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ON THE PROJECTIVE VARIETIES ASSOCIATED WITH

SOME SUBRINGS OF THE RING OF THETANULLWERTE

RICCARDO SALVATI MANNI

0. Introduction

Let (X, L) be a principally polarized abelian variety (ppav) of dimension g

such that L is a symmetric line bundle, i.e. i L — L where i is the inversion map

i(x) — — x. We shall denote by X[2] the two torsion points of X which are fixed

by i. For any x in X[2] we have an isomorphism

(1) t*(LΫ^L2.

Here tx is the translation map.

Let ί be a point of the Siegel upper half space H^ and X be the abelian varie-

ty Cg/(τZg + Zg). As symmetric line bundle L we take C* x C / ( τ Z * + Z*)

with the action (τa + b) (z, w) = (z + τa + b, e(— (l/2)taτa + (az)w).

Here e(t) stands for exp(2τπ£).

For x — (1 /2) (τmf + m") in X[2], t*L is still symmetric and we have that

the theta function of characteristic m and modulus τ :

(2) K(r, z) = Σ e(a/2)'{p + £ ) τ{p + %) + '{p + ̂ ){z + ψj)
P*Zg

is up to a multiplicative constant the unique section of the above line bundle. Here

nί and m" are in {0, 1}*.

Sometime, if it will be necessary, we shall write $ w ( r , z) — $ „ (r, z).

It is a well known fact that a basis of H (X, L ) is given by the 28 theta

function $ n (2r, 2z) and from (1) we have theta relation

(3) 9m(τ, zΫ = Σe((l/2)'(m' + σ)m") ί>ί ^l(2r, 0) &\m'+ σ](2τ, 2z).
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Let q be an even positive integer we shall denote by Γg(q) the subgroup of

Γ8 = Sp(g, Z) defined by

(4) < j= ̂  J = l ^ m o d t f .

We shall further denote by Γg(q, 2q) the subgroup of Γg(q) defined by

άiagiab) = diag(c'd) = 0mod2#.

Evaluating at z — 0 the theta function -9m(τ, z) we get an holomorphic func-

tion -9m — &m(τ) defined on Hg, that is not identically zero if and only if the char-

acteristic m is even, i.e. W m " = 0 mod 2. We have exactly 2*~1(2* + 1) = N +

1 even characteristics. We know, cf [6] and [8], that the maps θ , Θ , Θ sending r

in ( "9m(τ) ' •), (* * '-92

m(τ)' •), (* ' #ί,(r) * •) from H^ to P ^ factorize over

7^(4,8), Γ,(2,4) and Γg{2) respectively.

We know that all these maps are injective, cf [6] and [8].

Here we shall show that the injectivity of these maps extends to the Satake

compactifications and we shall characterize the points of these compactifications in

terms of vanishing of Thetanullwerte. Moreover we shall show that the character-

ization of the reducible points, obtained in this way, is ideal-theoretic. Under θ ,

/^(4,8)\H^ is biholomorphic onto its image, cf [6]; Θ and Θ have the same

property when g is less or equal to 2, cf [5]. We shall show that Θ and Θ are

not immersions for g > 4 and that Θ is an immersion when g is 3. This result

still holds when we extend Θ to the Satake compactification of 7^3(2,4)\H3.

We are grateful to G. Lupacciolu and A. Silva for helpful discussions.

1. Satake compactification

Let R be an associative ring with the unity, then we shall denote by

MPq(R) the i?-module of the p by q matrices with coefficients in R. Let A and B

be in MPq(R) and Mst(T) respectively. Then we define the tensor product of mat-

rices

Abn ••• Abu

Absl ••• Abst

Among all the properties of the tensor product we recall that if rank A — p and

rank B = s, then rank A® B = ps. We shall write MP(R) for MPtP(R). S8(R)

shall denote the submodule of the symmetric matrices of MP(R). GL(pf R)

shall denote the subset of A in MP(R) such that det A is invertible. We shall de-
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note by 1̂  the unit matrix; a matrix σ in GL(2g, R) is in Sp(g, R) if

We shall express a in Spig, R) as

b

dl'

where a, by c, d are in Mg(R).

We know that Sp(g, R) acts transitively on H^ as

(6) σ ' τ — (aτ + b) {cτ + d)~ .

Let Γ be a subgroup of finite index of Γg, an analytic function ψ defined on H^,

which satisfies the functional equation

(7) φ(σ τ) = det(rr + d)k φ(τ)

for every σ in /^(plus a condition at the cusps for g — 1) is called a modular form

of weight k (positive, half-integer) relative to Γ. The set of such functions form a

finite dimensional subspace over C that we shall denote by [Γ, k\.

The graded ring

(8) A(Γ) = Θ [Γ, k]
0<k<oo

is a finitely generated over C, integrally closed domain, it is called the ring of

modular forms relative to Γ and the projective variety Proj i4CD associated to it

is a compactification of Γ\Άg, in the sense that this is complex-analytically iso-

morphic to an open set in the Zariski topology of Proj ;4CD.

Usually Proj A CD is called the Satake compactification of Hg/Γ. Let us de-

scribe it more in detail, we refer to [2] for an accurate description. Let Sg be the

subset of M2gg(C) formed by all matrices

(9) W^< '

having the properties: rank W = g and tW1W2 is in S 8(C) the group GLig, C)

acts on Sg by multiplication on the right. Let G^ — Sg/GL(g, C), then it is a

closed submanifold of the grassmannian manifold of all g dimensional subspaces of

c2e.
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The map that send τ in the class \ Λ I is an embedding of H^ iin

Sp(g, C) acts on G^ by multiplication on the left; this is the extension of the ac-

tion (6), in fact we have

Let k < g, then we have an embedding of HA in G^ via the map

We remark that in the case k — g, this agrees with the previous embedding. We

call the image y^Λ(HΛ) the λ -dimensional standard boundary component of H^.

A subset A of G^ is a λ -dimensional rational boundary component if there ex-

ists σ in Γg such that σ(A) is the λ -dimensional standard component. We shall

write Ak for the union of all k dimensional rational boundary components. We set

(12) Ag = U Ak.

Then it is a well known fact that Γ\Ag - Proj A(Γ). We call Γ\Ak the λ -th

stratum of Proj A(Γ) and shall denote by a the projection map from Ag

to Pro) A(Γ). In particular the Satake compactifications Proj ACΓ/4,8)),

Proj A(7^(2,4)) and Proj A(Γg(2)) have that the λ -th stratum is a disjoint union

of a finite number of quasi projective varieties each complex analytically isomor-

phic to Γ,(4,8) \ H 4 , Γk(2,4) \ H A , Γk(2)\Έίk respectively, k = 0,1,...,(g - 1).

Clearly each pair of isomorphic components are conjugate under the action of

Γg. Therefore any point in the boundary can be obtained as

as) [J i (
t-t+oo L 0 ltlg_k k

with τk in H^ modulo its appropriate relative subgroup CΓA(4,8), 7^(2,4), Γk(2)).

We shall denote by α4>8, a2Λ and a2 the projection maps from A g to

Proji4(Γ/4,8)), ProjJ4(Γ,(2,4)), Proj A(Γ/2)) respectively.

Let m' = Cmf

Qt *tn[) and mr/ = ('mj, 'mp with m ,̂ m^ in {0,1}Λ and m ,̂ w![

in {0,1} , then we shall write m — m0 0 mγ for any τk in HΛ we put

otherwise
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2^For any m in {0,l}2^ and σ in Γg, we put

/ d - c\(m/\ /diag(c'd) \

( 1 5 ) σ - m= [ , J + Lr / ΊΛ
\ - b a I \w!ff \ diagU b) 1

Let us denote by o ° m the unique element in {0,1} g that is congruent to σ*m

mod 2; then (15) give rise to an action of Γg on {0,1} .

We recall the transformation formula of theta functions; for every σ in Γg and

characteristic m we have

= k(σ)det(cτ+ d)U2e(φm(σ))

(16)

= k(σ) deticT + d) 1 / 2 e(( l/2) 'z(cr + d)~ιcz) χm(σ)$m(τ, z)

where k(σ) is an eighth root of unity independent from my τ and z, and

(17)

φjσ) = (- 1 /8) Crn^bdrn' - tirfbcm" + 'm^acm" - 2ίdiag(αίW (dm' - cm"))

An immediate consequence of (14), (16) and (17) is that the maps

(18) θ : Γ g ( 4 , 8 ) \ H , ^ P Λ ' , Θ2: Γe(2,A) \ H , - > P " , θ 4 : Γg(2) \Re^ PN

are well defined, extend to the respective Satake compactifications and are

Γβ/Γg(4,8), Γg/Γβ(2,4), Γ8/Γg(2) equivariant

We shall denote by (9, 0 2, β 4 these extensions.

Clearly the images of these maps are the projective varieties ProjC [#„,],

Proj Ct^^] Proj C[-94

m]. We recall that the map Θ2 can be obtained, up to a pro-

jectivity, composing the map.

(19) Θ2: Proj A(Γg(2,4)) ^ P2*"1

w i t h t h e V e r o n e s e m a p ; t h e r e f o r e P r o j C t ^ ] = P r o j C l ^ l J J .

2. Fiber of the projection maps

In this section we shall use several times results obtained in [5] and [8]. Let

us recall some of them. We set C = Γg(2)/Γg(2,4) and Gr = Γg(2,4) AT,(4,8).

If i, j are distinct positive integer at most equal to g, we replace the (z, j)
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coefficient of 1^ by 2. We take this matrix as <z, we put b = c = 0, d— a , the

corresponding matrix A{j is an element of 7^(2,4). If 1 < i < g we replace the

(i, i) coefficient of \g by — 1. We take this matrix as a, we put b = c = 0, a —

d, the corresponding matrix Au is in 7^(2,4). If 1 ^ i ^ g we replace the (i, i)

coefficient of the matrix 0 by 2. We take this matrix as b, we put a = d — \g,

c = 0 the corresponding matrix 2?ίt is in Γg(2). lί 1 < i < j < g we replace the

{i, _/) and the (j, i) coefficient of the 0 matrix by 2. We take this matrix as b, we

put a = d = lg, c = 0 the corresponding matrix B{j is in 7^(2,4). Finally we set

Cυ = ιB^ We recall from [5] the following fact. The g(2g + 1) matrices Aϋ

(l<i<j<g), Bφ CtJ (l<i<j<g), B2

H, C2

U{\ <i<g) are a basis of Gf

the 2g matrices Biiy CH (1 < /' < g) are a basis of C. Moreover in [8] we proved

that the group of characters Gf and C are generated by all χm and χm respective-

ly, m arbitrary characteristic.

One can deduce the definition of χm from (16).

These facts are used to prove the injectivity of the map Θ and Θ , in fact

they conduce to the injectivity of Θ of [8] Theorem 3. Since Θ is injective of [7],

using the same method used in the above cited theorem we get

THEOREM 1. The maps Θ2 and Θ4 are injective.

We have the following diagram

ϊp ΪSq

ϊq ΪSq
ProjΛ(Γ,(2)) - P "

where the horizontal arrows are injective, Sq is the map squaring the coordinates

and p and q are the usual projection map. We are interested in computing the car-

dinality of the fiber of the maps p and q.

For any point P in Proj A(Γg(4,&)) and 0 in Proj 4(7^(2,4)) we define StP

and FQ as the subgroups of Gr and C fixing the point P and Q respectively.

We define HP and DQ as the subgroup of Gf resp. C generated by all χmχn,

XmXn respectively such that the product -9m-9n doesn't vanish at a^8(P) and

alA(Q) resp. In [8] we remarked that StP and HP are dual and the same is true for

FQ and DQ moreover we proved that, for the points of the g'-th stratum, we have

# q~ (R) = # DQ for any Q such that q(Q) = R. This was a consequence of the

proof of Theorem 3.
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Therefore, now as consequence of Theorem 1, we can extend this result to all

points of the Satake compactifications. We can prove the following

THEOREM 2. Let R denote a point of the k-th stratum of Pro] A(Γg(2)) then we

have

(21) #q~\R) =2g+k.

Proof We have to show that # DQ = 2g+k for any Q in the k-th stratum of

Pro]A(Γg(2,4)). Already in [8] we proved the statement relatively to the g-th

stratum. In view of Lemma 10 of [8] that states Dσ.Q = DQ we can assume in

a~2 (R) points of the form (13) and S0(fk) Φ 0. Therefore to prove the proposi-

tion, it is enough to find g + k linearly independent (mod 2) characteristics

whose associate Thetanullwerte don't vanish at fk cf [8]. We know that there are

2k linearly independent characteristics nlf... ,n2k in {0,1} such that 9n(τk) Φ 0

1 < i < 2k. Let m = n{® mlf 1 < i < 2k and m[ = 0, then we have &m(τk) Φ 0

for all characteristics m of the above form, thus we can get at least (g + k)

linearly independent characteristics such that the associate Thetanullwerte don't

vanish at τk. Using (10) it is immediate that all Bφ k + 1 < i < g, belong to FQ,

therefore # FQ > 28~\ thus we get # DQ = 28+k.

For studying the fiber of the map p we need a refinement of the decomposi-

tion (12). Let r = (rlf r29.. ,,rh) be a partition oί k < g),we put

(22) H ^ i ^ x H ^ x ••• XH,A)

and

(23) Ar = Γg Yίr_

let s be a refinement of r, we shall write 5 < r, then we have As Q At if and only

if s < r.

Clearly Ak is equal to A(k). For any partition r we shall denote by Az the set

of points in Ar that are not contained in any refinement of r, then we have

(24) A k = LJ A°r.
r, partition of k

We call A{g) the set of irreducible points of Ag = Άg, Ag\Ag, the set of reducible

points and Γ\Ar the r component of the k-th stratum.

Let s = (5X, ...,5/), l>h be a partition of j < k, then we shall write

s < < r if there exist k indices 0 = z'o < iγ < i2 < . . Λk — I such that 5, + sf + 1
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+ + s w < rβ+1, 0 < a < k - 1.
We put H, = H, u U Hs.

s«r

THEOREM 3. Let Q denote a point of the r_ — (rv r2,... rh) component of the k-th

stratum of Proj A (7^(2,4)) then we have

#P {Q) = 2

In [8] we proved the theorem relatively to points in the g-th stratum. The

same method, using the results of Theorem 2, extends to all other strata reducing

ourselves to computing the cardinality of the fiber over a point of the g-th stra-

tum. In this case we obtain #p~1(Q) = 2g 2g+1 h. At this point the proof is a con-

sequence of that of Proposition 4 of [8] and of the decomposition (1 /2) (g + k)

(g+k+1) -h= (k(2k + 1) - h) + [g " * + -1) + 2k(g - k).

Let xlf x2, . . . ,xh, xh+1 be characteristics in {0,l}2^,.. Aθ,l}2rh, {0,l}2*

respectively then we put

(25) m = xι® x2.. .Θ xh+1.

If one of the xit 1 ^ i < h, is an odd characteristic or x'h+ι Φ 0, then it is a well

known fact that the associate ThetanuUwerte vanish on H r Let V£ be the subset of

Ag defined by the vanishing of all above described ThetanuUwerte, then generaliz-

ing Theorem 5 of [8] we have

THEOREM 4. VL = Γg(2) H,

Clearly a similar statement holds for the conjugate components.

From now to the end of this section we shall consider the case k = g.

Let as recall from [6] p. 187 the heat equation; differantiating the theta func-

tions -9m(τ, z) respect to zl9... ,zg, τn, τ1 2, . . . , r w w e have

(26) (2πιΫ Π̂ (δ\l + 1)d"-9m/dτhh • • • dτipjp

= d2p$m(τ,z)/dzhdzh- -dzipdzit.

Moreover we know that at all point of H^

(27) rank ' ( d β m ( r , 0) /dzlf... ,d&m(τ, 0) /dzg)m o d d = g.

THEOREM 5. i) Vr = Vr Π H^ is a complex submanifold ofΓg(4t,8) \ H g .
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ii) 7^(4,8) \ VL is a complex submanifold of 7^(4,8) \Hg.

79

Proof It is clear that (ii) descends from (i). Let us prove (i). We know that

set theoretically Vr — /^(2)H r , therefore we have codim Vr — Π 1 < K ; <Λ r^j.

We shall show that this number is the rank of the matrix

(28) (9$ (r 0) /dz••)

with m of the form (25) and r in Vr. Applying the transformation formula (16) we

can assume τ in H r, i.e.

τγ 0 . 0

0 τ2 0 .

. . . 0

0 . 0 τ J

We know that all d&m(τ, 0) /dτiS are 0 if more than two x-s are odd. Let us

assume xx and x2 odd characteristics in the decomposition (25), then we have

(29) τ = r, e Hr.

(30) 0)/dτiJ= •
Π (τv 0) /dz{) (dSx (r2, 0) /dz)

if 1 < i < r, < j < rγ + r2

0 otherwise.

Let us take x3fΛ. ,,xh, even characteristics in such way that

Π
ί=3

Φ 0.

This is always possible; now if we allow to the x/s of varying in the set of odd

resp. even characteristics according as z < 2 or ί > 3; we get a submatrix Aί2 of

(28). It is an immediate consequence of (27) and of the tensor product of matrices

that this submatrix has rank rλr2. Iterating this process we obtain similar matrices

Aij9 1 < i < j < g, of rank rfry. We remark that the matrix (28) is of the form

/° 0
° \

0 Alg 0

0 An 0

0

0
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that has the required rank. In this case too a similar statement holds for conjugate

components. Finally we remark that all irreducible component of Vr are two by

two disjoint.

3. Comparison of projective varieties

We shall prove that in genus 3 case Proj C ί-9m] is a normal projective varie-

ty, therefore Θ will be an immersion.

It is a well known fact, cf. [2] and [3] that, for g > 3, the set of regular points

of Proj A(Γg(2,4)) coincides with. 7^(2,4) \Ag, moreover at these points we have

that the rank of

(31) ™' l(2r, 0),dθ\™' l(2r, 0)/9rn,.. .,9«[ jf 1 (2r, 0)/dτg8)

is (1/2) g(g + 1) + 1 = dim Proj A(Γg(2,4)) + 1 then Θ2 is an immersion at

the regular points.

THEOREM 5. Let us assume g = 3, then Proj C [ # w ] is a normal variety, there-

fore Θ is an immersion.

Proof. We have ProjC[i9^] - P r o j c [ # [ JJ. It is an hypersurface of

degree 16 in P cf [3], therefore it is Cohen-Macaulay. Since the subvariety of the

singular points has codimension 2, it is regular in codimension 1, thus it is normal

cf. [4] p. 187. As B. Runge pointed out [9] since Proj c l # I II is a complete

intersection, this variety is projectively normal.

Now, we want to disprove that Θ and Θ are immersions when g ^ 4 then

we shall consider these maps at some special point; in particular let r0 be equal to

the diagonal matrix

(32)

0

t 99

0

0

0 τ.

We put Qo = 0ί1Λ(τi) and i?o = α o (r o ) . Let D be the finite group generated by

Ati, 1 ^ i ^ g. It is a consequence of [8] that all a in Γg(2) fixing r0 are the ele-

ments of D. Moreover there exists σλ in Sp(g, R) such that σx centralizes all ele-
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ments of D and (Jχ'T0 — ilg. Let

then σ = σ2 * σι sends r0 to 0 in Sg(C) and fix all elements of D. Clearly σ is an

analytic automorphism of G^.

Let x be an element of D, then it is of the form a — d — y, b = c — 0, with y

diagonal matrix with — 1 and 1 as entries.

Let A be in Sg(C), then the action of x at a neighborhood of 0 is given by

x A = yAy.

Let Y be the quotient space S8 (C) /D and let us consider all monomials of the

form

(34) ahi2

ai2h" 'ainh l - *1> *2> *3. ..*» ^ S>

they are invariant for the actions of D on 5 (C). Let us denote by m the maximal

ideal of the homomorphic local ring O0ιY.

LEMMA 1. i) The dimension of the tangent space T0Y at 0 of Y is tg —

ii) A basis of m/m consists of all monomials of the form (34) of degree ^ g

with the indices appearing with multiplicity 2.

Proof (i) follows from (ii), since there is a correspondence between k cycles

of g elements and the monomials decribed in (ii). Moreover two cycles determine

the same monomial if and only if they are one the inverse of the other. Thus we

g e t d i m c Γ o r = tg.

(ii) is a consequence of the fact that these monomials are a minimal set of

generators for the ring of the invariants C[a ί 7] 1 < i < j < g.

Clearly σ induces an isomorphism between

(35) TRo?ro}A(Γ8(2)), ΓQ oProjA(Γ,(2,4)) and T0Y.

We have

THEOREM 6. i) Θ2 is not a biholomorphic map when g > 4

ii) Θ is not a biholomorphic map when g > 4.



8 2 RICCARDO SALVATI MANNI

Proof, i) We know that a holomorphic map φ : W-+ Z is an immersion at P

in W Ίί and only if the jacobian map

(36) TP ψ : TPW-* Tφ{P)Z

is injective cf. [1]. Let us prove (i). Clearly in this case we have dim Tφ{Qo)Z <

2* - 1 and

(#—1) { ry

CM\ t = t 4- σ 4- (Λ /9) y hH

for g ^ 4. Moreover t3 = 7 this proves (i).

The method, that we shall use to prove (ii), works for the first case too, but,

as we shall see, it is less elegant.

We have to write explicitly part of the matrix associated to the jacobian map.

We have to consider the tg by (N + 1) matrix

(38) (dn-94

m(τ) / 9 r f f * dτ{ i ) m e v e n

where dτiχt2' * "9τinii is the basis of Γ i ? oProjΛ(Γ^(2)) related to the basis of TQY.

We shall say that a characteristic m is of type 0 if W m " = 0. Using the heat

equations (26) and evaluating at z — 0 and r = τ0 an elementary and tedious com-

putation gives us

(39) 4τr 4dX*(r 0, 0) /dτ1 2dτ2 3dτ3 4dτ 4 1

3

m(τo)ds-9m(τQ, 0) /(dz^2(dz2)
2(dz3)

2(dz4)
2

if m is of type 0

0 otherwise.

We remark that

(40) d 4 # m ( r 0 , 0) /dτ l 2dτ 2 3dτ 3 4dτ 4 l — d 4 # w ( r 0 , 0) /dτ12dτ24dτ43dτ13

for all characteristics m therefore the matrix (38) has rank less than tg. This

proves the theorem.
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