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EXISTENCE OF DIRICHLET FINITE HARMONIC

MEASURES ON EUCLIDEAN BALLS

MITSURU NAKAI

To Professor Makoto Ohtsuka on his seventieth birthday

Divide the ideal boundary of a noncompact Riemannian manifold M into two

parts δ0 and δv Viewing that M is surrounded by two conducting electrodes <50

and <5lf we ask whether (M δ0, <5X) functions as a condenser in the sense that the

unit electrostatic potential difference between two electrodes is produced by put-

ting a charge of finite energy on one electrode when the other is grounded. The

generalized condenser problem asks whether there exists a subdivision <50 U δx of

the ideal boundary of M such that (M δ0, δx) functions as a condenser.

Mathematically the problem has two equivalent formulations one of which is

in the geometric and the other in the analytic form. In the geometric formulation

the problem is negatively settled if and only if the linear Royden harmonic bound-

ary Δ(M) of M is connected. In the analytic formulation the problem is also nega-

tively settled if and only if every Dirichlet finite harmonic measure on M reduces

to a constant on M. A fairy general discussion of the generalized condenser prob-

lem for Riemannian manifolds M was carried out in [22] one of whose consequ-

ences is that the Royden harmonic boundary Δ(B ) of the Euclidean unit ball B

in the Euclidean space R of dimension n > 2 is connected which generalizes the

classical result in the complex function theory that Δ(B ) is connected (cf. e.g. [3],

[1], [12], [10], [21], [25], etc.).

In this paper we discuss the above generalized condenser problem for the

Euclidean ball B of dimension n ^ 2 in a broader potential theoretic setting that

the underlying harmonic structure is given by the ^-Laplace equation

-VΛ\Vu\p~2Vu) = 0 (Kp^n),

the solutions of which are the so-called ^-harmonic functions. Here the exponent p
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8 6 MITSURU NAKAI

is restricted to 1 < p ^ n since otherwise the structure reduces to a triviality.

Based upon the ^-harmonic structure we consider the nonlinear (in the sense of

not necessarily linear) Royden harmonic boundary Δp(Bn) with exponent p of the

ball Bn (see §5 for the precise definition) in addition to the original linear Royden

harmonic boundary Δ2(Bn) = Δ(Bn) of the ball Bn. There are many results in the

nonlinear potential theory which are superficially formulation-preserving gener-

alizations of those in the linear case. In the present case of Δp(Bn), however, cer-

tain properties of Δp(Bn) (p Φ 2) may differ from those of Δ2(Bn) in an essential

way depending on the exponent p, and our main concern of the generalized conde-

nser problem for the ball Bn is then settled in the following fashion.

THE MAIN THEOREM (Geometric form). The Royden harmonic boundary Δp(Bn)

with exponent p (1 < p ^ n) of the Euclidean ball B of dimension n ^ 2 is con-

nected for2^p^n but disconnected for 1 < p < 2.

Corresponding to the above result formulated in a geometric form we restate

it in an analytic form. Generalizing the ^-Laplace equation we consider a quasi-

linear elliptic equation of the form

-V-d(x,Vu) = 0 0* <Ξdp(Bn), Kp^n)

on the ball B , the solutions of which are usually called ^-harmonic on B . Here

dp(Bn) is the family of all strictly monotone elliptic operators d : Bn X Rn'—* Rn

with d(x, Vu) -Vu~\Vu\P (see §2 for the precise assumptions on d). Since | Vu \P

is locally integrable over Bn for ^-harmonic functions u on Bn(d e dp(Bn)), we

can define the ^-Dirichlet integral of u over Bn by

DΛu B*) = f \Vu(x) Γ dx ^
jjin

and we say that u is p-Dirichlet finite on Bn if Dp(u Bn) < °°. We denote by

u Λ v the greatest ^-harmonic minorant of two ^-harmonic functions u and v on

B . An ^-harmonic function w on B is said to be an ^-harmonic measure on Bn

if

w Λ (1 - w) = 0

on B . Intuitively speaking, a />-Dirichlet finite .rf-harmonic measure w on Bn is

the "potential" of the "electric field" of a "condenser" formed by a subdivision of

the "ideal boundary" of Bn. Then our solution to the generalized condenser prob-

lem for Bn may also be stated in the following fashion.
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THE MAIN THEOREM (Analytic form). Every p-Dirichlet finite d-harmonic mea-

sure on B reduces to a constant for every d in dp (B ) with 2 ^ p ^ n neverthe-

less, there exist nonconstant p-Dirichlet finite d-harmonic measures on B for every d

indp(Bn) with I < p < 2.

The paper is organized as follows. In §1 some fundamentals of Sobolev spaces

are stated. Especially the comparison of Sobolev null spaces for different expo-

nents p are discussed. The Maz'ja decomposition of the Sobolev space into the

class of ^-harmonic functions and the null space is considered in §2. In particu-

lar the monotoneity of the decomposition is established. In §3 basic properties of

^-harmonic measures are discussed. The ^-capacity of the periphery of the

(n — 1)-dimensional ball in the n-dimensional Euclidean space is calculated in §4

only for the sake of completeness since the result is essentially made use of later.

As the last of the preparatory sections, the />-Royden harmonic boundary is ex-

plained in §5 and the equivalence of the main theorems in the geometric and the

analytic forms is established. After these preliminary discussions in §§1—5, the

proof of the main theorem is given in §6 for the analytic form.

1. Sobolev spaces

1.1. The length | x | of a point (vector) x — (x , . . . ,χn) in the Euclidean

space R of dimension n ^ 2 is given by ( Σ / = 1 (x ) ) as usual. We denote by

x-y the inner product of x and y = (y ,. . .fy
n) so that x y = Σ ? = i # V and x-x

= I x I . Our main purpose of this paper is to study potential theoretic nature of

the open unit ball Bn in Rn:

Bn= {χ<ΞRn: x

We denote by B(a, r) the open ball ί r ^ Rn \ x — a \ < r) of center a and radius

r in (0, °°]. Since we are mainly considering balls B(0, r) with center the origin

0 of Rn, we simply denote them by B(r) so that Bn = B{1) and Rn = B(°°).

Throughout this paper the number p stands for an exponent with 1 < p ^ n

and q its conjugate exponent so that 1/p + 1/q = 1. The space LP(B) over a

ball B = B(r) is considered with respect to the volume element dx — dx * * dx

on Rn. The volume (Lebesgue measure) of a measurable set E c Rn is denoted by

\E\ = ( dx.

Besides the space LP(B) we consider the product space
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Lp(B)n = LpiB) X ••• x LP(B) (n f ac tors ) ,

which is the space of measurable vector fields X = (X ,. . . ,X") : B—>R" with

the norm

IIX LΛB)n || = ( ΓI Xix) \"dx) < oo

where \X\ = ( Σ " = ι ( ^ ' ) 2 ) 1 / 2 so that | X\ e L,(β) and

The space LP(B) shares the same properties with Lp{B). For example, the dual

space (LP(B)")* of I , ( f l ) " is Lq(B)n (l/p + l/q= 1) in the sense that the

mapping Y —> Y determined by

F*(X) = ί X(x) • Y(x)dx (X e Lp(B))
JB

is an isometric isomorphism between (LP(B) ) and Lq{B) . Hence in particular,

LP(B) is a reflexive Banach space as LP(B) is. The following consequence of the

reflexivity is useful: A subset in Lp(B) (Lp(B) , resp.) is sequentially weakly

compact if and only if it is bounded in LP(B) (Lp(B)n, resp.) (cf. e.g. [6; p. 68]).

1.2. Recall that a vector field X e (locL^B))", the product of n same fac-

tors locL^B), is a distributional gradient Vu = (du/dx , . . . ,du/dχn) of a func-

tion w e locL^β) if

ΓKte) F KCr)dr - - Γ ^ ω Y(x)dx
JB JB

for every vector field F e C0°°(5)w = C0°°lB) X ••• x Co°°(5) (« factors). Our

basic function space is the Sobolev space Wp (B) of f u n c t i o n s / ^ LP(B) whose dis-

tributional gradient Vf ^ Lp(B)n. It is a Banach space equipped with the norm

1 / WP\B) || = || / LP(B) || + || Vf Lt(B)n \\.

Concerning the smoothness of functions in Wp (B) we know that the subspace

Wp (B) Π C°°(B) is dense in Wp (B) with respect to the above norm (cf. e.g. [18;

p. 12]). The closure of C0°°GB) in Wp(JB) is denoted by W^0CB). Intuitively speak-

ing, a function / in Wp (B) belongs to Wpo(B) if and only if / "vanishes" on the

"boundary" of B. The meaning will be made more precise after we introduce the

Royden compactification of B in §5.
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We can measure the size of the boundary dB of B with respect to WPt0(B).

We say that B is p-parabolic (i.e. dB is "small") or p-hyperbolic (i.e. dB is "large")

according as U Wlo(B) or 1 $ Wpt0(B). It is seen that B(oo) = Rn is

^-parabolic (which we do not use in this paper). However we have the following

result.

LEMMA 1.1. A finite ball B = B(r) (0 < r < °°) is p-hyperbolic, i.e. 1 $

Proof. Contrariwise suppose that 1 ^ WPt0(B) so that there exists a sequ-

ence {φA} in C™(B) such that

Let «(r) = «(z , . . . , ί ") = x . Since u is bounded on B and | FM | = 1, we can

easily check that

(1.1) \\uψk-u; WP\B) 1 — 0 (*-»«>).

The Gauss divergence theorem

fv «uφk)\Vu\t-*Vu)dx= f {(uφk)\Vu\p'2Vu) τ^-τdSx,

where dS x is the area element on dB, assures that

(1.2) f\Vu\P'2Vw V(uφk)dx= 0

since φk vanishes on dB and V (\Vu\P~2 Vu) =0 because of the fact that

I Vu \P~2 Vu = (1,0,. . .,0). The Holder inequality shows that the difference of the

left hand side of (1.2) and

f\Vu\p~2VπVudx= f\Vu\pdx
JB JB

in absolute value is dominated by

|| I Vu \p~2Vu ;Lq(B)n || - \ \ V u - V(uφk) L p ( B ) n \ \ < \ B Γ II u - u φ k ; WP\B) ||,

where 1/p + 1/q = 1. Thus, by (1.1) and (1.2), we must conclude that

X I Vu \Pdx = 0 but on the other hand
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f I Vu I "dx = [ d x = \ B \ > 0 .
Jβ **B

We have arrived at a contradiction. D

1.3. The following characterization of Wp (B) is a part of the Nikodym

theorem (cf. e.g. [16; p. 73], [18; pp. 8-9]): Any u in WP(B) (possibly modified on

a set of zero measure dx) is absolutely continuous on almost all straight lines

which are parallel to coordinate axes. The distributional gradient of u coincides

with the usual gradient almost everywhere; Conversely, if a function u in LP(B) is

absolutely continuous on almost all straight lines that are parallel to coordinate

axes and the usual gradient of u belongs to Lp(B), then it coincides with the dis-

tributional gradient of u and u ^ Wp (B).

Using the above characterization of the class WP(B), we see the following

useful lattice property of Wp (B). For two functions fλ and /2 on B, we define new

functions fγ U f2 and fx Π /2 on B by

(/i U /2)(r) = max(/iCr), /2Cr)), (Λ Π f2){x) = minif^x), f2(x))

for each point x in B.

Concerning these lattice operations U and Π , the Sobolev space Wp (B)

forms a vector lattice; The following identities hold:

IΛ U f2 LP(B) \\" + 1Λ Π /2 LP(B) \\" = || Λ £,(£) |f + || f2 1,(5) f,

|| F(Λ U /2) L,(β)" |f + || F(Λ Π /2) 1,(5)" |f

The mapping (/, g)-+f U g, f f) g oί WP\B) X ^ ( 5 ) to W/ίfi) is continuous:

if {/J and (gk) are sequences in WP\B) such that | | / t - / . " WP\B) || —* 0 and

Wgk ~ S W/CB) ll-^ 0 as A-» oo for functions / and ^ in WP\B), then | |/ λ U Λ

-fVg; WP\B) H 0 and | |Λ Π A - / Π ^ WP\B) ||-» 0 as A;^ oo.

The basic idea of the proofs for these facts can be found e.g. in [4; pp.

69-70, pp. 78-79], in which the dimension n is restricted to 2 and the function

space in consideration is slightly different from the present Wp (B).

1.4. We insert here a proof of the following elementary fact for the sake of

completeness. Let B = B(r) be a finite ball and Bλ = B{r^) a concentric ball such

that B c Bι so that 0 < r < rγ ^ °°. With each function / on Bλ we associate the

function ft on B for each t e (0, ^ / r ) given pointwise by
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ft(x) — f(tx) (\x\ <rx/t).

LEMMA 1.2. /// belongs to LP(B^), then ft belongs to LP(B) (0 < t < rx/r)

and

lim 11/,-/; 1/5)11 = 0.

Proof. Fix a closed ball A = B(r2) with r < r2 < rx. For an arbitrary num-

ber ε > 0 there exists a g in CC4) such that

\\g-f ;LP(A) || < ε

(cf. e.g. [27; p. 69]). Clearly/ e ! / £ ) (0 < f < ^ / r ) . Observe that

||/ f - / LP(B) || ^ | | / - gt L,CB) || + \\gt - g LP(B) \\ + \\g - / L,(β) ||

for every / ^ (0, r2/r). The first term of the right hand side of the above inequal-

ity is, by the change of integrating variable ζ = tx,

(jfj ft(χ) - gi(χ) \pdx)l/" = (fjfitx) - gitx) \Pdx)VP

= ( ί I nO - g(O \Pr"dζ)i/P ^ fnlp If-g; LP{A) || ^ Γ/Pε,

where tB = B(tr) c A (t e (0, r2/r). Therefore we see that

lim sup || / - / LP(B) || ^ 2ε + lim sup || gt - g LP(B) ||.

Since g €= C(i4), the uniform continuity of ^ on A 3 β assures that

l i m | | f t - ί ' ; L o o ( β ) | | = 0.
ί—1

In view of the inequality

|| ft - ^ 1,05) II ̂  I B \UP II ft - g I . G 3 ) II,

we see that lim sup,^ || g, — g Ljί^) || = 0 and therefore

limsup| |/ # -/;Z. ί 03) |£2e.
ί—1

On letting ε I 0 we obtain lim^j || / - / LP(B) || = 0. D

COROLLARY. /// belongs to LP(B), thenft belongs toLp(B) (0 < t < 1) and
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lim\\ft-f;Lp(B)\\ = O.
ί Ti

Proof. We extend / to Rn by se t t ing/= 0 on Rn\B. Then / e Lp{Rn) and Lem-

ma 1.2 implies l i m ^ ||/, — / LP(B) \\ — 0 and in particular the above assertion.

D

1.5. As in the preceding subsections let B — B(r) be a finite ball and Bλ =

Bir^ the concentric ball with B c β^ As a consequence of Lemma 1.2 we have

the following result.

LEMMA 1.3. / / / belongs to W}(BJ, then ft belongs to WP(B) (0 < t < rλ/r)

and

lim\\ft-f;Wp

1(B)\\ = 0.
ί—1

Proof. In view of Lemma 1.2 we only have to prove

(1.3)

Observe that

\im\\Vft-Vf;Lp(B)n\\ = O.
f - 1

i(x)7(f(tx)) t 1

3x ! dx dx'

almost everywhere on B, i.e. df,/dx' = t(df/dx'),, and therefore

Wft-
dft df

dx' dx' i t ± J>L\J>L
9χ ;< a r f

A fortiori we have

i-t\ Σ

df

df
dx'

iVft-Vf;Lp(B)Ί^tΣU-^) ~^;LP(B) + \l-t\Σ\-^;Lt(B)

Since df'/dx1 ^ LP(B) (i — 1, . . . ,n), Lemma 1.2 assures that the first term of

the right hand side of the above inequality tends to zero as t—*l. We can thus

conclude (1.3). •

1.6. Let B = B(r) be a finite ball (0 < r < °°). It is natural to extend each

φ in C™(B) to i?w by setting φ = 0 on Rn\B. In this sense we usually view that

C0°°(β) c C°°(i?w) and actually

C0°°(β) = {/e CTO(i?w) : s u p p / c J5}.
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Imitating this situation we extend each g in Wpo(B) to R by setting g = 0 on

Rn\B. However, this time, the inclusion WP>O(B) c Wp(Rn) may not be entirely

trivial and all the more for the following assertion a proof may be in order.

LEMMA 1.4. Any function f in Wpo(B) can be continued to a function in

Wp (R ) by setting f— 0 on Rn\B. Conversely any function f in Wp (R ) vanishing

on R /B belongs to Wpo(B). In short,

(1. 4) WP\(B) = {/e Wp\Rn) : / | Rn\B = 0}.

Proof To be precise we denote by / the extension of any function or any

vector field / on B to Rn by setting/ = 0 on Rn\B. We maintain that g~ be-

longs to Wp (Rn) for any g in Wpo(B). For the purpose choose a sequence {φk} in

C0°°CB) such that || φk - g Wι

p{B) | |-> 0 (fc-> °°). Consider

Γ g~(x) VΎ(x)dx = fg(x) V' Y{x)dx
JRn JB

for any vector field F i n C^(R ) . By the Holder inequality, we see that

I f g(x)VΎ(x)dχ- f φk(x)VΎ(x)dx

ύ\\g-φk;Lp(B)\\-\\V-Y; Lq{B) | -> 0 (k - oo)

where 1 /p + 1 /q = 1. Hence

Γ g(x) V • Y(x) dx = lim Γ φtCr) F Y(x) dx.
Jβ k-*oo Jβ

By the Gauss divergence theorem

Γ V (φk(x) Y{x))dx = f φk(x) Y(x) π dsx = 0,
JB JdB I x I

where rfSj, is the area element on dB, we obtain

f φk(x) VΎ(x)dx = - f Vφk(x)

Once more by the Holder inequality, we see that

I [vφk{x)Ύ{x)dχ- fvg(x)Ύ(x)dx
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^ \Wφk ~ Vg Lp(B)n || || Y Lq(B)n ||—• 0 ( Λ ^ ~ ) ,

and therefore we deduce

lira ( - fvφk(x) • Y(x)dx) = - fvgix) • Y(x)dx = - f (Vg) ~(x) • Y(x)dx.

We have thus obtained the identity

f g~(x)VΎ(x)dx = - f (Vg)~(x)-Y(x)dx
JRn JRn

for every Fin C™(R ) . This shows that the distributional gradient Vg~ of g~ is

(Vg) ~ on Rn and

so that g~ e Wp(Rn) and, by definition, g~ = 0 on Rn\B.

Conversely let g e ^ / ( ^ w ) and g\ Rn\B = 0. Set tk = 1 + I/A and ft =

gfjk, i.e. gk(x) — g(tkx). By Lemma 1.3, ft ^ Wp(B), and actually ft^

Wp(Rn) and ftte) = 0 for any J: in | x \ > kr/(k + 1) and moreover

ft;

As usual we take aΛx) = ε~na(ε~ x) (ε > 0) where

oί\x) — \ I e dx) e
\Jfin /

1

e dx

for I x I < 1 and a(x) = 0 for | x | ^ 1 and we form the regularization (mollifier)

gk*ae(x) = f gk(χ-ξ)aε(ξ)dξ
JRn

for every ε in 0 < ε < r/2(k + 1). Then ft * α ε e C™(B) and we can choose εΛ

in 0 < εΛ < r/2(Λ + 1) so small that

\\gk*a£k-gk',Wp\B)\\<l/k.

Then \\gk*a6k - g ^ / ( ΰ ) I H θ (k~* <*>). This assures that g e ^ 0 ( β ) . D

1. 7. Let 5 = B(r) be a finite ball (0 < r < °°). We take a pair (α, b) of

two exponents such that 1 < a ̂  b ̂  n. By the Holder inequality we see that

(1.5) II / Wι

a(B) \\^\B \1/a'1/b || / Wb

ι(B) \\ ' (1 < a £ b £ ή)
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for any/ in locL^B) with distributional Vf ^ (\ocL1{B))n\ As a consequence of
the above inequality (1.5) we have the trivial inclusion relation

Wa(B) => Wb(B) (Ka^b^n).

Slightly less trivial is the inclusion

Wa\0(B) 3 Wb>0(B) (Ka^b^n).

In fact, g €= Wbt0(B) means that there exists a sequence {φk} in C™(B) such that

ϊφk-g;Wϊώ)l-*0 (A^ oo). By (1.5)

\\φk-g; Wι

a(B) \ \ ύ \ B Γ " 1 " \\φk-g; Wb\B) \\

and therefore || φk - g W^(B) || -> 0 (k~+ °°) and a fortiori £ e W^_0(JB).

By the above two inclusion relations we see that

Wa\(B) Π Wb

ι(B) =5 < 0 ( 5 ) ( 1 < a ^ b ^ n),

which is the best conclusion we can make if we only use the property of B that it

has a finite volume. Due to the nice geometric property of B that the boundary dB

of B is compact and smooth we can maintain the following important result:

LEMMA 1.5. If B is a finite ball, then

(1.6) Wlo(B) Π Wb\B) = Wb)0(B) (X<a£b£n).

Proof. We only have to show that the left hand side of (1.6) is contained in

the right hand side of (1.6). For the purpose we take an arbitrary/ in Wa0(B) Π

Wb (B) and denote by / the extension of / to Rn by setting / = 0 on Rn \ B.

Since / e W^CB), (1.4) and its proof imply that/~e W«(Rn) and Vf= (Vf)~

on Rn. On the other hand,/^ Wb (B) assures that

and thus/~e Wb(Rn). Again by (1.4) we conclude t h a t / e Wb\(B). D

2. ^-harmonic functions

2.1. We say that d is a strictly monotone elliptic operator on a ball

B = £ 0 ) (0 < r ^ °°) with exponent p e (1, ^] if ^ is a mapping oί B * Rn to

i? satisfying the following assumptions for some constants 0 < a ^ /3 < °° :
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the function h^ d(x, h) is continuous for

(2.1) almost every fixed x ^ B, and the function

x »-* d(xf h) is measurable for all fixed h e Rn

for almost every x ^ B and for all h ^ Rn

(2.2)

(2.3)

(2.4)

whenever hx 4

(2.5)

d (x, h) - h ^ a | h \ ,

| d(x, h)\ < β\ h I*"1,

W ( x , A^ — ^ t e , A2)) (h1 — h2)

- h2, and

d(x, λh) = | /ί l ^ " 2 ^ ^ , A)

for all Λ <= i ? \ {0}.

The class of all operators d on B satisfying (2.1)—(2.5) with the exponent^

in 1 < p ^ n will be denoted by dp(B). Using d ^ dp(B) we consider a quasi-

linear elliptic equation

(2.6) ~V'd(x,Vu) = 0

on B. A function u on β is a weak solution of (2.6) if u e locW^CB) and

(2.7) [rf(x,Vu(x)) Vφ(x)dx = 0

for every <p Ξ C™(B). If u & Wp (B), then it is easy to see by the Holder inequal-

ity and d(x, Vu) e Lg(,β)w (l//> + l/q = 1) as a consequence of (2.3) that w is

a weak solution of (2.6) if and only if (2.7) is valid for every ψ €= R^QCB). AS

well-known, weak solutions of (2.6) (possibly modified on sets of zero measure dx)

are actually continuous and in fact Holder continuous (cf. e.g. [29], [30]). Hereafter

we say that a function u on B is d-harmonic if u *= CCB) Π locW^ (B) and w is a

weak solution of (2.6) on B. We will denote by

Wld(B) = {u e W/CB) : u is ^-harmonic on β } .

A simple characterization of the class Wpd(B) that it is the class of all

^-Dirichlet finite ^-harmonic functions on B will be given in the next subsection

as (2.9).

The simplest and the most typical operator d in dp(B) is the p-Laplacian

d(x, h) = |ft|*"2A
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so that the corresponding elliptic equation is the />-Laplace equation

-V'(\Vu\p~2Vu) =0

whose weak solutions (automatically continuous) are referred to as being

p-harmonic. Observe that 2-harmonic functions are usual classical harmonic func-

tions. We in particular denote by WPP(B) the space of ^-harmonic functions on B

belonging to the class Wp (JB), i.e.

WP\P(B) = WP\JB) (d = \h\p-2h).

Fundamental properties of ^-harmonic functions are concisely compiled

in e.g. [9] among which we especially use the Harnack inequality (cf. e.g. [26;

pp. 295—309]): If if is a closed concentric ball in B, then there is a constant c =

c(n, p, ay β, K, B) > 1 such that

sup u ^ cinίu
K K

for every nonnegative ^-harmonic function u in B.

2.2. It is convenient to consider another type of Sobolev space LP(B), which

is the class of functions / in locZ^CB) whose distributional gradients Vf belong

to Lp{B)n. Hence UP(B) Π Lp(B) = WP\B). Since the ball B has the cone proper-

ty (cf. e.g. [18; p. 18]), we have the following generalized Poincare inequality ([18;

p. 22]): If B = B{r) is a finite ball (0 < r < °°), then there exists a domain

constant K — K(B) such that there exists a constant c(u) with

(2.8) || u - c{u) LP(B) \\£K\\Vu; Lp(B)n ||.

Hence we see that

L\{B) = Wp(B) (B = B(r), 0 < r < oo),

le.L\(B) czLp(B).

Recall that the p-Diήchlet integral Dp(f B) of a function / e locZ^CB) =

\ocWp(B) is nothing but the pth power of the norm || Vf Lp(B)n \\ :

Dp(f;B) =

and / is said to be p-Diήchlet finite if Dp(f B) < °° . We are interested in

^-Dirichlet finite j^-harmonic functions id €= dp{B)). Concerning these functions

we have, as a consequence of (2.8),
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(2.9) Wp^(B) = {u : u is ^-harmonic on B and Dp(u B) < °°)

for any finite ball B and any d e dp(B).

Still assume that £ = Z?O) is a finite ball (0 < r < °°). The original Poin-

care inequality (cf. e.g. [16; p. 169]) concerns primarily about φ in C™(B)\

(2.10) || φ LP(B) \\ ^ 2p~ι/pr\\ Vφ Lp(B)n ||.

The inequality extends to functions φ in Wpo(B) by continuity.

2.3. Let B = β(r) be a finite ball (0 < r < oo). For any / e R^(β) and d

^ dp(B) there exists a ^-Dirichlet finite ^-harmonic function u (i.e. w ^

Wl>d(B)) such that « — / e ^ 0 ( β ) (cf [17]). Such a function is seen to be uni-

que. In fact, let u{ be in WP)S4(B) with w, - / e W 0̂(J5) (ί = 1,2). Since

, I7«f) Γ («y - /)Λc - 0 (i, = 1,2),

we have

Γ W(x, Vux) - ^(x, FM2)) (Fa, - Fw2) dx = 0.

The condition (2.4) implies that V {ux — u2) = 0 or wx — u2 = c, a constant, on

B. In view of the fact that

C = I*! ~ W2 = («! - /) - (l#2 ~ /) €= W^0(J5),

Lemma 1.1 assures that c = 0 so that ux — u2 on B.
Since the function u ^ Wpd{B) with z/ ~ / e W^o(5) is determined unique-

ly, we denote u by πdf, which will be referred to as the d-harmonic part of/^

Wp(B). We also write the ^-harmonic part by πpf= πBJ (d(x, h) = \h \P~2h).

We have thus obtained the direct sum decomposition

(2.11) WP\B) = WP\JB) Θ WP\(B).

Let {rk} be a strictly increasing sequence in (0, r) converging to r and Bk =

5(rfc) (k = 1,2,...) so that {5J is an exhaustion of β. For any / e R^(JB), set

on JB and

= I πjf on βΛ,

/ on B\Bk
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We have the following consistency relation (cf. [17]): Vuk—>Vu weakly in LP(B)

and d(x, Vuk)-^d(x, Vu) weakly in Lq(B)n (1/p + l/q = 1). Further we
maintain the following consistency relation.

LEMMA 2.1. The sequence {uk} is contained in Wp (B) and converges to u

strongly in Lp(B) :

lim || uk — u LP(B) || = 0.

Proof. Put gk = / — uk (k — 1,2,...) and g = f—u. Since gk G Wlt0(Bk)

and gk = 0 on β \ β A , (1.4) implies that ^ G W^0(β) so that % G W^(5). Since

weakly in Lp(B)n, i\\Vgk ;Lp(B)n\\} is bounded (cf. 1.1). By the Poincare inequal-

ity (2.10), {\\gk LP(B) ||} is also bounded and so is {\\gk ^ ( 5 ) ||}. In view of

the Rellich-Kondrachov theorem (cf. e.g. [2; p. 144]), the imbedding

WP\(B) ^ LP(B)

is compact. Therefore, any subsequence of {gk} contains a subsequence {hk} and

a n f e e LP(B) such that \\hk- h; LP(B) | |-> 0 (/c^ °o). Observe that

= - fhkVΎdx (A; = 1 , 2 , . . . )

for every F G Cζ(B)n. Since F/?Λ —* Fg" weakly in Lp(B)n and hk^>h strongly in

Lp(B), upon letting /c—^ °° in the above displayed identity, we obtain

[Vg-Ydx= ~ [hV Ydx
JR JR

for every Y ^ Cζ(B)n. This means that Vg = F/z and hence h — g = c, a con-

stant, on 5 . We now maintain that c = 0. Contrariwise suppose that c =£ 0. Set wΛ

= c~\hk- g). Then wfe G W^0(J5), Γ ^ - ^ 0 weakly in Lp(B)n, and ^ Λ ^ l

strongly in LP(B). Take the function v(x) = v{χι,. . .,χn) = .r and the unit vec-

tor eλ = (1, 0,. . .,0). Since v G WptP(B) and z;^ G W^0(β), we have

Vv\p~2Vv'V(vwk)dx= 0.

On the other hand, in view of | Vυ \ Vυ — eγ and

Vυ\P~2Vυ- V{υwk) = Vwk'(υex) + wk
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and veλ e Lq(B)n (l/p + l/q=l), we see that

J \Vυ\p"2Vv V(vwk)dx = jVwk (veι)dx + jwkdx

— fθ (veί)dx+ fldx=\B\>0
Jβ ^B

as A—* °°, which is clearly a contradiction . Hence h = g on B. We have thus

seen that any subsequence of {gk} contains a subsequence converging to g strong-

ly in LP(B). A fortiori \\gk - g LP(B) | | -* 0 (A— °o) s o that \\uk-u;

Lp(B)\\-*0 (k— oo). •

2.4. Let £ = B(r) be a finite ball (0 < r < °°). We use the following form

of the maximum principle (cf. [17]): If u and υ belong to Wpd(B) and (u — υ) DO

€: W^0(JB), then u ^ f on B. As a consequence we have the following monotoneity

of the operator π^ : Ŵ  (JS) —* W^,^(β).

LEMMA 2.2. If fλ and f2 belong to Wp (B) and fγ ^ /2 on B, then it^fγ ^ ^ Λ

o n ΰ .

Proo/. Put πEJx = «f and «, - /, = ^ e ^ 0 ( 5 ) (i = 1,2) so that

Choose a sequence {φk} c C^(B) such that

and set 0A = (/x — /2) + φk (A = 1,2,.. . ) . If tk e (0, r) is chosen close enough

to r, then we have

Φk n o = ((/i - / 2 ) + φk) n o = (Λ - f2) n o = o

on {tk<\x\ < r) and hence 0A Π 0 e Wpt0(B) (A = 1,2,...). Observe that

|| (ux — u2) — φk Wp

ι{B) || = || (gλ — g2) — φk WP(B) \\ —> 0 (A —• oo)

and a fortiori, by subsection 1.3,

\\{uχ-u2) Π 0 - 0 , Π 0 ; W / ( £ ) | | - + 0 (A—oo).

Therefore we can conclude that (uι — u2) Π 0 ^ WPt0(B) along with φk Π 0 ^

W (̂0CB) (A = 1,2,.. . ) . By the maximum principle stated at the beginning of this

subsection, we obtain that uι ^ u2 on B. •
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2.5. As in subsection 2.4 the ball B = B(r) is supposed to be finite. Take

an arbitrary ^-harmonic function h on B not necessarily in Wpd{B). By the very

definition of ^-harmonicity that h e locW^ CB), we see that h ^ Wp (B(t)) for

any t G (0, r). In view of this we have another type of monotoneity of the oper-

ator 7Γ̂ .

LEMMA 2.3. /// belongs to Wp (B) and h is an arbitrary d-harmonic function

on B such that f ^ h (f^h, resp) on B, then π^f^ h (π^f^ h, resp) on B.

Proof. As in subsection 2.3 take a strictly increasing sequence irk} in

(0, r) converging to r and put Bk = B(rk) (k — 1,2,. . .) so that {Bk} is an ex-

haustion of B. Set u — πdf and

u = \
k 1/ on B\Bk.

By Lemma 2.1, we have that u and uk belong to Wp (B) and \\u — uk LP(B) ||

—> 0 (A:-^ 0 0 ). Hence, by choosing a subsequence if necessary, we can assume

that

lim uk(x) — u(x)

almost everywhere on B. Fix an arbitrary ball B(f) (0 < t < r) and choose k so

large that t < rk. Since / and h belong to Wp (Bk) and f ^ h (f ^ h, resp.) on Bk,

Lemma 2.2 implies that

uk = πBJf ^ πdkh = h (uk = πBJf = πBJh = h> r e s P )

on Bk and in particular

, resp.)

on B(f). On letting A;—* °°, we see that u(x) ^ h(x) (u(x) ^ A(x), resp.) almost

everywhere on B(i) and hence everywhere on B(t) by the continuity of

^-harmonic functions. Since / is arbitrary, we obtain the desired conclusion. •

3. ^-harmonic measures

3.1. Take an d e dp(B) where B = B(r) (0 < r < oo). We denote by

u A v = u Adv — u AdBv the greatest ^-harmonic minorant of two ^-harmonic

functions u and v on B. Thus u A υ is characterized as the ^-harmonic function
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w on B with the following two properties. First, w ^ u and v on B. Second, if h is

any d-harmonic function on B such that h ^ u and v on B, then h ύ w on B.

Needless to say, the greatest .rf-harmonic minorant of u and υ on B may or may

not exist and once we use the notation u Λ υ, we understand that the existence of

the greatest harmonic minorant of u and υ on B is assured. We also use the nota-

tion u V v to indicate — ((— w) Λ (— υ)).

We say that w is an d-harmonic measure on β if M; is ^-harmonic on B and

satisfies the condition

(3.1) w A(l - w) = 0

on B. Observe that 1 ~ w is an ^-harmonic measure along with w since we have

( l - « ) ) Λ ( l - ( l - ί ( ! ) ) = ( l - « ; ) Λ i ( i = i ί ! Λ ( l - i ( i ) = O . The constant

functions 1 and 0 are clearly ^-harmonic measures and actually these are only

constant harmonic measures and any nonconstant ^-harmonic measure w satisfies

0 < w < 1 on B. In fact, from (3.1) it follows that 0 ί=* w ^ 1 on B and hence

both of w and 1 — w are nonnegative ^-harmonic function on B. If w = c, a con-

stant, on B, then we see that

c Π (1 - c) = w Λ (1 - w) = 0,

which shows that c — 0 or 1. By the Harnack inequality we see that w > 0 and

1 — w > 0 on B unless w is a constant on B.

An intuitive meaning of (3.1) is that the "boundary values" of w on dB is a

characteristic function of a set £ in di? and w(x) is the "measure" of E calculated

at x. If we view B as an electrostatic condenser bounded by two electrodes dB\E

grounded and E electrostatically charged so as to produce a unit potential differ-

ence on E, then the potential of the induced electrostatic field on B is w and the

total energy of the charge on E is Dp{w B). Hence we are mainly interested in

the existence or nonexistence of nontrivial ^-Dirichlet finite ^-harmonic mea-

sures. Such a problem is usually referred to as the generalized condenser problem.

The formulation (3.1) of harmonic measures was first introduced by Heins [8] for

2-harmonic functions (cf. also [21], [22], [23]).

3.2. Let B = B{r) be a finite ball (0 < r < °o) and d e dp(B). Although

the condition (3.1) is neat, it is not always easy to see whether a given

^-harmonic function satisfies (3.1) or not. Hence we try to reformulate (3.1) for

/?-Dirichlet finite ^-harmonic functions.
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LEMMA 3.1. The following three conditions for a p-Dirichlet finite d-harmonic

function w on B are equivalent by pairs:

(a) w Λ (1 - w) = 0 on B

(b) w (1 - w) e WP\(B)

(c) w2 ^ W^ (B) and πB

dw
2 — w.

Proof. First of all we note by (2.9) that w e Wp(B) (and actually w e

Wp\d(B)). If w(l - w) e W^0CB) c P F / ( 5 ) , then the identity

w2 = to - M l - icO (w e W ^ ( B ) ^

shows that w ^ Wp (B) and 7Γ̂  M; = w so that (b) implies (c). Conversely, if

w e Wp (B) and TΓ^ M; = w, then

w(l - w) = - (w2 - w) = - (w2 - τ r > 2 ) e »Γ/f0(β)

so that (c) implies (b). Thus we have seen that (b) and (c) are mutually equivalent.

Suppose (a) is valid so that 0 ^ w ^ 1 on B, Since 0 ^ w{\ — w) ^ w and

1 — w on 5, we see by the monotoneity of τzd (Lemma 2.2) that

0 = πd 0 ^ π^(w;(l — w)) ^ π^tt; = w and it^iX — w) — \ — w

on β. Hence 0 ^ πd{wi\ — w)) ^ w A (1 — w) = 0 on B and therefore we have

πd(w(l — w)) — 0. By the direct sum decomposition (2.11) we can conclude that

w(l — w) e W^0Cδ) so that (b) or equivalently (c) is valid.

Finally suppose that (b) or equivalently (c) is valid. We wish to derive (a). By

the monotoneity of πd (Lemma 2.2) we see that w ^ 0 implies

w = πdw
2 ^ πd0 = 0,

i.e. w ^ 0 on B. Since wf = 1 — w is also ^-Dirichlet finite and ^-harmonic on B

along with w such that w'(\ — w') — w(l — w) ^ Wpo(B), wr also satisfies (b)

and (c). Hence by the same reasoning as above we see that wr ^ 0 or w ^ 1 on B.

Thus we have established that w ^ 0 and 1 — w ^ 0 on B. Next take any

^-harmonic function h on B, not necessarily in WPtd(B), such that h ^ w and

1 — w on β. Then we have

M l — w) ^ w/(l — w) and wh ^ w(l ~~ ŵ)

on B. By adding these two inequalities, we have h ^ 2w{\ — w) on B. By the

second form of the monotoneity of πd (Lemma 2.3), we see that
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h ^ πd(2w(l — w)) = 2πd(w(l — w)) = 0

in view of (b), i.e. h ^ 0 on B. This means that w Λ (1 — w) = 0 so that (a) is de-

rived. Π

3.3. Concerning the ranges of ^-harmonic measures we have the following

result.

LEMMA 3.2. If w is a nonconstant p-Dirichlet finite d-harmonic measure (d e

dp(B)) on a finite ball B, then the range w{B) of w on B is the open interval (0,1):

(3.2) inf w = 0 and sup w = 1.
B B

Proof Let sup β w — a. Since 0 ^ w ^ 1 on B, we have 0 ^ fl ^ 1. Then

M> ^ αw on B. By the characterization (c) of ^-Dirichlet finite ^-harmonic mea-

sures in Lemma 3.1 and the monotoneity of τtd (Lemma 2.2), we see that

B 2 ^ B / \

w — τιdw ^ πd\aw) — aw

on B. Since w is not a constant, w > 0 and w ^ aw implies that tf ^ 1. With the

trivial relation a ^ 1 we conclude that a — 1, i.e. supB M; = 1.

Observe that 1 — w is also a nonconstant />-Dirichlet finite ^-harmonic mea-

sure along with w. Applying the above result to 1 — w, we see that

1 = sup (1 — w) = 1 — inf w
B B

or inf# w = 0. Thus we have derived (3.2). D

REMARK. The above proof is an amelioration of a standard one in the classic-
2

al 2-harmonic case. In the classical case it is known that w is subharmonic and w

is the least harmonic majorant of w when w is a 2-harmonic measure on B. Using

this fact instead of the operator τtd and its monotoneity, the above lemma 3.2 in

the 2-harmonic case can be proven without the assumption of 2-Dirichlet finite-

ness of w. We gave the above proof in order to show how the standard classical

method can be generalized to the present ^-harmonic case. However we append

here another proof of Lemma 3.2 which dose not make use of the assumption of

the ^-Dirichlet finiteness of w.

The proof depends upon the monotoneity of u Λ v in u and υ. Since w is a

nonconstant ^-harmonic measure, we at least know that 0 < w < 1 on B. Set

a = sup5 w so that w ^ a on B and 0 < a ^ 1. Observe that 1 — w ^ 1 — a on

B. Since 0 ^ 1 — a < 1 and 0 < w < 1 on B, we have
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w ^ (1 — a)w and 1 — a ^ (1 — a)w

on B. Hence we see that

0 = w A(l-w)^w A ( 1 - a ) ^ { ( 1 - d ) w ) A { ( 1 - a ) w ) = ( 1 - a ) w ^ 0

on J5 and a fortiori (1 — tf)w; = 0 on B, which implies that a — 1 or sup# w — 1.

Considering \ — w instead of w in the above argument we see that supβ (1 —

w) = 1 or inf̂ w; = 0.

3.4. The following lemma will be made essential use of later in the construc-

tion of a nonconstant ^-Dirichlet finite ^-harmonic measure on B (d ^

dp(Bn)) for p in (1,2).

LEMMA 3.3. The d-harmonic part πdf of anf in Wp (B) with the property

(3.3) / ( I - / ) e ^ 0 ( β )

is a p-Dirichlet finite d-harmonic measure on B.

Proof We only have to show that w = π^f is an d-harmonic measure. We

have the unique decomposition

We also have the trivial identity

f2 = f+§2 (§2=- /(I " /) e Wf\(B)).

Replacing/ by w + gγ in the above identity we have

(w + gλ)
2 = (w + gλ) + g2

and therefore we can write

w = w + g3

where g3 — gγ + g2 — (2w + g^)gι is seen to belong to WP\O(B). Thus the above
2

identity is the unique decomposition of w into the harmonic part w and the part

g3 in WP\O(B) so that
B 2

πdw — w,

which shows, by Lemma 3.1, that w is an ̂ -harmonic measure on B. •
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4. Capacity

4.1. Since we denote by Bn the unit ball {| x\ < 1} in the Euclidean space

Rn of dimension n ^ 2, the unit sphere {] x \ — 1} in Rn is denoted by dBn. We

denote by Σ " the unit sphere in the (n — 1) -dimensional subspace {χn = 0}

considered in R :

Σ" = (ΘBn) f) {x= (x\...,xn) &R":xn = Oh

Take the tubular neighborhood

Tn(f) = {χtΞRn: distanced, Σ") < t) (0 < t < 1)

of Σ w in Rn. Consider the p-capacίty cap^CΣ" t) of Σ* relative to the open set

Tn(t) defined by

(4.1) cap,(ΣV) =inf f \Vφ{x)\Pdx (Kp
JRn

n)

where the infimum is taken with respect to φ which runs over all functions φ in

C™(Rn) with supports in Tn(i) such that 0 ^ φ ^ 1 on Rn and φ — 1 on a

neighborhood of Σ w . Here C™(Rn) may be replaced by W^>0(i?n) Π C(Rn) since

C™(Rn) is dense in R^t0G?n) Π C(Rn) with respect to the convergence given

jointly by the norm of Wpo(Rn) and the local uniform convergence and moreover

WPt0(Rn) is closed under lattice operations U and Π where / U g = max(/, ^)

a n d / f) g = min(/, ^) pointwise (cf. Subsection 1.3).

The value of cap^CΣ"; t) depends upon the choice of p ^ (1, n] and t^

(0,1). We give a proof for the sake of completeness to the following fact which

will be made use of later in §6:

(4.2) c a p / Σ * t) = 0 ( 1 < p ^ 2, 0 < t < 1).

The proof will be given in 4.2-4.4.

4.2. Since 1 < p ^ 2, the Holder inequality implies that

c a p / Σ t) ^ | Γ (f) | c a p 2 ( Σ ί)

where | T w (0 | is the volume of Tn(t). In view of this we only have to prove (4.2)

for the sole p = 2: c a p 2 ( Σ " t) = 0 (0 < t < 1).

Let G(x, y Tn{t)) be the 2-harmonic Green kernel on Γ w (0 and dμ(y) the

(^ — 2)-dimensional surface element on Σ w . We consider the 2-harmonic Green

potential



HARMONIC MEASURES ON EUCLIDEAN BALLS 1 0 7

w(x) = JnG(x,y;Tn(t))dμ(y)

of the measure μ defined on Tn(t). The potential w is lower semicontinuous on

Tn(f) and harmonic on Tn(t) \ Σ " and has boundary values zero on dTn(t). We

extend w to Rn by setting w = 0 on Rn\ Tn(t). As for the behavior of w on Σ w

we maintain

(4.3) w(x) = + oo (x <Ξ Σn).

If the dimension n = 2, then Σ consists of two points e = (1,0) and — e

and μ= δe + δ_e, where δa is the Dirac measure with its support at a. Thus

w(x) = G(x, e T2(t)) + G(x, - e T2(t))

and (4.3) is clearly satisfied. Hence we may confine ourselves to the case n ^ 3

for the proof of (4.3). In this case, instead of proving (4.3) directly, we consider

the Newtonian potential

i

y \

n

of the measure μ on R . Since there exists a constant K in (1, °°) such that

K'1 ^—— ^ G(x, y Tn(t)) (x, y e Σ"),

we see that K~ υ{x) ^ M;(J:) (X ^ Σ w ). Therefore, for the proof of (4.3), we only

have to show that

(4.4) ι;(*) = +oo C r e Σ " ) .

4.3. The proof of (4.4) is only computational. Let V be an arbitrary rotation

around χw-axis. Since μ is invariant under V, we see that υ(Vx) = v(x) for any x

in Rn. Hence #Cr) = v(^) for any x in Σ " where eγ = (1,0, . . . ,0). Hence the

proof of (4.4) is reduced to that of v(^) = + °°. Since y in Σ " has the form (y ,

.. .,z/w~ , 0), we see that
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Here y e Σ w means that (y ) + (z/ ) + + (yn~ ) = 1 and thus

where Γn = {x = (pc\. . . ,xn~\ 0) \\x\ = 1, x ^ 0 (i = 1,2,. . . ,n - 1)}. By

the change of variables

y2 — s inί^cosl? 2

yn 2 — sin# * sin# w 3 cos# w

yn~ι = sinί?1 sin#w~3 cos#w~ 2

the integrating domain Γn corresponds to the domain

βn= {(θι,...,θn~2) : 0 ύ θi ^

and therefore v(eι) is equal to

(2(1 -

which is, by the Fubini theorem,

w . . .

sin -y-

)"-*••• (smθn-3)dθ2---dθn~3dθn-2

X ττ/2 f κ/2 / f+%

-7 (I
YI—3 /-» n—3 /

sin

x (sine2)""4 ( s in^"" 3 )^ 2 dθn~3dθn~\

Observe that

n-3n n-3

sin gcos g ^ , ( 1 / r 3 Γ 1 d ^ 2 - < « - 3 ) / 2 Γ 1 ^ =

<?in""2/9 Λ sine1 J o 0
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and a fortiori υ{e^ — + °°. We have thus completed the proof of (4.3).

4.4. By the Sard theorem (cf. e.g. [15; p. 16]) we can find an increasing sequ-

ence Uk} of positive numbers λk divergent to + °° such that each λk is noncritic-

al value of w (k = 1,2,. . . ) . Observe that, by the Gauss divergence theorem and

V-Vw = Δw = 0,

I I V(w Π λk)(x) \2 dx = I VwVwdx= I V (wVw)dx
JTn(t) J{0<w<λk)

 J{0<W<λk\

= I wVwvdS— I wVwvdS
JdiO<w<λk} J{w=λk}

= λk f VwvdS= Cλk
J{w=λk)

where v is the outer unit normal and dS is the area element on d{0 < w

< λk) and C = I Vw vdS = \ Vw vdS is a constant independent of k
Jiw=λk]

 J{w=Q)

which is usually referred to as the flux of w across {w = λk) and also {w — 0}.

The function

fk = (w n λk) /λk

belongs to W20(Rn) Π C(Rn) and actually a competing function for (4.1) with

p = 2 (k= 1,2,...). Therefore we see that

cap2(Σw t) ^ f I Vfk(x) Γ dx = λ'k
2 f \ V(w Π λk){x) \2 dx

JRn Jτn(t)

= λ~2-Cλk= C/λk-+0 (A-*«>),

which proves (4.2) for p — 2.

4.5. As an application of (4.2) we obtain the following result

LEMMA 4.1. There exists a strictly decreasing sequence Uk} in (0,1) convergent

to zero and a sequence {χk} in C°°(Rn) such that 0 ^ χk ^ 1 on Rn', χk = 0 on

Tn(tk+1), χk — 1 on Rn\ Tn(tk), and Dp(χk Rn) < 2~k for every integer k ^ 1.

Proof. First choose an arbitrary but then fixed tλ in (0, 1). Since cap^CΣ"

tj) = 0, there exists a φλ in Cζ{Rn) such that 0 ^ ^)x ^ 1 on i?w, the support of

φx is contained in Tn(T1)yψ1 = l in a neighborhood of Σ " and Dp(φ1;
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Rn) < 2~\ We set χγ = 1 — φι and choose t2 in (0, tί/2) such that χλ = 0 on

T (/2). After we have chosen χlt. . . ,χA and ^ , . . ,,tk+1 as reuired, we take φk+1 in

C™(Rn) such that 0 ^ ^ f c + 1 ^ 1 on Rn, the support of φk+1 is contained in

Tw(ί f c + 1), <pfc+1 = 1 in a neighborhood of Σ " , and Dp(φk+ί i?w) < 2~ . Such a

Φfc+i certainly exists by virtue of the fact that cap^CΣ tk+1) = 0. We then set

PC/c+i = 1 ~~ Ψh+ι a n ^ choose a tk+2 in (0, ^ + 1 / 2 ) such that χk+ί — 0 on Tn(tk+ι).

By the mathematical induction, the construction of the required {tk} and iφk} is

thus complete. O

5. Royden harmonic boundaries

5.1. Let B = B(r) be a finite ball (0 < r < oo). We denote by Af/5) the

class of bounded continuous functions f on B with distributional gradients F/ in

Lp(B) . Thus in the present case of B we have

(5.1) MP(B) = W/CB) Π 1^(5) Π C(B) (Kp£n).

The class MP(B) forms a commutative Banach algebra equipped with the norm

| | / MP(B) | = | / ; I . ( β ) || + \\Vf; Lp{B)n ||

which is referred to as the Royden algebra with exponent p or simply p-Royden

algebra over B

An important subalgebra Mpo(B) of MP(B) is defined as the totality of /€=

MP(B) such that there exists a sequence {φΛ} in Cζ(B) with the following three

conditions: | |Fp A - F / Z,,(J3)Λ | |-> 0 (A-> °°) sup, || φΛ LJB) || < °° {̂ A}

converges t o / locally uniformly on J3. The class Mpo(B) is not only a subalgebra

of Mp(B) but also an ideal of MP(B) and is called the />-Royden potential subalgeb-

ra of Mp(B). In the present case of J5 we have, as a counterpart of (5.1), the fol-

lowing expression of Mpo(B) :

(5.2) MPιQ(B) = Wpt0(B) Π LJB) Π COB).

For a proof for the above expression take an arbitrary f ^ MPt0(B) and its

associated sequence {φk} c CQ(B). The condition || FφΛ — F / Lp(B)n \\-+ 0

(/f—• oo) i n particular assures that iVφk) is a Cauchy sequence in LP(B) . Then,

by the Poincare inequality, {φk} forms a Cauchy sequence in LP(B) and therefore

{φk} forms a Cauchy sequence in Wp (B). Hence there exists Ά g ^ Wp (B) such

that \\φk- g; Wp(B) | | -»0 (/c-+°°). Since || φ, - ^ LP(B) | | ->0 (Λ—oo) f a

suitable subsequence of {φk} converges to g almost everywhere on B. However,

since {φk} converges t o / locally uniformly on B, we see t h a t / = g €= W^0(JB) SO
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that in particular/ belongs to the right hand side of (5.2).

Conversely choose an arbitrary / e WP>O(B) Π L^B) Π C(B). We extend/

to R by setting / — 0 on R \B. Then, by Lemma 1.4, we see that / ^

Wp\Rn) Π LjRn) Π C(Rn\dB). First, consider / (1 < t < oo) defined in 1.4

and observe that, by Lemma 1.3, | | F / — F / Lp(B)n ||—• 0 (f I 1) and, obvious-

ly, s u p i M 1 | / £„(/?*) || ^ | | / L J 5 ) || and / , - > / locally uniformly on B by the

uniform continuity of / on each compact subset of B. Next, let / * # ε ^

C~(Rn) (ε > 0) be the regularization of/ as in 1.6. Since V(ft*aε) = {V f) *

αe, we see that \\V(ft*aε) - Vft LP(B) | |->0 (ε I 0). We also see t h a t / * α ε

- + / locally uniformly on Bi\/t) since/ e CCB(l/f)). Clearly supε > 01| / * α ε

1^(5) || ^ | | / LJB) || ^ | | / LJB) ||. Finally, by choosing ίA 1 1 and εΛ I 0

suitably and by setting φk = / Λ * a£k, we see that {φΛ} is a required sequence for

/ to ensure/^ Mpo(B). The proof of (5.2) is herewith complete.

5.2. The maximal ideal space Bp of Mp(B) is a compact Hausdorff space

which we call the Royden compactification of B with exponent p or simply

p-Royden compactification of B since we see that the space B with its original

topology is an open and dense subspace of Bp . Functions in Mp(B) are uniquely

continued to Bp so as to be continuous on Bp, and in this sense, by the Weier-

strass approximation theorem, Mp(B) is a dense subspace of C(BP) with respect

to the supremum norm on Bp . We single out the important part of the Royden

boundary Bp \ B a s follows:

(5.3) ΔP{B) = { ζ e B*:f(0 = 0 for every / e MP§O(B)}

which is referred to as the Royden harmonic boundary with exponent p or simply

p-Royden harmonic boundary.

The Euler-Lagrange equation of the variation of I | Vf(x) \Pdx is the
JB

nonlinear equation (^-Laplace equation)

-V-(\Vu\p~2Vu) =0

which reduces to the usual Laplace equation

- Δu = V'Vu = 0

for p — 2. For this reason M2(B) is sometimes called the linear Royden algebra

whereas MP{B) for general p ^ (1,«] the nonlinear Royden algebra in the sense

that it is not necessarily linear. Concerning the linear Royden compactifications,

see e.g. [4; pp. 96-109], [28; pp. 145-221], [19], [20], [7], etc. among many others
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and for the nonlinear Royden compactifications, see e.g. [14], [13], [24], [32], [31],

etc.

5.3. The following relation dual to (5.3) is important in treating the Royden

compactification, to which we give a proof different from many others known in

literature for the sake of completeness.

LEMMA 5.1 (Duality). A function/ in MP(B) belongs to MpQ(B) if and only iff

vanishes on Δp (B) :

(5.4) MPΛ(B) = {/e MP(B) :f\Δp(B) = 0).

Proof That the left hand side of (5.4) is contained in the right hand side of

(5.4) is nothing but the definition (5.3) of ΔP(B). Thus we only have to show that

feMPtO(β)iί f^Mp(B) satisfies f\Δp(B)=0. Set c = maχ{| /(ζ) | : ζ e

Bp} and choose an arbitrary ε > 0. Consider the open subset U — {ζ ^ Bp :

I /(ζ) I < ε} which is a neighborhood of ΔP(B). Since any ζ £ i? \ U is not the

common zeros of functions in MPf0(B), there exists an /ζ ̂  MPt0(B) such that

/ς(ζ) ^ 0 It is easy to see that Mpo(B) also forms a vector lattice with lattice

operations U and Π along with Wlp(B) (cf. 1.3). Hence upon replacing fζ by

((2// ζ(ζ))/ ζ) U 0, we can assume that we could choose fζ Ξ Mpo(B) such that

/ ζ(ζ) = 2 and /ζ ^ 0 on Bp. Observe that Vζ = {r? e β * :/ζ(ry) > 1} is an open

neighborhood of ζ so that

U Vζ^Bp\U.
ζeBj\C7

By the compactness of Bp \ U, there exists a finite set of points ζv... ,ζ w in Bp \U

such that

Then consider the function

m

g = (Σ/ζ() n l

on /?£. First of all, as above, it belongs to Mpo(B). Clearly 0 ̂  g ^ 1 on Bp and

g — 1 on Bp \ U. Hence we have the inequality

— ε-cg<f<ε + cg
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on Bp and in particular on B. Observe that

πB

sj(± (ε + eg)) = ± (ε + cπB

dg) = ± ε

on B since g e MPΛ(B) c WPΛ{B). By the monotoneity of π^ (Lemma 2.2) we

have

- ε = π * ( - ε - eg) ^ π^fύπBJε + eg) = ε

on B. On letting ε 1 0 we obtain that τtdf— 0. By the direct sum decomposition

(2.11) we see that / e WP\(B). By (5.2) and / e M,CB), we conclude that / e

M,,0CB). ' D

5.4. Corresponding to the class WPd(B) (si ^ dp(B)) introduced in 2.1

we now consider the subspace Mpd(B) of MP(B) given by

MPtsΛ(B) = {u ^ MP(B) : u is ^-harmonic on B).

Hence w ̂  MPsύ(B) if and only if w is ^-Dirichlet finite, bounded, and

^-harmonic on B\ or u ^ Mpd(B) if and only if w £ W^CB) and || κ

LOO(B) || < ° ° . Corresponding to the direct sum decomposition (2.11), we have the

so-called Royden decomposition of MP(B) :

(5.5) MP(B) = MPts4{B) Θ Mtι0(B).

For a proof, take an a r b i t r a r y / ^ MP(B). By (2.11) we have

/ = u + g (« e W^GB), g e ^ 0 ( β ) ) .

By the monotoneity of TΓ^ (Lemma 2.3) we see that u = %df is bounded on B and

so is g. Since u is continuous, the continuity of / implies that of g. Thus f—u + g

is a decomposition of/ in (5.5). The unicity of the decomposition follows from that

of (2.11). This completes the proof of (5.5).

The Royden harmonic boundary ΔP(B) of B plays important roles in the

Dirichlet problem for ^-harmonic functions. That it is an essential boundary for

functions in Mpd(B) is seen by the following maximum principle (comparison prin-

ciple): If uγ and u2 are in Mpd(B) and satisfy uι ^ u2 on ΔP(B), then uλ ^ u2 on

B. Hence in particular, any u ^ Mpd(B) is uniquely determined by u ΔP(B).

For example, a u ^ Mpd(B) is constant on B if and only if u is constant on

ΔP,JB).
For a proof of the above maximum principle, note that (uγ — u2) Π 0 £=

MPt0(B) c ίϊ^0CB). Hence by the maximum principle quoted in 2.4, we conclude

that &! ̂  w2 on β.
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5.5. We mentioned in 3.1 that, intuitively speaking, an .rf-harmonic measure

on B is an ̂ -harmonic function whose boundary values is a characteristic func-

tion on the boundary of B. This is precisely realized for ^-Dirichlet finite

.rf-harmonic measures (d ^ dp(B)) on the ^-Royden harmonic boundary. As we

have been assuming in this section, let B = B{r) be a finite ball (0 < r

< °°) and d be any elliptic operator with d ^ dp(B). Any />-Dirichlet finite

^-harmonic measure w is continuous on B and 0 ^ w ̂  1 on B and hence w ̂

Mpd{B) so that w is continuous on Bp.

LEMMA 5.2. For any p-Dirichlet finite d-harmonic measure w on B, there exists

an open and compact subset K of the compact space Δp{B) such that w = χκ on

Δp(B) where χκ is the characteristic function of K on ΔP(B), Conversely, for any open

and compact subset K of the compact space Δp{B), there exists a p-Dirichlet finite

d-harmonic measure w on B such that w = χκ on ΔP(B).

Proof. Let w be a ^-Dirichlet finite ^-harmonic measure on B. By Lemma

3.1 we have w(l - w) e WP\(B) so that w(l - w) e MPt0(B). Thus w(X - w)

= 0 on Δp(B) and therefore w takes only two values 0 and 1 on ΔP(B). Put

K= {ζ ^ ΔP(B) : w(ζ) = 1}.

Since K = ΔP(B) Π w~ (1), it is a compact subset of Δp{B). On the other hand,

by the fact that

.K= {ζ^Δp(B):w(ζ) >0},

it is an open subset of the space ΔP(B). Thus K is compact and open in

ΔP(B) and w = χκ on ΔP(B).

Conversely, let K be any compact and open subset of ΔP(B). Then (3χκ —

1) e C(ΔP(B)). By the Urysohn theorem we can find a φ ̂  C(BP) such that

Ψ ~ 3χκ ~ 1 on ΔP(B). Since MP(B) is dense in C(BP) with respect to the sup-

remum norm on Bp, we can find Ά g ^ Mp (B) such that | g — φ | < 1 on Bp.

Finally let

/ = ( ? u o ) n i ,

which is in Mp(B) by the lattice property of Mp(B). By the construction, we see

that f=χκ on 4,(J3). Then clearly / ( I —/) = 0 on ̂ ( β ) and therefore, by

Lemma 3.3,

B r

w= πj
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is a />-Dirichlet finite ^-harmonic measure on B, and w — f = χκ on ΔP(B). Π

5,6. The equivalence of our main theorems in geometric and analytic forms

can now be concluded as a result of the above lemma 5.2.

LEMMA 5.3. The following three conditions are equivalent by pairs:

(a) The p-Roy den harmonic boundary Δp(B) is connected',

(b) There exist no nonconstant p-Dirichlet finite d- harmonic measures on B for

every d e dp{B)

(c) There exist no nonconstant p-Dirichlet finite d-harmonic measures on B for

somed e dp(B).

Proof The condition (b) trivially implies (c). Next, suppose (c) is valid and,

contrariwise assume that ΔP(B) is not connected. Then there exists an open and

closed subset K of the compact space ΔP(B) such that K Φ 0 and ΔP(B) \K Φ

0 . By Lemma 5.2, there exists a ^-Dirichlet finite ^-harmonic measure w with

w = χκ on ΔP(B). Since w — χκ is not constant on ΔP(B), w is not constant on B,

which contradicts (c). Thus we have seen that (c) implies (a). Finally suppose (a) is

valid and take any d €= dp(B) and any ^-Dirichlet finite ^-harmonic measure w

on B. We wish to show that w is constant on B. Contrariwise, suppose w is not

constant on B. Again by Lemma 5.2, there exists an open and compact subset K of

ΔP(B) such that w = χκ on ΔP(B). Since w is not constant on B, w = χκ is not

constant on ΔP(B) so that K Φ 0 and ΔP(B) \K Φ 0 . Thus K U (ΔP(B) \K) is

a disjoint decomposition of /l̂ CB) into two nonempty mutually disjoint compact

sets and thus ΔP(B) cannot be connected, which contradicts (a). •

COROLLARY. The mam theorem in geometric form and that in analytic form are

equivalent.

6. Proof of the main theorem

6.1. In this final section we prove the main theorem in the analytic form. By

Corollary to Lemma 5.3, the proof of the main theorem in the geometric form will

then also be complete. Recall that Bn = 5(0,1) = 5(1) = {x e Rn : | x \ < 1} is

the open unit ball in the Euclidean space i? of dimension n ΐ^ 2.

In the former (latter, resp.) half, subsections 6.1-6.4 (6.5-6.6, resp.), of this

proof in 6.1-6.6, we prove the nonexistence (existence, resp.) of nonconstant

.rf-harmonic measures with finite p-Όiήch\et integrals for any elliptic operator



1 1 6 MITSURU NAKAI

d e dp(B
n) with exponent/) in [2,n] ((1,2), resp.).

Thus in 6.1-6.4 we fix an arbitrary p with 2 ^ p ^n and an arbitrary

elliptic operator d €= dp{B ) . In 6.1—6.3 we first give a direct proof (cf. [22] for

an indirect one) for that there exist no nonconstant 2-Dirichlet finite 2-harmonic

(i.e. the usual classical harmonic) measures on Bn and then the assertion is gener-

alized to an arbitrary ^-harmonic measures (d €= dp(B )) in 6.4.

Contrariwise suppose that there exists a nonconstant 2-Dirichlet finite

2-harmonic measure w on B . By Lemma 3.2 the supremum (infimum, resp.) of w

on Bn is 1 (0, resp.). By the Sard theorem (cf. e.g. [15; p. 16]) we can find two

noncritical values λ and μ of w with 0 < Λ < μ < 1 so that the level surfaces

{w = λ) and {w = μ} are smooth. We arbitrary choose and then fix a connected

component A of the open set {λ < w < μ} so that A is a subregion of J5 with

smooth, possibly noncompact relative boundary dBnA relative to Bn.

Observe that w(l - to) e Wlo(Bn) by Lemma 3.1. Put c = λ(l - μ) /4 so

that 0 < c < 1. Since FP2>0CBw) is closed under lattice operations (cf. 1.3), we see

that

χ = ( M l - w)] Π c)/c

again belongs to W20(Bn) along with w(l — w) and χ = 1 in a neighborhood of A

U 9β«A in Bn. Since χ ^ ]V2(0(.Bw), there exists a sequence { χ j in Cζ(Bn) such

that

(6.1) \\χ-χk\WΪ{Bn)\-*0 (A-^00).

6.2. At this point it is convenient to consider A -forms (/c = 0 , 1 , . . .,n)

α = α( j ) = Σ aiv~ik (x)dχtι Λ Λ dx%k

on a ball B = β ( r ) (0 < r < °°) as a Riemannian manifold with the Euclidean

metric (cf. e.g. [5; p. 99]). We denote by * the Hodge star operator with respect to

the Euclidean metric on B so that

* α = Σ af..., (x)dxh A Λ dxin~k

where

= Σ " 1 2

and
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< i.
2;: ι Λ:/.;._ ; )

is the generalized Kronecker delta so that it is 1 (— 1, resp.) if (ilf . . . ,ik, j l f . . .,

jn-k) is an even (odd, resp.) permutation of ( 1 , . . . ,n) and 0 if some two of ilf. . . ,

h> h> Jn-k are identical. We consider the pointwise inner product <α, β> of a

and β on B given by

<α, /3> - <αte), jS(j;)> = Σ ah...ik (pc)bh...ik{x)

where β is also a A:-form on i? with coefficients biv..ik. Then the pointwise norm

a\ of α on B is given by

I α | 2 = < α , α> = Σ (ah...tι)
2.

We will use the Schwarz ineguality: | (a, /3> | ^ | a \ \ β |. It is easily seen that

<α, iδ> dx = <α, jβ>Λc1 Λ Λ rfχw = α Λ ^ β

where dx — dx d.rw = dx Λ Λ d r w is the volume element on the Eucli-

dean ball B. We set

X r
\a(x), β(x)) dx— I a A*β

and

II a |f = || a III = ( a , a ) = f\ a(x) \2 dx = f a A*a.
JB JB

If a is differentiable in the sense that aiι...tk are differentiable, then da is defined

as usual by

da = Σ dah...Xk A dx1 A Λ dxh

where df— Σ / = 1 (df/dχt)dχt for a differentiable function/ on B.

Now we return to the function w introduced in 6.1. Note that d * dw =

— * (F Fw) = — * zlw = 0 since w is 2-harmonic. This means that * dw is a

C°° closed (n — l)-form on Bn. Then, by the Poincare lemma (cf. e.g. [11; p.

273]), we can find a C°° (n - 2)-form

a = a(x) = Σ a{ ...t (x)dxh A Λ dxίγι~2
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on Bn such that *dw = da. Observe that

|| da ||2 = \\*dw ||2 - II dw II2 - D2(w ; B n ) < ™

based upon the fact that the Hodge * operator is an isometry. Consider

ap = ap(x) = Σ aiχ...in_2 (px)dxh Λ Λ dxtn'2
iι<"'<in-2

for each p in (0,1), which is also a C°° (n — 2)-form not only on Bn but also on

the larger ball {| x\ < l/p} containing the closed ball Bn — {x e Rn : | χ\ ^ 1}.

Hence in particular the function

I ap(x) |2 = Σ ( ^ 1.../w

 2

is bounded on Bn. If we denote

da(x) = Σ dah...in2 Cr) Λ dxh Λ Λ dx%n

by

da(x) = Σ 6, ...y (x)dx ; i Λ Λ i r^" 1 ,

Then ^ . . . ^ e L 2 (β w ) Π C°°(βw) (/Ί< '•• < i - i ) and

dα p te) = Σ pb^.-j^ (px)dxh Λ Λ da/""1.

Thus dα p is C°° on {| J: I < 1 /p) that contains β w and we have

|| da — dap f — \ \ da(x) — daΛx) | 2 dx
JβΠ

= . Σ . X ' bh-ι«->{x) - ph-i» {pχ) I2 dx

Jι< "<Jn-ι ΰ

= Σ | | & , i . . . , B . i

2

where fp(x) = f(px) (0 < p < 1) for any function / on i?w as in 1.4.

In order to conclude that

(6.2) | | r f α - d α J H θ (p ΐ 1),

we only have to show that || / — pfp L2(Bn) || —» 0 (p ΐ 1) for any function / in

L2(B ). This follows from the simple inequality

if- βfe L2(Bn) || ^ (1 - p) | |/ L2(Bn) \ + p\f-fp; L2(Bn) \\
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and Corollary to Lemma 1.2: \\ f — fp L2{Bn) ||—>0 {p ? 1) for any function /

in L2(Bn).

6.3. We denote by ( , ) A and || * \\A the inner product and the norm, respec-

tively, considered for forms on the region A introduced in 6.1. If we simply write

( , ) and || ||, then they are considered on Bn.

To compute {dw, * d(χkap))A for any p in (0,1) and any integer k ^ 1, we

choose a ball B = B{r) (0 < r < 1) containing the support of χk, where {χk} is

the sequence in Cζ{B ) introduced in 6.1. Then, by the Stokes formula, we com-

pute as follows:

{dw, *d{χkap))A = ( - I ) * " 1 f dw A d(χkaβ) = f d{χkap) A dw
JA JAΠB

= / χkap A dw = ( j + j ) χkap A dw
Jd(Af)B) \J(dA)ΠB JAC\dB'

where the boundary operator d — dBn is considered with respect to B . The first

term on the right most side of the above vanishes because dw = 0 along dA, and

the second also vanishes because χk — 0 on dB. Thus we can conclude that

{dw, *d{χkap))A = 0

for every p in (0,1) and every integer k ^ 1.

Next we compute {dw, *dap)A for any fixed p in (0,1). For any integer k ^ 1

we evaluate | {dw, *dap)A \ as follows:

I {dw, *dap)A I = I {dw, *dap)A - {dw, *d{χkap))

= I {dw, *d{χap))A - {dw, *d{χkap))A \

< II dw 11| d{{χ - χk)ap) \\A < \\ dw\\ \\ d{{χ - χk)ap ||.

Here the fact that the Hodge * operator is an isometry is again used. We further

estimate the second factor of the term on the right most side of the above inequali-

ties. Since

d{{χ - χk)ap) = {dχ - dχk) A ap + {χ - χk) daβ,

we see that

I {dw, *dap)A\

// r \1/2 / r \ι

< || dw II ((J J Wχ - dχk) Λap\
2dx) + (J J (χ - χk) dap \

2dx)
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constant Kp such that

Since ap and dap are C°° on {| x \ < 1 /p) containing Bn, there exists a positive

(dχ - dχk) Λap\
2ύ K2 \ dχ - dχk \2 = Kp

2 \ Vχ - Vχk \
2

and

I (X - Xk)dap\
2 ^K2\χ- χ j 2

on Bn. Therefore we obtain that

( I Γ \ 1 / 2 / Γ \ 1 / 2\

Ke(JBn\Vχ-Vχk\
2dx) +Kp[jBn\x-Xk\

2dx) )

= Kp II dw II (II Vχ - Vχk L2(Bn)n || + || χ - χk L2(B") ||)

= Kp\\dw\\\\χ-χk;W2

1(Bn)\\^0 (k ΐ «>)

by (6.1). We have thus deduced that

(dw, *dap)A = 0

for every p in (0,1).

Finally we see by recalling * dw = da and the isometry of the Hodge *

operator that

1 dw\fA = (dw, dw)A = (dw, ( - l)H-ι*dά)A = \ (dw, *da)A \

= I (dw, *da)A — (dw, *dap)A \^\dw \A || da — dap \A

ίί\\dw\\\\da-dap\\->0 (p T 1)

by (6.2). Hence || dw \A = 0 and w is a constant on A. By the unicity theorem for

2-harmonic functions, we see that w is a constant on Bn, which contradicts our

original assumption made in 6.1 that w is nonconstant on Bn.

We have thus established that there exist no nonconstant 2-Dirichlet finite

2-harmonic measures on Bn.

6.4. Given an arbitrary elliptic operator d : Bn x Rn—+Rnof exponent p in

2 ^ p ^ n, i.e. <rf ΞΞ dp(B ) (cf. 2.1). We now maintain that there exist no noncon-

stant ^-Dirichlet finite ^-harmonic measures on B .

For this aim we take any ̂ -Dίrichlet finite ^-harmonic measure w on Bn so

that w e Wp (Bn). We are to show that w is a constant. Since 2 ^ p, we have

and similarly
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W2\0(Bn) => Wp\0(βH)

as we saw in 1.7. By Lemma 3.1 we have that

w{\ -w) e Wp\0(Bn).

Hence by the above inclusion relation we also have that

«;)€= W2)0(B
n).

By Lemma 3.3, the 2-harmonic part π2 w of w ^ W^CB") is a 2-Dirichlet finite

2-harmonic measure on B , which must be a constant c on B as we have shown

in 6.1—6.3. Thus we have the decomposition

Since actually w^ WP(B") and trivially c £ WP(B"), we see that

^ ' ( β " ) and hence £ <= ^ 0 ( β " ) Π ̂ ' ( β " ) . Recall that

W2Λ(Bn) Π W/CB") = WP\O(B")

(cf. (1.6)). Therefore we have the decomposition (2.11) for w on Bn :

On the other hand

w = w + 0 toe W^GB"), 0 €= ^(O(5W))

is another decomposition of w in (2.11) and the uniqueness of the decomposition
βfl

implies that w — πd w — c, a constant. We have thus shown that w is a constant.

6.5. Given an arbitrary p in 1 < p < 2 and an arbitrary elliptic operator

sd : Bn x Rn —> Rn oί exponent^, i.e. d ^ dp(Bn). We will show that there exists

a nonconstant ^-Dirichlet finite ^-harmonic measure on Bn.

For the purpose we consider two surfaces γ0: x = 0 and ft : χn — 2 (1 —

, x' |) in £ w where we denote x — (χι,. ,. ,xn~λ, χn) by (x'', χn) so that x' = (x1,

. . . ,x ). Note that γ0 may be identified with the ball Bn in the subspace {x ^

R \ x = 0 } which is viewed as the (n — 1)-dimensional Euclidean space R

The ball Bn is divided into three parts B{ (i — 0,1,2) : B0(Blf resp.) is the part

of B below γQ (above ft, resp.); B2 is the part between γ0 and ft. We consider a

function

, , \j (x^Bjtj = 0,1),

\2xn/{l-\x'\) (x^B2)
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on Bn. Clearly g e C(Bn) Γ) L^iB") and g is absolutely continuous on all lines

in B parallel to coordinate axes. We will see below that the ordinary gradient

Vg of g is pt integrable on Bn. Hence by the Nikodym theorem (cf. 1.3) we can

conclude that g e FP/(BΛ).

The ordinary gradient Vg of g is given as follows:

where F^ = (d/dx ,.. .,d/dx"~ ) so that

Vx,g(x) = 2x"(l - U ' | ) " 2 (

for x e £ 2 \ {x' = 0). Observe that

Here by

\Vg\p={\Vx,g\2 +

< (I ̂  I + I dg/dxn \Ϋ ύ 2P(\ Vx,g \p + I dg/dχn \p)

we see that

|| Vg LP(B2T \\^2P f (I V^gix) \p + | dg{x) /dxn \p)dx.

The right hand side of the above equals, by the Fubini theorem,

Γ (/ {(xnΫ/(\-\x'\fp + l/{l-\x'\Ϋ)dxn)dx'
Bn-i \J0 I

= cf (\-\x'\γ-*dx'
JBn-i

where c = 4P(l/2P+ι(p + 1) + 1/2). Observe that Σ" = dBn Π {χn = 0} (cf.

4.1) is the boundary 9 β w " of Bn~ considered in the (n — 1)-dimensional sub-

space {χn = 0} of Rn. If we denote by dωn_λ the area element on dBn , then we

have

Γ {l-\x'\γ-pdx'= f (f\l-r)1-prn-2dr)dωn_1

ύ I dB"'11 Γ (1 - rΫ~pdr = \ dB"'11 /(2 - />) < oo
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where | dBn~ι | is the area of dBn~ι under the convention of | dB1 \ = 2 with dωγ

= dδe + dδ_e (e = (1,0)) when n = 2. Here the assumption 1 < p < 2 is essen-

tially made use of. Thus \\Vg Lp(Bn)n || < °o and we have established that g e

Wp\Bn). Since g e CCBW) Π Z J 5 " ) , we actually have that g e M/J5").

One step further we maintain that

(6.4) g(l - g) e W;>O(BW)

in addition to g(l ~ g) e WP(B ) already established above. For simplicity we

set h = g(l — g) e Wp (Bn). Take the sequence iχk) in Lemma 4.1 and set

Π>k % krl \rC JL yΔ j . . . / .

(Do not be confused with the sequence {χk} constructed in 6.1 and used in 6.3.)

Clearly hk belongs to Wp(Bn) and the support of hk is contained in Bn so that we

see that hk e WPt0(Bn). Therefore we can conclude that h e Wpo(Bn) if

(6.5) \\h- hk; Wp\Bn) \\ = \\ φkh Wp

ι(Bn) | | -> 0 (A ΐ «>)

is assured, where φk = 1 — χk. To see this we first note that

|| φkh LΛBn) \\p = / | φk(x)h(x) \P dx~* 0 (A: ΐ °°)
JBn

by the Lebesgue dominated convergence theorem since the integrand is dominated

by the integrable function | h(x) \P and φk^Ό (k ΐ °°) on Bn (cf. Lemma 4.1).

Next observe that

\\V(φkh);Lt(BΎ\\

h(x) Γ I Vφk(x) Γ dx) + (JΛ \ φk(x) \" | Vh(x) \p dx

The first term of the right hand side of the above inequality is dominated by

II h L^KB ) II Dp(φk B ) ^ 2 || h Loo(J5 ) || —> 0 (& ΐ °°)

(cf. Lemma 4.1) and the second term by

\Vh(x)\pdx) -+ / \Vh(x)\pdx) =0 (Λ ί oo)

(cf. Lemma 4.1) since | Σ w | = 0. We have thus completed the proof of (6.5) and

hence of (6.4).
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6.6. Finally take the ^-harmonic part w = πd g of g on Bn. By Lemma 3.3

and (6.4) we see that w is a ̂ -Dirichlet finite ^-harmonic measure on B . The

proof will be over if we show that w is nonconstant on B . Contrariwise we

assume that w is a constant c on Bn. Then g — c ̂  WPf0(Bn). Observe that the

particular function

v(x) = v(x\...,χn) =χn

is a ̂ -Dirichlet finite ^-harmonic function on Bn in the genuine sense:

F ( |Fι; | P~2Vυ) = F (0, . . .,0,1) = 0.

Hence in particular υ is a weak solution of F (| Vu \P~2Vu) = 0 so that

X \P-2 Γ \P-2

I Vv(x) I FZ;(J:) Vg(x) dx = I \ Vv(x) \ Vv(x) -V(g(x) — c)dx = 0
^ Λ JβH

since ^ — c e W^ 0(βw). On the other hand, by Vυ = (0,. . . ,0,1) and (6.3), we

must have, based on the Fubini theorem, that

Γ \Vυ(x) \*~2Vv(x)-Vg(x) = Γ 2 ( 1 - U I ) " 1 ^

= I /
Jr>n-ι \Jn

-(1-|J:' |)/2

where | Bn~ \Rn-ι is the volume of Bn~ considered in the space Rn~ , and thus we

arrived at a contradiction. Therefore w is nonconstant.

The proof of the main theorem in the analytic form is herewith complete.
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