P-HARMONIC DIMENSIONS ON ENDS

MICHIHIKO KAWAMURA and SHIGEO SEGAWA

Dedicated to Professor Masanori Kishi on his sixtieth birthday

Consider an end Ω in the sense of Heins (cf. Heins [3]): Ω is a relatively noncompact subregion of an open Riemann surface such that the relative boundary $\partial \Omega$ consists of finitely many analytic Jordan closed curves, there exist no nonconstant bounded harmonic functions with vanishing boundary values on $\partial \Omega$ and Ω has a single ideal boundary component. A density $P=P(z) d x d y(z=x+i y)$ is a 2 -form on $\Omega \cup \partial \Omega$ with nonnegative locally Hölder continuous coefficient $P(z)$. Denote by $\mathscr{P}_{P}(\Omega)$ the class of nonnegative solutions of the equation

$$
\begin{equation*}
L_{P} u \equiv \Delta u-P u=0 \quad(\text { i.e. } \quad d * d u-u P=0) \tag{1}
\end{equation*}
$$

on Ω with vanishing boundary values on $\partial \Omega$. The P-harmonic dimension of Ω (or the elliptic dimension of P on Ω (cf. e.g. Nakai [8])), $\operatorname{dim} \mathscr{P}_{P}(\Omega)$ in notation, is defined to be the 'dimension' of the half module $\mathscr{P}_{P}(\Omega)$. The P-harmonic dimension $\operatorname{dim} \mathscr{P}_{0}(\Omega)$ for the particular $P \equiv 0$ is called simply the harmonic dimension of Ω (cf. Heins [3]).

We are particularly interested in the following result by Heins [3]:
Theorem A. Let $\left\{A_{n}\right\}$ be a sequence of mutually disjoint annuli in Ω satisfying that A_{n+1} separates A_{n} from the ideal boundary of Ω for every n. Suppose that the sum of moduli of A_{n} diverges. Then the harmonic dimension of Ω is one.

A density P is said to be finite if $\iint_{\Omega} P d x d y<\infty$. The above theorem has been generalized for finite densities P by Nakai [8] and Kawamura [4] as follows:

Theorem B. Let P be finite on Ω and $\left\{A_{n}\right\}$ be the same as in Theorem A. Then

This work was partially supported by Grant-in Aid for Scientific Research, No. 03640042 and 04640145 , Japan Ministry of Education, Science and Culture.
the P-harmonic dimension of Ω is one.

The following is another generalization of Theorem A (cf. Segawa [9]):
Theorem C. Let $\left\{A_{n}\right\}$ be a sequence of mutually disjoint sets in Ω such that each A_{n} consists of at most N mutually disjoint annuli for a positive integer N and A_{n+1} separates A_{n} from the ideal boundary of Ω for every n. Suppose that the sum of moduli of A_{n} diverges. Then the harmonic dimension of Ω is at most N.

The main purpose of this paper is to unify Theorems B and C to a form including both Theorems B and C as special cases. The main theorem is as follows:

Main Theorem. Let P be finite on Ω and $\left\{A_{n}\right\}$ be the same as in Theorem C . Then the P-harmonic dimension of Ω is at most N.

We shall prove a bit more in Theorem 6. In Section 1, we prove a duality relation for P-harmonic dimensions (cf. Theorem 2), which plays a fundamental role for the proof of Theorem 6 .

§1. Duality relation

1.1. A relatively noncompact subregion Ω of an open Riemann surface is referred to as a general end if the relative boundary $\partial \Omega$ of Ω consists of a finitely many disjoint analytic Jordan closed curves. In this section we assume that Ω is a general end. We denote by β the ideal boundary of Ω. Without loss of generality, we may assume that there exist an open Riemann surface R and its exhaustion $\left\{R_{n}\right\}_{n=0}^{\infty}$ with $\Omega=R-\bar{R}_{0}$. Let $e_{P}^{(n)}$ be the solution of the equation (1) on $\Omega \cap R_{n}$ $=R_{n}-\bar{R}_{0}$ with boundary values 1 on $\partial \Omega$ and 0 on ∂R_{n}. Since $\left\{e_{P}^{(n)}\right\}$ is increasing and dominated by the constant function 1 , the limit $e_{P}=\lim _{n \rightarrow \infty} e_{P}^{(n)}$ exists. Note that e_{P} is the solution of (1) on Ω with boundary values 1 on $\partial \Omega$ and ' 0 on the ideal boundary β^{\prime}. The function e_{P} is referred to as the P-unit on Ω for P (cf. Nakai [7]). Obviously e_{P} does not depend on a choice of $\left\{R_{n}\right\}_{n=0}^{\infty}$. We consider the associated operator \hat{L}_{P} with L_{P} which is introduced by Nakai (cf. [7], [8]):

$$
\begin{equation*}
\hat{L}_{P} u \equiv \Delta u+2 \nabla\left(\log e_{P}\right) \cdot \nabla u \tag{2}
\end{equation*}
$$

where e_{P} is the P-unit on Ω. Denote by $B_{P}(\Omega)$ the class of bounded solutions of the equation

$$
\begin{equation*}
\hat{L}_{P} u=0 \tag{3}
\end{equation*}
$$

on Ω with continuous boundary values on $\partial \Omega$. Note that $1 \in B_{P}(\Omega)$. To begin with we show the following

Lemma 1. Suppose that u belongs to $B_{P}(\Omega)$. Then u satisfies the following inequalities:

$$
\min _{p \in \partial \Omega} u(p) \leq \inf _{p \in \Omega} u(p) \leq \sup _{p \in \Omega} u(p) \leq \max _{p \in \partial \Omega} u(p) .
$$

Proof. We have only to show the last inequality since $-u$ also belongs to $B_{P}(\Omega)$. By adding a constant we may assume $u \geq 0$. Set $M=\max _{p \in \partial \Omega} u(p)$. Let v_{n} be the solution of (1) on $\Omega \cap R_{n}$ with boundary values u on $\partial \Omega$ and 0 on ∂R_{n}. Since $\left\{v_{n}\right\}$ is increasing and $v_{n} \leq M e_{P}(n=1,2, \ldots), v=\lim _{n \rightarrow \infty} v_{n}$ exists and is a solution of (1). It is clear that $v / e_{P} \leq M$ on Ω. Thus we complete the proof if we show that $u=v / e_{P}$, or $u e_{P}=v$.

Note that $L_{P}\left(u e_{P}\right)=0$ and $0 \leq v \leq u e_{P}$ on Ω. There exists a constant $C>0$ such that $0 \leq u \leq C$, i.e. $0 \leq u e_{P} \leq C e_{P}$. Let w_{n} be the solution of (1) on $\Omega \cap R_{n}$ with boundary values 0 on $\partial \Omega$ and e_{P} on ∂R_{n}. Then $w_{n}=e_{P}-e_{P}^{(n)}$. By the minimum principle, $0 \leq u e_{P}-v \leq C w_{n}$ on $\Omega \cap R_{n}$. Since $\lim _{n \rightarrow \infty} e_{P}^{(n)}=e_{P}, \lim _{n \rightarrow \infty} w_{n}$ $=0$ and therefore $u e_{P}=v$.
1.2. Let $B_{P}^{0}(\Omega)$ be the subspace of $B_{P}(\Omega)$ which consists of functions with the limit 0 at β :

$$
B_{P}^{0}(\Omega)=\left\{u \in B_{P}(\Omega): \lim _{p \rightarrow \beta} u(p)=0\right\}
$$

Next consider the quotient space

$$
\mathscr{B}_{P}(\Omega)=B_{P}(\Omega) / B_{P}^{0}(\Omega)
$$

and denote by $\operatorname{dim} \mathscr{B}_{P}(\Omega)$ the dimension of the linear space $\mathscr{B}_{P}(\Omega)$. Our first achievement of this paper is the following duality relation for $\mathscr{P}_{P}(\Omega)$ and $\mathscr{B}_{P}(\Omega)$ (cf. Segawa [9]):

Theorem 2. If either $\mathscr{P}_{P}(\Omega)$ or $\mathscr{B}_{P}(\Omega)$ is of finite dimension, then the P-harmonic dimension $\operatorname{dim} \mathscr{P}_{P}(\Omega)$ coincides with $\operatorname{dim} \mathscr{B}_{P}(\Omega)$:

$$
\operatorname{dim} \mathscr{P}_{P}(\Omega)=\operatorname{dim} \mathscr{B}_{P}(\Omega) .
$$

The proof of the above theorem is given in no.1.4. By the definition of
$\mathscr{B}_{P}(\Omega)$ and the fact $1 \in \mathscr{B}_{P}(\Omega), \operatorname{dim} \mathscr{B}_{P}(\Omega)=1$ is equivalent that $\lim _{p \rightarrow \beta} u(p)$ exists for every u in $B_{P}(\Omega)$. Therefore Theorem 2 implies the following, which was originally obtained by Hayashi [3] (cf. Nakai [7]):

Corollary 3. The P-harmonic dimension $\operatorname{dim} \mathscr{P}_{P}(\Omega)$ is one if and only if there exists $\lim _{p \rightarrow \beta} u(p)$ for every u in $B_{P}(\Omega)$.
1.3. Consider the linear space \mathscr{E} generated by $\mathscr{P}_{P}(\Omega)$, i.e.

$$
\mathscr{E}=\left\{h_{1}-h_{2}: h_{1}, h_{2} \in \mathscr{P}_{P}(\Omega)\right\}
$$

and the bilinear functional

$$
(u, h) \mapsto\langle u, h\rangle=-\int_{\partial \Omega} u * d h=\int_{\partial \Omega} u \frac{\partial h}{\partial n} d s
$$

defined on $B_{P}(\Omega) \times \mathscr{E}$ where $\partial / \partial n$ is the inner normal derivative. Let $g_{n}(\cdot, p)$ be the Green's function of (1) on $\Omega \cap R_{n}$ with pole at p for each $n \in \mathbf{N}$, the set of positive integers. Note that $g_{n}(\cdot, p)$ converges to the Green's function $g(\cdot, p)$ of (1) on Ω with pole at p uniformly on each compact subset in $\Omega \cup \partial \Omega$. Set

$$
Q=\left\{h \in \mathscr{P}_{P}(\Omega):\langle 1, h\rangle=1\right\}
$$

We maintain

Lemma 4. If $u \in B_{P}(\Omega)$, then

$$
\limsup _{p \rightarrow \beta} u(p)=\sup \langle u, Q\rangle
$$

and

$$
\underset{p \rightarrow \beta}{\lim \inf } u(p)=\inf \langle u, Q\rangle
$$

where $\langle u, Q\rangle=\{\langle u, h\rangle: h \in Q\}$.

Proof. We first show that

$$
\begin{equation*}
u(p) e_{P}(p)=-\frac{1}{2 \pi} \int_{\partial \Omega} u * d g(\cdot, p) \quad(p \in \Omega) \tag{4}
\end{equation*}
$$

for every $u \in B_{P}(\Omega)$. Suppose that $p \in \Omega \cap R_{n}$. Let u_{n} be the solution of (3) on $\Omega \cap R_{n}$ with boundary values u on $\partial \Omega$ and 0 on ∂R_{n}. By Lemma $1, u_{n}$ converges to u uniformly on each compact subset in $\Omega \cup \partial \Omega$. Observe that $u_{n} e_{P}$ is the solu-
tion of (1) on $\Omega \cap R_{n}$ with boundary values u on $\partial \Omega$ and 0 on ∂R_{n}. Hence the Green's formula yields that $u_{n}(p) e_{P}(p)=-(1 / 2 \pi) \int_{\partial \Omega} u * d g_{n}(\cdot, p)$. By letting $n \rightarrow \infty$, we have (4).

Take an arbitrary cluster value a of u at β and a sequence $\left\{p_{n}\right\}$ with $\lim _{n \rightarrow \infty} p_{n}$ $=\beta$ and $\lim _{n \rightarrow \infty} u\left(p_{n}\right)=a$. Applying (4) to $1 \in B_{P}(\Omega)$, we see that $e_{P}\left(p_{n}\right)=$ $-(1 / 2 \pi) \int_{\partial \Omega} u * d g\left(\cdot, p_{n}\right)$, i.e.

$$
-\int_{\partial \Omega} * d \frac{g\left(\cdot, p_{n}\right)}{2 \pi e_{P}\left(p_{n}\right)}=1
$$

From this it follows that a suitable subsequence of $\left\{(1 / 2 \pi) g\left(\cdot, p_{n}\right) / e_{P}\left(p_{n}\right)\right\}$ converges to a function G, which belongs to Q, uniformly on each compact subset of $\Omega \cup \partial \Omega$. By (4) we also have

$$
u\left(p_{n}\right)=-\int_{\partial \Omega} u * d \frac{g\left(\cdot, p_{n}\right)}{2 \pi e_{P}\left(p_{n}\right)} .
$$

Therefore we conclude that

$$
a=-\int_{\partial \Omega} u * d G
$$

i.e. $a \in\langle u, Q\rangle$, which implies

$$
\inf \langle u, Q\rangle \leq \underset{p \rightarrow \beta}{\liminf } u(p) \leq \underset{p \rightarrow \beta}{\lim \sup } u(p) \leq \sup \langle u, Q\rangle
$$

Next we show that

$$
\begin{equation*}
\liminf _{p \rightarrow \beta} u(p) \leq \inf \langle u, Q\rangle \leq \sup \langle u, Q\rangle \leq \underset{p \rightarrow \beta}{\lim \sup } u(p) \tag{5}
\end{equation*}
$$

Suppose that $h \in Q$ and $u \in B_{P}(\Omega)$. Let $h_{n m}$ be the solution of (1) on $R_{m}-\bar{R}_{n}$ ($m>n$) with boundary values h on ∂R_{n} and 0 on ∂R_{m}. The Green's formula yields that

$$
\begin{gathered}
\langle u, h\rangle=-\int_{\partial \Omega} u * d h=-\int_{\partial \Omega} u_{m} e_{P} * d h=\int_{\partial R_{n}} u_{m} e_{P} * d h-h * d\left(u_{m} e_{P}\right) \\
=\int_{\partial R_{n}} u_{m} e_{P} * d h-h_{n m} * d\left(u_{m} e_{P}\right)
\end{gathered}
$$

and

$$
\int_{\partial R_{n}} u_{m} e_{P} * d h_{n m}-h_{n m} * d\left(u_{m} e_{P}\right)=\int_{\partial R_{m}} u_{m} e_{P} * d h_{n m}-h_{n m} * d\left(u_{m} e_{P}\right)=0
$$

where u_{m} is defined at the beginning of the proof. Therefore, by letting $m \rightarrow \infty$, we have

$$
\begin{equation*}
\langle u, h\rangle=\int_{\partial R_{n}} u e_{P} * d\left(h-h_{n}\right) \tag{6}
\end{equation*}
$$

where $h_{n}=\lim _{m \rightarrow \infty} h_{n m}$. Applying (6) to $u=1$, we also have

$$
\begin{equation*}
\int_{\partial R_{n}} e_{P} * d\left(h-h_{n}\right)=\langle 1, h\rangle=-\int_{\partial \Omega} * d h=1 \tag{7}
\end{equation*}
$$

Hence (6) and (7) imply that

$$
\inf _{p \in \partial R_{n}} u(p) \leq \inf \langle u, Q\rangle \leq \sup \langle u, Q\rangle \leq \sup _{p \in \partial R_{n}} u(p)
$$

Thus (5) follows from the above.
The proof is herewith complete.
1.4. Proof of Theorem 2. By definition, the dimension $\operatorname{dim} \mathscr{E}$ of the linear space \mathscr{E} coincides with $\operatorname{dim} \mathscr{P}_{P}(\Omega)$.

Consider the \mathscr{E}-kernel $\left(B_{P}(\Omega)\right.$-kernel resp.)

$$
\begin{gathered}
K_{1}=\bigcap_{h \in \mathscr{E}}\left\{u \in B_{P}(\Omega):\langle u, h\rangle=0\right\} \\
\left(K_{2}=\bigcap_{u \in B_{P}(\Omega)}\{h \in \mathscr{E}:\langle u, h\rangle=0\} \text { resp. }\right)
\end{gathered}
$$

of the bilinear functional $(u, h) \mapsto\langle u, h\rangle$. By virtue of Lemma 4 , it is easily seen that $K_{1}=B_{P}^{0}(\Omega)$, and hence $\mathscr{B}_{P}(\Omega)=B_{P}(\Omega) / K_{1}$. Since $\left\{\left.u\right|_{\partial \Omega}: u \in B_{P}(\Omega)\right\}=$ $C(\partial \Omega)$, it follows from $h \in K_{2}$ that $\partial h / \partial n \equiv 0$ on $\partial \Omega$. Combining this with the fact $h \equiv 0$ on $\partial \Omega$, we have $K_{2}=\{0\}$ (cf. e.g. Miranda [6]). Therefore we can consider $\mathscr{B}_{P}(\Omega)=B_{P}(\Omega) / K_{1}\left(\mathscr{E}=\mathscr{E} / K_{2}\right.$ resp.) to be a subspace of $\mathscr{E}^{*}\left(\mathscr{B}_{P}(\Omega)^{*}\right.$ resp. $)$ where we denote by X^{*} the conjugate space of a linear space X. In particular we have

$$
\operatorname{dim} \mathscr{B}_{P}(\Omega) \leq \operatorname{dim} \mathscr{E}^{*}
$$

and

$$
\operatorname{dim} \mathscr{E} \leq \operatorname{dim} \mathscr{B}_{P}(\Omega)^{*}
$$

Hence we have

$$
\operatorname{dim} \mathscr{B}_{P}(\Omega)=\operatorname{dim} \mathscr{E}=\operatorname{dim} \mathscr{\mathscr { P }}_{P}(\Omega),
$$

since linear spaces of finite dimension are isomorphic to their conjugate spaces.

§2. Proof of Main Theorem

2.1. In this section, we give a proof of Main Theorem in terms of extremal length.

Hereafter we assume that Ω is a parabolic end: i.e. there exist no non-constant bounded harmonic functions on Ω with vanishing boundary values on $\partial \Omega$. The following was proved by Nakai [8] essentially:

Proposition 5. If Ω is parabolic and P is finite on Ω, then every bounded solution of (3) on Ω has finite Dirichlet integral on $\Omega-R_{1}$.

For the proof we refer to Nakai [8] and Kawamura [4].
2.2. We denote by $\lambda(\Gamma)$ the extremal length of a curve family Γ in Ω. For the definition and details of extremal length we refer to e.g. Ahlfors and Sario [1]. For every positive integer n, let $\Gamma_{n}(\Omega)$ be the totality of 1-cycles γ in Ω such that γ consists of at most n closed curves and separates $\partial \Omega$ from the ideal boundary β. The following is the main achievement of this paper (cf. Shiga [10]):

Theorem 6. Suppose that P is finite on Ω. If the extremal length $\lambda\left(\Gamma_{N}(\Omega)\right)$ is zero for an $N \in \mathbf{N}$, then the P-harmonic dimension $\operatorname{dim} \mathscr{P}_{P}(\Omega)$ is at most N.

Proof. Set $\Gamma_{1}=\Gamma_{1}(\Omega)$ and $\Gamma_{n}=\Gamma_{n}(\Omega)-\Gamma_{n-1}(\Omega)(n=2,3, \cdots)$. Since $\Gamma_{N}(\Omega)=\cup_{n=1}^{N} \Gamma_{n}$, there exists a $\nu \in \mathbf{N}$ such that $\nu \leq N$ and $\lambda\left(\Gamma_{\nu}\right)=0$. We shall show that $\operatorname{dim} \mathscr{P}_{P}(\Omega)$ is at most ν. Take arbitrary $\nu+1$ functions $u_{1}, \cdots, u_{\nu+1}$ in $B_{P}(\Omega)$. By virtue of Theorem 2, we have only to show that a nonzero linear combination $c_{1} u_{1}+\cdots+c_{\nu+1} u_{\nu+1}$ of $u_{1}, \cdots, u_{\nu+1}$ belongs to $B_{P}^{0}(\Omega)$.

Consider the 'density' ρ on Ω such that

$$
\rho|d z|= \begin{cases}\sum_{i=1}^{\nu+1}\left|\nabla u_{i}\right||d z| & \text { on } \Omega-R_{1} \\ 0 & \text { on } \Omega \cap R_{1} .\end{cases}
$$

By Schwarz' inequality and Proposition 5, we have

$$
\begin{equation*}
\iint_{\Omega} \rho^{2} d x d y \leq(\nu+1) \sum_{i=1}^{\nu+1} D_{\Omega-R_{1}}\left(u_{i}\right)<\infty, \tag{8}
\end{equation*}
$$

where $D_{\Omega-R_{1}}\left(u_{i}\right)=\iint_{\Omega-R_{1}}\left|\nabla u_{i}\right|^{2} d x d y$. Set $\Gamma_{\nu}^{m}=\left\{\gamma \in \Gamma_{\nu}: \gamma \cap R_{m}=\phi\right\}$. By means of $\lambda\left(\Gamma_{\nu}\right)=0$, we have $\lambda\left(\Gamma_{\nu}^{m}\right)=0$ for every $m \in \mathbf{N}$ (cf. Kusunoki [5]). Therefore, because of (8), we can find a sequence $\left\{\gamma_{n}\right\}$ in Γ_{ν} such that γ_{n} converges to the ideal boundary β and $\lim _{n \rightarrow \infty} \int_{\gamma_{n}} \rho|d z|=0$. In particular, we obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{\gamma_{n}}\left|\nabla u_{i}\right||d z|=0 \quad(i=1, \cdots, \nu+1) . \tag{9}
\end{equation*}
$$

By definition, every γ_{n} consists of exactly ν closed curves $\gamma_{n 1}, \cdots, \gamma_{n \nu}$. Accordingly (9) implies that there exist a subsequence $\left\{\gamma_{n_{k}}\right\}$ of $\left\{\gamma_{n}\right\}$ and vectors $\mathbf{v}_{i}=\left(a_{i 1}, \cdots, a_{i \nu}\right) \in \mathbf{R}^{\nu}(i=1, \cdots, \nu+1)$ such that

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \max _{p \in \gamma_{n_{k^{j}}}}\left|u_{i}(p)-a_{i j}\right|=0 \quad(j=1, \cdots, \nu) \tag{10}
\end{equation*}
$$

Evidently we can find $\left(c_{1}, \cdots, c_{\nu+1}\right) \in \mathbf{R}^{\nu+1}-\{(0, \cdots, 0)\}$ such that $\sum_{i=1}^{\nu+1} c_{i} \mathbf{v}_{i}=$ $(0, \cdots, 0)$. Therefore, (10) yields that

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \max _{p \in \eta_{n_{k}}}\left|\sum_{i=1}^{\nu+1} c_{i} u_{i}(p)\right|=0 . \tag{11}
\end{equation*}
$$

Since each γ_{n} separates $\partial \Omega$ from the ideal boundary β, it follows from Lemma 1 and (11) that $\lim _{p \rightarrow \beta} \sum_{i=1}^{\nu+1} c_{i} u_{i}=0$. This completes the proof.
2.3. Proof of Main Theorem. Main Theorem is easily verified from Theorem 6 as follows. Assume that $\left\{A_{n}\right\}$ is the same as in Theorem C. Set $A_{n}=\cup_{j=1}^{\nu(n)} A_{n j}$ where $A_{n j}$'s are mutually disjoint annuli and $\nu(n) \leq N$. Let Λ_{n} be the totality of 1-cycles γ in A_{n} such that $\gamma=\mathrm{U}_{j=1}^{\nu(n)} \gamma_{n j}$ where each $\gamma_{n j}$ is a closed curve in $A_{n j}$ and separates two boundary components of $A_{n j}$. Set $\Gamma=\cup_{n=1}^{\infty} \Lambda_{n}$. Note that $\Gamma \subset$ $\Gamma_{N}(\Omega)$. By virtue of Theorem 6 , we have only to show that $\lambda(\Gamma)=0$.

It is well-known that $\lambda\left(\Lambda_{n}\right)=2 \pi / \bmod A_{n}$, where $\bmod A_{n}$ is the modulus of A_{n} (cf. Ahlfors and Sario [1]). Since A_{n} 's are mutually disjoint, we see $\lambda(\Gamma)^{-1} \geq$ $\sum_{n=1}^{\infty} \lambda\left(\Lambda_{n}\right)^{-1}$. Hence, from the assumption $\sum_{n=1}^{\infty} \bmod A_{n}=\infty$ it follows that $\lambda(\Gamma)=0$.

REFERENCES

[1] L. Ahlfors and L. Sario, Riemann Surfaces, Princeton, 1960.
[2] K. Hayashi, Les solutions positives de l'equation $\Delta u=P u$ sur une surface de Riemann, Kōdai Math. Sem. Rep., 13 (1961), 20-24.
[3] M. Heins, Riemann surfaces of infinite genus, Ann. of Math., 55(1952), 296-317.
[4] M. Kawamura, Picard principle for finite densities on Riemann surfaces, Nagoya Math. J., 67 (1977), 35-40.
[5] Y. Kusunoki, On Riemann's period relations on open Riemann surfaces, Mem. Coll. Sci. Kyoto Univ. Ser. A Math., 30 (1956), 1-22.
[6] C. Miranda, Partial Differential Equations of Elliptic Type, Springer, 1970.
[7] M. Nakai, Picard principle and Riemann theorem, Tôhoku Math. J., 28 (1976), 277-292.
[8] M. Nakai, Picard principle for finite densities, Nagoya Math. J., 70 (1978), 7-24.
[9] S. Segawa, A duality relation for harmonic dimensions and its applications, Kodai Math., J., 4 (1981), 508-514.
[10] H. Shiga, On harmonic dimensions and bilinear relations on open Riemann surfaces, J. Math. Kyoto Univ., 21 (1981), 861-879.
M. Kawamura

Department of Mathematics
Faculty of Education
Gifu University
Yanagido, Gifu 501-11
Japan
S. Segawa

Department of Mathematics
Daido Institute of Technology
Daido, Minami, Nagoya 457
Japan

