=-1$ if and only if L has even rank and is not hyperbolic,
μ is the defect of D.
The defect is defined in [3; Definition 8.3], and generalizes the classical notion of defect in quadratic forms over fields of characteristic 2. It occurs only for Type IV situations. Define

$$
\begin{equation*}
R(M ; t)=R(g(M), h(M), \lambda(M), \eta(M), \mu(M) ; t) \tag{24}
\end{equation*}
$$

Now for $C \in Y(N) / G L_{m}(S)$, put $R(N, C ; t)=R(N[C] ; t)$. Then

$$
\begin{equation*}
\alpha(N, t)=\sum_{C \in Y(N) / G L_{m}(S)} q^{(r-1) v(C)+v_{1}(C)} t^{2 v(C)} R(N, C ; t) . \tag{25}
\end{equation*}
$$

We shall isolate the greatest common divisor of the summands in (25).
If there is $C \in Y(N)$ such that $N[C]$ is modular, define $\eta_{0}=\eta_{0}(N)$ to be 1 unless $N[C]$ has even rank and is not hyperbolic; in the latter case, define $\eta_{0}=$ - 1. If $N[C]$ is not modular for any C, put $\eta_{0}=0$. For each $\mathrm{C} \in Y(N)$, define

$$
\begin{align*}
& P(N, C ; t)=q^{(r-1) v(C)+v_{1}(C)} t^{2 \cdot v(C)} \prod_{j=g_{0}+\lambda_{0}}^{g+h+\lambda-1}\left(1-q^{j \sigma_{3}} t^{\sigma_{3}}\right) \\
& \times\left\{\frac{\left(1+\eta(1-\mu) q^{(g+h-1) \sigma_{3}+\sigma_{4}} t^{\sigma_{3}}\right)}{\left(1+\eta_{0} q^{\left(g_{0}-1\right) \sigma_{3}+\sigma_{4}} t^{\sigma_{3}}\right)}\right\} \times \prod_{i=g_{0}-1}^{g+h-2}\left(1+q^{i \sigma_{3}+\sigma_{4}} t^{\sigma 3}\right) \text { if } \eta_{0} \neq 0, \text { or } \tag{26}\\
& P(N, C ; t)=q^{(r-1) v(C)+v_{1}(C)} t^{2 \cdot v(C)} \prod_{j=g_{0}+1}^{g+h+\lambda-1}\left(1-q^{j \sigma_{3}} t^{\sigma_{3}}\right) \\
& \times\left\{\left(1+\eta(1-\mu) q^{(g+h-1) \sigma_{3}+\sigma_{4}} t^{\left.\sigma_{3}\right)} \prod_{i=g_{0}+\lambda_{1}}^{\prod_{j+2}^{g+2}}\left(1+q^{i \sigma_{3}+\sigma_{4}} t^{\sigma 3}\right)\right\} \text { if } \eta_{0}=0,\right.
\end{align*}
$$

where, in the second formula, the bracketed expression is 1 if $g+h-1<g_{0}+$ λ_{1}. In fact, $P(N, C ; t)$ is $R(N, C ; t)$ divided by the greatest common factor of all polynomials $R\left(N, C^{\prime} ; t\right)$. Define $P(N ; t)$ be the sum of $P(N, C ; t)$ as C
varies over $Y(N) / G L_{m}(S)$. Essentially, $P(N ; t)$ is the troublesome generalization of the σ-functions that appear in the Eisenstein series for $S L_{2}(\mathbf{Q})$.

4. Hermitian matrices of all ranks

Suppose $N_{1} \in \sum\left(m, \varepsilon^{\rho}, S\right) \#$ has the form

$$
N_{1}=\left[\begin{array}{cc}
N & 0 \tag{27}\\
0 & 0
\end{array}\right]
$$

where $r \in \mathbf{N}, N \in \sum\left(r, \varepsilon^{\rho}, S\right) \# \cap G L_{r}(\Delta)$. If $N_{1}=0$, adopt the convention that $r=0$ and $\alpha(N, t)=1$; all of the formulas that follow will then be valid. Now

$$
\begin{equation*}
a\left(N_{1}, t\right)=F_{m, r}(t) \cdot \alpha\left(N, q^{m-r} t\right) \tag{28}
\end{equation*}
$$

where

$$
\begin{equation*}
F_{m, r}(t)=\frac{\prod_{i=0}^{m-r-1}\left(1+q^{i \sigma_{3}+\sigma_{4}} t^{\sigma 3}\right) \prod_{i=0}^{m-r-1}\left(1-q^{i \sigma_{3}} t^{\sigma 3}\right)}{\prod_{j=0}^{m-r-1}\left(1-q^{(m-1+j) \sigma_{3}+\sigma_{5}} t^{2 \sigma_{3}}\right)} \tag{29}
\end{equation*}
$$

Define $g_{0}, \lambda_{0}, \lambda_{1}$ and η_{0} as in the previous section, for the matrix N. (lf $r=0$, put $g_{0}=\lambda_{0}=\lambda_{1}=0$ and $\eta_{0}=1$.) Then $\alpha\left(N_{1}, t\right)$ is the product of $P\left(N, q^{m-r} t\right)$ times

$$
\begin{aligned}
& \left\{\frac{\prod_{i=0}^{m-g_{0}-\lambda_{0}-2}\left(1+q^{i \sigma_{3}+\sigma_{4}} t^{\sigma 3}\right) \prod_{i=0}^{m-g_{0}-1}\left(1-q^{i \sigma_{3}} t^{\sigma 3}\right)}{\prod_{j=0}^{m-r-1}\left(1-q^{(m-1+j) \sigma_{3}+\sigma_{5}} t^{2 \sigma_{3}}\right)}\right\} \\
& \times\left(1+\eta_{0} q^{\left(m-g_{0}-\lambda_{0}-1\right) \sigma_{3}+\sigma_{4}} t^{\sigma_{3}}\right) \text { if } \eta_{0} \neq 0 \text { and } g_{0} \neq 0, \\
& \left\{\frac{\prod_{i=0}^{m-\lambda_{0}-1}\left(1+q^{i \sigma_{3}+\sigma_{4}} t^{\sigma 3}\right) \prod_{i=0}^{m-1}\left(1-q^{i \sigma_{3}} t^{\sigma_{3}}\right)}{\prod_{j=0}^{m-r-1}\left(1+q^{(m-1+j) \sigma_{3}+\sigma_{5}} t^{2 \sigma_{3}}\right)}\right\} \text { if } \eta_{0} \neq 0 \text { and } g_{0}=0, \\
& \left\{\frac{\prod_{i=0}^{m-l_{0}} \prod_{j=0}^{m-r-1}\left(1+q^{(m-1+j) \sigma_{3}+\sigma_{5}} t^{2 \sigma_{3}}\right)}{\prod_{i=0}^{m-g_{0}-\lambda_{0}+\lambda_{1}-1}\left(1-q^{i \sigma_{3}} t^{\sigma_{3}}\right)}\right\} \text { if } \eta_{0}=0 .
\end{aligned}
$$

Table (30) is the correct form of [3; Theorem 5.3].

5. On a question by Professor Nagaoka

Let F_{0} be a totally real number field, let K_{0} / F_{0} be a purely imaginary quadratic extension field and let ρ_{0} be the Galois involution of K_{0} / F_{0}. Let ψ be the ideal character of K_{0} / F_{0}. Let \mathscr{P} be a finite prime of F_{0}, let F be the localization of F_{0} at \mathscr{P}, and let $K=K_{0} \otimes_{F_{0}} F$ and $\rho=\rho_{0} \otimes_{F_{0}} 1_{F}$. Let ω be a local gener. ator of \mathscr{P}, and put $q=N \mathscr{P}$. To normalize our series, we need to compare $v(\omega)$ with $|\omega|_{\mathscr{P}}{ }^{-1}=q$.

Let p be the rational prime which divides q, and let δ be a generator of the discriminant of F / \mathbf{Q}_{p}. On \mathbf{Q}_{p}, define χ_{0} by $\chi_{0}(t)=e^{2 \pi i r}$ for $r \in \mathbf{Q}$ any rational such that $r+t \in \mathbf{Z}_{p}$. Define χ_{F} to be the composition of χ_{0} with the trace function of F / \mathbf{Q}_{p}. If M is any square matrix over K whose trace t lies in F, define $\chi(M)=\chi_{F}(t)$.

Let h be a non-zero member of the different of F / \mathbf{Q}_{p} - that is, the fractional ideal generated by δ^{-1} - and let $b \in \mathbf{N} \cup\{0\}$ such that ω^{b} divides $h \delta$ while ω^{b+1} does not. We claim that

$$
\bar{\alpha}_{\mathscr{P}}^{(2)}\left(s,\left[\begin{array}{ll}
h & 0 \tag{31}\\
0 & 0
\end{array}\right]\right)=\left(1-q^{-s}\right)\left(1-\psi(\mathscr{P}) q^{1-s}\right)\left(1-\psi(\mathscr{P}) q^{2-s}\right)^{-1}\left(\sum_{j=0}^{b} q^{j(3-s)}\right),
$$

where the α-series derives from Eisenstein series for the hermitian modular group of genus 2 as in [1] or [4]. Here, $m=2, r=1$ and $\varepsilon=\varepsilon^{\rho}=1$.

The justification of (31) depends on the behavior of \mathscr{P} in K_{0}. Different factorizations for \mathscr{P} in S require different tables.

Case I: \mathscr{P} splits.
This is the situation not discussed in the present addendum. Here, $K \cong F \oplus F$, and [3; Part I] applies. Inspection shows that $v(\omega)=1$, so

$$
\bar{\alpha}_{\mathscr{P}}^{(2)}\left(s,\left[\begin{array}{ll}
h & 0 \\
0 & 0
\end{array}\right]\right)=\alpha\left(\left[\begin{array}{ll}
h & 0 \\
0 & 0
\end{array}\right] \cdot q^{-s}\right) .
$$

Although the discriminant is not mentioned by name in [3; Part 1], it is referred to in its role as genarator of the fractional ideal

$$
I=\{s \in F: \chi(R \cdot s)=\{1\}\}
$$

The indexing set for the polynomial $p(E, t)$ defined in $[3 ;(2.4)]$ for the 1×1 matrix (δh) can be represented by $\left\{\omega^{j}\right\}_{j=0}$. Thus,

$$
\begin{equation*}
p(\delta h, t)=\sum_{j=0}^{b} t^{j} \tag{32}
\end{equation*}
$$

Using [3; (2.6)] for parameters $k=r=2, m=1$ and σ (as defined in [3; Theorem 2.1]) equal to 1 , we get

$$
\bar{\alpha}_{\mathscr{P}}^{(2)}\left(s,\left[\begin{array}{ll}
h & 0 \tag{33}\\
0 & 0
\end{array}\right]\right)=\left(1-q^{-s}\right)\left(1-q^{1-s}\right)\left(1-q^{2-s}\right)^{-1}\left(\sum_{j=0}^{b} q^{j(3-s)}\right) .
$$

Since $\phi(\mathscr{P})=1,(33)$ is (31).

All remaining cases refer to the new tables. Let us make some general comments.

Hereafter, we assume K is a field extension of F. Let S be its ring of integers, and let δ_{K} be its discriminant as a \mathbf{Q}_{p}-extension. Let π be a generator of the prime of S.

We begin with a minor issue of normalization. For M a square matrix over K, define $\tau(M)$ to be the image of M 's trace under the trace map of K / F. Now [3; Part II] consider matrix characters of the form $\zeta \circ \tau$. The character used in [1] or [4] is not $\chi_{F}{ }^{\circ} \tau$. Because the character is evaluated only on matrices whose trace is in F, there is no need to apply the trace of the extension K / F. However, we can describe this standard character as $\chi^{\prime} \circ \tau$ where $\chi^{\prime}(x)=\chi_{F}(x / 2)$! Thus, the series of [3; Part II] do emulate the standard local integrals.

As in Case I, the discriminant δ plays a role. Let $k \in \mathbf{N}$. The dual lattice $\sum\left(k, \varepsilon^{\rho}, S\right) \#$ consists of all $k \times k(\rho, 1)$-hermitian matrices whose diagonal en tries lie in the fraction F-ideal generated by δ^{-1} and whose off-diagonal entries lie in the fractional K-ideal generated by $\delta_{K}{ }^{-1}$. Again, we fix $h \in \delta^{-1} R$.

The key parameters specialize as

$$
\begin{array}{ll}
\sigma=2, \sigma_{1}=1, \sigma_{2}=0, \sigma_{3}=2, & \sigma_{4}=1, \sigma_{5}=2 \tag{34}\\
v(\pi)=2, v_{1}(\pi)=2 & \text { if } \mathscr{P} \text { is unramified } \\
\sigma=2, \sigma_{1}=1, \sigma_{2}=0, \sigma_{3}=1, & \sigma_{4}=0, \sigma_{5}=1 \\
v(\pi)=1, v_{1}(\pi)=1 & \text { if } \mathscr{P} \text { ramifies. }
\end{array}
$$

The unramified situation will divide into two cases.
Regardless of ramification, $\sigma>\sigma_{1}+\sigma_{2}$. Thus, $\operatorname{Cat}(\rho, 1, \delta)$ is of Type I or Type III. In particular, the defect of any hermitian lattice will be 0 . Classically, the defect is a concept related to quadratic forms rather than hermitian forms. Its present irrelevance is not surprising.

Regardless of ramification, $v(\omega)=2$. This means that we wish to replace the variable t by $q^{-s / 2}$ to get the appropriate Dirichlet series. In general, the exponential constant factor will be $1 / \sigma$.

We generate the polynomial for the matrix $N=(h)$. In this calculation,
$g_{0}=0$ and $\lambda_{0}=1$. The η term for $N[C]$ will always be 1 , while η_{0} could be 0 or 1 , depending on h.

Case II: \mathscr{P} is unramified, $b=2 y$ is even.
The polynomial $P(N ; t)$ is a sum indexed by matrices $c=\left(\omega^{x}\right)$ for $0 \leq x$ $\leq y$. When $x=y, N[c]$ is modular, hence, $\eta_{0}=1$, and $P\left(N, \omega^{y} ; t\right)=q^{2 y} t^{4 y}$. For $0 \leq x<y$, the key parameters are $g=0, h=1, \lambda=0, \eta=1$ and $\mu=0$, which yields

$$
P\left(N, \omega^{x} ; t\right)=q^{2 x} t^{4 x}\left(1+q t^{2}\right)=q^{2 x} t^{4 x}+q^{2 x+1} t^{2(2 x+1)}
$$

Consequently,

$$
\begin{align*}
& P(N ; t)=\sum_{j=0}^{2 y} q^{j} t^{2 j} . \tag{35}\\
& P(N ; q t)=\sum_{j=0}^{2 y} q^{3 y} t^{2 j}=\sum_{j=0}^{b}\left(q^{3} t^{2}\right)^{j} .
\end{align*}
$$

The extra factor (30) works out to be

$$
\frac{\left(1+q t^{2}\right)\left(1-t^{2}\right)\left(1-q^{2} t^{2}\right)}{\left(1-q^{4} t^{4}\right)}=\frac{\left(1+q t^{2}\right)\left(1-t^{2}\right)}{\left(1+q^{2} t^{2}\right)}
$$

Now replace t by $q^{-s / 2}$ and combine the terms to get

$$
\begin{equation*}
\left(1-q^{-s}\right)\left(1+q^{1-s}\right)\left(1+q^{2-s}\right)^{-1}\left\{\sum_{j=0}^{b} q^{j(3-s)}\right\} \tag{36}
\end{equation*}
$$

This is exactly (31) after replacing $\psi(\mathscr{P})=-1$.

Case III: \mathscr{P} unramified, $b=2 y+1$ is odd
In this case, $\eta_{0}=0$, and we use different formulas. Since the relevant categ. ory is Type I or Type III, the parameter λ_{1} must be 1 . For $0 \leq x \leq y$, the parameters are $g=0, h=1, \lambda=0, \eta=1, \mu=0$, and

$$
P\left(N, \omega^{x} ; t\right)=q^{2 x} t^{4 x}
$$

The combined factor is

$$
\begin{gather*}
\frac{\left(1+q t^{2}\right)\left(1+q^{3} t^{2}\right)\left(1-t^{2}\right)\left(1-q^{2} t^{2}\right)}{\left(1-q^{4} t^{4}\right)}\left\{\sum_{j=0}^{y} q^{6 j} t^{4 j}\right\} \tag{37}\\
\quad=\left\{\frac{\left(1+q t^{2}\right)\left(1-t^{2}\right)}{\left(1+q^{2} t^{2}\right)}\right\}\left\{\left(1+q^{3} t^{2}\right) \sum_{j=0}^{y} q^{6 j} t^{4 j}\right\}
\end{gather*}
$$

$$
=\left\{\frac{\left(1+q t^{2}\right)\left(1-t^{2}\right)}{\left(1+q^{2} t^{2}\right)}\right\}\left\{\sum_{j=0}^{2 y+1} q^{3 j} t^{2 j}\right\} .
$$

Again after substitution $t=q^{-s / 2}$, we get (31) with $\phi(\mathscr{P})=-1$.

Case IV: \mathscr{P} is ramified
We may choose that $\omega=\pi \pi^{\rho}$. Since \mathscr{P} is ramified, $\operatorname{Cat}(\rho, 1, \delta)$ is Type III. Thus, $g_{0}=0, \lambda_{0}=1$ and $\eta_{0}=0$. For each $0 \leq x \leq b, P\left(N, \pi^{x} ; t\right)$ has parameters $g=0, h=1, \lambda=0, \eta=1$ and $\mu=0$. We get

$$
\begin{equation*}
P(N ; t)=\sum_{j=0}^{b} q^{j} t^{2 j}, \text { and } P(N ; q t) \underset{j=0}{b} q^{3 j} t^{2 j} . \tag{38}
\end{equation*}
$$

Happily, the extra factor (30) simplifies:

$$
\frac{(1+t)(1+q t)(1-t)(1-q t)}{\left(1-q^{2} t^{2}\right)}=\left(1-t^{2}\right) .
$$

The net rational factor becomes

$$
\begin{equation*}
\left(1-t^{2}\right) \sum_{j=0}^{b} q^{3 j} t^{2 j} \tag{39}
\end{equation*}
$$

After substitution $t=q^{-s / 2}$, we get (31) with $\psi(\mathscr{P})=0$.

REFERENCES

[1] S. Nagaoka, On the Fourier coefficient of Hermitian Eisenstein series of degree 2, preprint.
[2] P. Feit, Poles and residues of Eisenstein series for sympletic and unitary groups, Memoirs of the Amer. Math. Soc., 346, 1986.
[3] -, Explicit formulas for local factors in the Euler products for Eisenstein series, Nagoya Math. J., 113 (1989), 37-87.
$[4$ | G. Shimura, On Eisenstein series, Duke Math. J., 50 (1983), 417-176.
University of Texas at Permian Basin
Science and Engineering
4901 F. University Blvd.
Odessa, TX 79762, U.S.A.

