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THE DELIGNE COMPLEX OF A REAL ARRANGEMENT

OF HYPERPLANES

LUIS PARIS

1. Introduction

Let V be a real vector space. An arrangement of hyperplanes in V is a finite

family d of hyperplanes of V through the origin. We say that d is essential if

nHesίH={o}.

Let VQ — C ® V be the complexification of V. Every element z of Vc can be

written in a unique way z — x + M/> where .r, y <Ξ 1 ® V = V. We say that x is

the raiZ pα?t of z and that z/ is its imaginary part. For two subsets X, Y ^ V, we

write

Let H be a hyperplane of V. The complexification Hc of i/ is the hyperplane of Vc

spanned by H Hc = H + iH.

Let d be an arrangement of hyperplanes in a real vector space V. We set

Mid) = Vc - [ U Hc) .

This space is an open and connected submanifold of Vc. We say that d is a

K(π, 1) arrangement if M(d) is a if(ττ, 1) space.

The lattice of a real arrangement d of hyperplanes is the poset

ordered by the reverse inclusion. V— ^ H&& H ^s the smallest element of !£(d),

and ΠH(Ξ^H is the greatest one. For X <Ξ £(d), we set

Let <rf be a real and essential arrangement of hyperplanes. A chamber of d is

a connected component of V — U HeΞ^ H. We say that d is simplicial if every
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chamber of d is an open simplicial cone. In [De], for a simplicial arrangement d of

hyperplanes, Deligne constructs a cover q : Mid) —^ Mid), defines a simplicial

complex Όe\(d) from d, and proves that Όel(d) has the same homotopy type as

M(d), and that DelW) is contractible. In particular, q : Mid) —• M(d) is the

universal cover of Mid), and d is a Kiπ, 1) arrangement.

In [Palj, the author generalizes Deligne's construction of the universal cover

q : Mid) —* Mid) of Mid) to any real arrangement d of hyperplanes using a

new combinatorial tool: the oriented systems.

Our goal in this paper is to generalize the defintion of the Deligne complex

Όelid) to any real and essential arrangement d of hyperplanes (in the general

case, Όelid) is a regular and normal CW-complex), and to prove the following re-

sult.

MAIN THEOREM. Let d be a real and essential arrangement of hyperplanes. The

Deligne complex DelW) of d has the same homotopy type as the universal cover

Mid) of Mid) if and only if dx is a Kiπ, 1) arrangement for every X ^ £id)

different from {0}.

In particular, if d is an essential arrangement of hyperplanes in a real vector

space of dimension < 3, then Όelid) has the same homotopy type as the univer-

sal cover Mid) of Mid) (it is well known that any arrangement of hyperplanes

in a real vector space of dimension < 2 is a Kin, 1) arrangement).

Note that the study of the topology of Mid), where d is an arbitrary real

arrangement of hyperplanes, can be easily reduced to the case of an essential

arrangement. Thus the hypothesis "d is essential" is not a restriction.

At the end of this section we will prove that: "if d is a Kiπ, 1) arrangement,

then dx is also a Kiπ, 1) arrangement for every X^ϋidY (Lemma 1.1). It

follows that, if d is a Kiπ, 1) arrangement, then Όelid) has the same homotopy

type as the universal cover Mid) of Mid), and, consequently, Όelid) is

contractible. In view of these facts, our complex DelW) can certainly be used to

prove that a given real arrangement of hyperplanes is a Kiπ, 1) arrangement.

We refer to [FR] for a good exposition on Kiπ, 1) arrangements, and to [Or]

and [OT] for good expositions on the theory of arrangements of hyperplanes.

Our work is organized as follows.

Section 2 is a summary of [Pal]. Its aim is to introduce our main combinato-

rial tool, the oriented systems, and to give the construction of the universal cover
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q : M(d) —* M(d) of M(d). Although this section is almost identical to Section 2

of [Pa2], for convenience we reproduce it here rather than referring the reader to

the original paper.

In Section 3, we define the complex DelW) and prove the Main Theorem.

I am grateful to Peter Orlik and Hiroaki Terao who have helped me with

discussions, suggestions and encouragement during my work. I am also grateful to

Mutsuo Oka for granting his permission to include in this paper his proof of

Lemma 1.1.

LEMMA 1.1. Let d be a real arrangement of hyperplanes, and let X ^ £(d). If

d is aK(π, 1) arrangement, thendx is also aK(π, 1) arrangement.

Proof. Let c1 : M(d) -* M{dx) be the inclusion map of M(d) into M{dx).

We are going to prove that c admits a right homotopy inverse. This shows that

(c ) * : πn(M(d))—* πn(M(dx)) is a surjective morphism of groups for every

n > 0, and thus that M(dx) is a K(π, 1) space if M(d) is a K{π, 1) space.

Pick a point z ^ Π HG^χHc such that z ^Hc for any H & d — dx. Choose

a small disk B in Vc centered in z and which does not intersect any hyperplane

( U tfc)=B-(u Hc),

Hc with H e d - dx. Set

W=B-[U

and let c : W—*M{d) denote the inclusion map of W into M(d). Then c — c ° c

: PF—•> M(dx) is obviously a homotopy equivalence, thus r admits a right homo-

topy inverse. O

Note that Lemma 1.1 can be easily generalized to complex arrangements of

hyperplanes.

2. The universal cover of M(d)

This section is divided into three subsections. In the first one we introduce

our main combinatorial tool: the oriented systems. In the second subsection we

define the oriented system (Γ(d), ~ ) associated with a real arrangement d of

hyperplanes. In the third subsection, using the universal cover p: (Γ(d), ~) —*

(Γ(d), ~) of the oriented system (Γ(d), ~ ) , we give the construction of the uni-

versal cover q : M(d) --> M(d) of M(d).
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All results stated in this section are derived from [Pal], so we will not give

any proofs.

2. A. Oriented systems

An oriented graph Γ is the following data:

1) a set V(Γ) of vertices,

2) a subset A(Γ) Q (V(Γ) x V(Γ)) - {(v, v) \υ e V(Γ)} of arrows.

The origin of an arrow a — (v, w) is υ and its end is w. An oriented graph Γ

is locally finite if every vertex # ^ V(Γ) is the origin or the end of only a finite

number of arrows.

A path of an oriented graph Γ is an expression

where a{ ^ A(Γ) and ε, €= {+ l}(for i— 1 , . . . ,ή), such that there exists a sequ-

ence f0, vlf..mfvn of vertices of /"* with:

a{ = (^t_1, t;,) if ε, = 1 and

a{ = (vif v^) if ε< = - 1.

We say that #0 is the origin of / and that #w is its 2nd The integer n is its length

and Σ ί = 1 ε, is its weight. Every vertex of Γ is assumed to be a path of length 0

and of weight 0. For a path / = a\ι * aε

n

n, we write / " * = a~£n - α ^ 1 . For two

paths f — a^ - - - aε

n

n and g" = 6^x * b1^1 with end(/) = origin (g), we write fg

~ a\ ''' annbi ''' V

An oriented graph Γ is connected if, for every pair (v, w) of vertices of Γ,

there exists a path of .Γ which begins at v and ends in w.

We always assume the oriented graphs to be locally finite and connected.

Let Γ be an oriented graph. An identification of Γ is an equivalence relation

~ in the set of paths of Γ with the following properties:

1) f~ £=>origin(/) = origin(^), end(/) = end(^) and weight(/) =

weight (#),

2) ff~l ~ origin(/), for every p a t h /

4) / ~ g=> hjh2 ~ hxgh2, for suitable paths hλ and h2.

An oriented system is a pair (Γ, ~ ) , where Γ is an oriented graph and ~ is

an identification of Γ.
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Let p : θ—• Γ be a morphism of oriented graphs. We say that p is a cowr of Γ

if, for every vertex υ of Θ and every path / of Γ beginning at p(v), there exists a

unique path / of Θ such that origin (/) = υ and p(/) = /

Let p : ( θ , ~ ) —* (Γ, ~ ) be a morphism of oriented systems (i.e./ ~ £=>

p(/) ~ p(g))> We say that p is a cover oί (Γ, ~ ) if it has the following two prop-

erties.

1) p : Θ —* Γ is a cover of 77

2) Let # ^ F(θ) , let/and g be two paths of Γ which both begin at p(v), and

let / and g be the lifts of / and g respectively into Θ beginning at υ. If / ~ g Ό ^

end(/) = end (#•)), then / - g(=> end(/) = end(g)).

PROPOSITION 2.1. L ί̂ (Γ, ~ ) 5̂  an oriented system. There exists a unique cover

re : CΓ, ~ ) —•* (Γ, ~ ) of (Γ', ^ ) (tep to isomorphism) which has the following univer-

sal property.

If p : ( θ , ~ ) —•(/"*, ^ ) t s α cowr of (Γ, ~), then there exists a unique cover

πr : (7", ^ ) —* ( θ , ~ ) of ( θ , ~ ) (up to isomorphism) such that π = p ° π\

We call π : CΓ, ~ ) —• (Γ, ~ ) the universal cover oί (Γ, ~ ) .

PROPOSITION 2.2. L ί̂ TΓ : (Γ, ^ ) —• (Γ, ^ ) ^ ί/iβ universal cover of an oriented

system (Γ, ~ ) . Tt̂ o /?αί/i5 / and g of Γ are identified by ~ if and only if

origin(/) = origin(g) and end(/) = enάig).

2. B. Definition of ( Γ U ) , ~ )

Let d be an arrangement of hyperplanes in a real vector space V. The hyper-

planes of d subdivide V into facets. We denote by 2P(d) the set of all the facets.

The support \ F \ of a facet F is the vector space | F | ^ ί?W) spanned by F. Ev-

ery facet is open in its support. We denote by F the closure of F in V. There is a

partial order in &(d) defined by F < G if F Q G.

A chamber of d is a facet of codimension 0. A /αc<? is a facet of codimension 1.

Two chambers C and 7) are adjacent if they have a common face (i.e. a common

facet of codimension 1).

Now, let us define the oriented system (Γ(d), ~ ) associated with d.

The vertices of Γ(d) are the chambers of d. An arrow of Γ(d) is a pair

(C, 7)), where C and 7) are adjacent chambers. Note that, in this oriented graph,

if (C, D) is an arrow, then (D, C) is also an arrow.
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A positive path of an oriented graph Δ is a path / = a\ι aε

n

n with εx = . . .

= εn = 1. This positive path is minimal if there is no positive path in Δ having

the same origin as / the same end as /, and a length smaller than the one of /

The relation ~ is the smallest identification of Fid) such that:

if / and g are both positive minimal paths with the same origin and the same

end , then f ~ g.

2. C. Universal cover of M(d)

Let d be an arrangement of hyperplanes in a real vector space V. We set

Our goal in this subsection is to explain the construction of the universal cover

q:M(d)-+M(d) oίMid).

Let C be a chamber of d. For a facet F e 2F(d), we denote by CF the unique

chamber of dlFl containing C. We write

M(C) = U (F + iCF) c V + iV) = Vc.

Note that this union is disjoint.

LEMMA 2.3. The set (M(C) | C e V(ΓW))} is a covering of M(d) by open

subsets.

Now, consider the universal cover p : (Fid), ~)—>(Γ(d), ~ ) of (Γ(d), ~ ) .

For every vertex # of ΓW), write

AΓ(ι ) =M(p(v)).

Set

ΛΓW) = II M(f ),
f

and let

be the natural projection.
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It is easy to see that, if two chambers C and D are adjacent, then there is

only one hyperplane H €= d which separates C and D\ it is the support of their

common face. For a chamber C of d and a hyperplane H ^ d, we denote by Hc

the open half-space of V bordered by H and containing C.

Let $ be the smallest equivalence relation on M'(d) such that:

if a = (v, w) G ditid)), z e Af(t ), *' e Af(w), and

ί '(s) = ?'(*') e M(^) Π M(w) Π (#,+„> + ιV),

where i7 is the unique hyperplane of d which separates p(v) and p(w), then

The space M(d) is the quotient

MW) = M'(d)/%

and

ί : Mid) — Mid)

is the map induced by q'.

THEOREM 2.4. The map q : Mid) —> Mid) is the universal cover of Mid).

The following Lemmas 2.5, 2.6 and 2.7 are in [Pal] preliminary results to the

proof of Theorem 2.4; nevertheless, we state them since they will be used later in

this paper.

Fix a vertex υ €= ViΓid)). Write C — piv). For every chamber D of d, we

choose a positive minimal path fD of Γid) beginning at C and ending in D. We de-

note by fD the lift of fD into Γid) beginning at υ. Note that the end of fD does not

depend on the choice of fD (see the definition of the identification ~ of Γid)). We

set

Σiv) = {endifD)\D<Ξ ViΓid))}.

The restriction of p to Σiv) is clearly a bijection Σiv) —* ViΓid)).

Let ι> and w be two vertices of Γid). We write

Z(t;, w) = U p(«),

where the union is over all vertices u ^ Σiv) Π Σ(w) and, for u^ Σiv)

Π Σ(w), the set <o(w) is the closure of piu) in V. We denote by Z(#, w) the in-
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terior of Z(v, w). Note that Z(v, w) is a union of facets of d.

Consider the natural projection

p:Mr(d)= II M(v)->M(d).
f

For every υ e V(f(d)), we write M(υ) = p(M(υ)). Since qf: M'(d)-* M(d)

sends M(v) homeomorphically onto M(v), and q': q ° p, the map q : M(d)—>

M(d) sends M(ι>) homeomorphically onto M(v). Moreover, since q is a cover,

M(t ) is an open subset of M(d).

LEMMA 2.5. Let v and w be two vertices of Γ(d). The border of Z(υ, w) is con-

tained in the union of the hyperplanes H G d which separate p(v) and p(w).

LEMMA 2.6. Let v and w be two vertices ofΓ(d). Then

q(M(v) Π M{w)) = M(v) Π M(w) Π (Z(v, w) + iV).

COROLLARY. Let v, w be two vertices of Γ{d). If Έ(v) Π Σ(w) = 0 , then

M(υ) Π M(w) = 0.

LEMMA 2.7. For every chamber C ofd, we have

q-\M{Q) = U W ,

and this union is disjoint.

3. The Deligne complex of d

Throughout this section, d is an essential arrangement of hyperplanes in a

real vector space V of dimension /, the map q : M(d) —• M(d) is the universal

cover of M(d), the pair (F(d), ~) is the oriented system associated with d, and

p : (Γ(d), ~) -+ (Γ(d), ~) is the universal cover of (Γ(d), ~).

We provide V with an arbitrary scalar product. Let S~ = {x ̂  V\ \\x\\ = 1}

be the unit sphere. The arrangement d determines a cellular decomposition of

S . With a facet F of d of dimension d corresponds the (closed) cell Δd_λ(F) —

F Π S of dimension W — 1), and every cell of this decomposition has that

form.

For every vertex v of F(d), we write
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(recall that p(v) is a chamber of d, so is a facet of dimension /). We set

Del'W) =U4ί_ 1 (t;) >
V

where the union is over all the vertices υ of Γ(d), and let

be the natural projection, The space ΌeY(d) is a disjoint union of (/— 1)-cells,

and each cell A\_x{v) has a natural cellular decomposition given by the embedding

Δ'^iυ) C—>S ~ Thus DeΓW) can be viewed as a cellular complex, and π' as a

cellular map.

Let 91 be the smallest equivalence relation on ΌeY(d) such that:

if a = O, w) e A(ΓCrf)), α e ^ ( t ; ) , j8 e ^ ( w ) , and τr'(α) = TΓ'GS),

then

We denote by Όe\°(d) the quotient

by

the natural projection, and by

the map induced by πf. In other words, The space Del (d) is obtained from

DeΓW) as follows: for every arrow a— (v, w) of Γ(d), we identify the

(/ - 2)-cell Λ-iCF) c Δ'uiv) with the (/ - 2)-cell Δ^2(F) Q Δ'^iw), where F

is the face of d common to p(v) and p(w). Thus Όe\°(d) has a natural cellular

decomposition where the maps τ and π° are cellular maps.

For every vertex υ of Γ(d), we write ^.^(tf) =

For every vertex t; of Γ(d), we write

s ^ ' ω = u Δ^M) e D e )
weΣ(t )

(the definition of Σ ( f ) is given in Subsection 3.C). The restriction of % to

S (v) is obviously an isomorphism S ~ (v) —> S of cellular complexes.
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The Deligne complex of d is the cellular complex De\(d) obtained from

Όef(d) by attaching a /-cell Bι(v) to Όel°(d) having $>ι~ι(v) as border, for

every vertex υ of Γ(d).

The complexes S ~ , De\°(d) and DelW) are clearly regular and normal

CW-complexes.

MAIN THEOREM. Let d be a real and essential arrangement of hyperplanes. The

Deligne complex Del(d) of d has the same homotopy type as the universal cover

M(d) of M(d) if and only if dx is a K(π, 1) arrangement for every X ^

<£(d) different from {0}.

COROLLARY 1. ket d be an essential arrangement of hyperplanes in a real vector

space V of dimension < 3. Then Del(d) has the same homotopy type as the universal

cover M(d) ofM(d).

COROLLARY 2. Let d be a real, essential, and K(π, 1) arrangement of hyper-

planes. Then Όel(d) has the same homotopy type as the universal cover M(d) of

M(d). In particular, Όel(d) is contractible.

Let N be a regular and normal CW-complex. The cellular decomposition of N

determines a simplicial decomposition of N called the barycentric subdivision of N

(see [LW, Ch. Ill, Theorem 1.7]). For every cell Δd of N we fix a point w(Δd) e

(Δd — dΔd), where dΔd is the border of Δd (we assume dΔd = 0 if dimGdrf) = 0).

A chain Δd c Δd c . . . c Δd of cells of N determines a simplex Φ = (θ(Δd) V

ω(Δdi) V . . . V ω(Δdr) having ω(Δdo), ω(Δdi),.. . ,ω(Δdr) as vertices and included

in (Δdr — dΔd^), and every simplex of this simplicial decomposition has that form.

All the simplexes are assumed to be open.

From now on, we assume S ~ , Όel°(d) and Όel(d) to be provided with their

respective barycentric subdivisions; moreover, we assume all the simplexes of S ~

to be convex subsets of S ~ , the complex Del0(si) to be a simplicial subcomplex of

DelW), and π°: Def (d) —• S " to be a simplicial map.

NOTATIONS. Let φ be a simplex of S ~ . Then, by the construction of the

barycentric subdivision of S ~ , the simplex φ is contained in a unique facet of d

which we denote by F(φ). We write X(φ) = | F(φ) |. Note that X(φ) Φ {0}.

For a simplex Φ° of Del°(d), we write F(Φ°) = F(π°(Φ0)) and X(Φ°) =
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The proof of the Main Theorem is divided in 5 parts.

In Part 1, we give some preliminary results on the oriented system associated

with d.

In Part 2, to every simplex Φ of DelW) we associate a nonempty open subset

U(Φ) o fMW).

In Part 3, we prove the following assertions.

1) Let ω0, ωv . . . ,ωr be (r + 1) vertices of DelW). // Π r

i=0 U(ω) Φ 0 , then

ω0, ωv... ,ωr are the vertices of a simplex Φ ofΌeKd).

2) Let ω0, ύ)lf . . . ,ύ)r be the vertices of a simplex Φ of Del(d). Then

nlou(ωt) = u(Φ).
3) The set°U = W(ω) \ ω a vertex ofΏeKd)} is a covering of M{d).

Assertions 1), 2) and 3) show that °U = {U(ω) \ ω a vertex of DelW)} is a

covering of M(d) having Del(^) as nerve.

In Part 4, we prove the following assertions.

1) Let v be a vertex ofΓ(d). Then U(ω(B (v))) is contractible.

2) Let v be a vertex of Γ(d), and let Φ be a simplex of Del (d) contained in

S ' " 1 ^ ) . Write Φ = Φ° V ω(Bι(v)). Then U(Φ) is contractible.

3) Let Φ° be a simplex ofΌefid). Then U(Φ°) has the same homotopy type as

the universal cover M(dx{φθ)) of M(dx{φo^.

In particular, if dx is a ϋΓ(τr, 1) arrangement for every X €Ξ <β(d) different

from {0}, then U(Φ ) is contractible for every simplex Φ of Del id) (since

U(Φ°) has the same homotopy type as M(dxiφ0)) and X(Φ°) Φ {0}). This fact,

Assertion 2) of Part 3, and Assertions 1) and 2) of Part 4 show that every

nonempty intersection of elements of °U is contractible, thus, by [We], Όel(d) has

the same homotopy type as M(d) (since °U is a covering of M(d) having

DelW) as nerve).

In Part 5, we assume that there exists a n l G !£(d) different from {0} such

that dx is not a K(κ, 1) arrangement. Then we construct a new space M^ by

attaching cells to M(d) such that:

a) DelW) has the same homotopy type as MM,

b) there exists an integer n0 > 0 such that πno(M(d)) Φ πnQ(Mj.

Part 1.

Let Γ be an oriented graph, and let W be a subset of V(Γ). The oriented

subgraph of Γ generated by W is the oriented graph Θ having W as set of vertices

and {(v, w) e A(Γ) \ v, w e W) as set of arrows.

For a facet F of d, we denote by ΓF the oriented subgraph of Γ(d)
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generated by {C e V(Γ(d)) \ C has F as facet}. For a simplex Φ° of Ώel°(d), we

denote by Γφ0 the oriented subgraph of Γ(d) generated by {v e V(Γ(d)) \

Δ^iv) Ώ Φ°}.

A gallery of ^ is a sequence (Co, C x , . . . ,CΛ) of chambers of d such that C ^

and C{ are adjacent for / = 1, . . . ,n (here we assume C^ Φ Cf). Any positive

path f = a ι . . . an of /%rf) can be viewed as the gallery G = (Co, Cx, . . . ,CW),

where Cf = endCα^ . . .,#,) for i = 0, 1,. . . ,n. In particular, if / = aγ. . . an is a

positive minimal path of 7%rf) then G = (Co, C 1 ; . . . ,CM) is a minimal gallery

(i.e. a gallery of minimal length among the galleries of d from Co to Cn). From this

perspective, the following lemma is a well known result.

LEMMA 3.1. Let F be a facet of d, let C and D be two chambers having F as

facet, and let f be a positive minimal path of Γ(d) beginning at C and ending in D.

Then f is a path of ΓF.

LEMMA 3.2. Let Φ be a simplex of Del id). Then Γφo is a connected component

ofp~l(ΓF(φ0)).

Proof Fix a vertex v0 of Γφo. Let Θ denote the connected component of

P^iΓpiφoJ with v0 e V(Θ). Let us prove that V(Θ) = V(fφo).

Let w G V(Γφo). Choose a point a e Φ°, and write a — π°(a°). Since a e

^/-ι(^o) ^ 4/_i(w), by definition of DefW), there exists a path / = fl*1. . .aε

n

n of

/"W) beginning at v0, ending in w, and such that a ^ J/.^/oίt;,-)) for every i = 0,

1 , . . . ,n, where ^ = endCα'1. . .α O for ί = 0, 1,. . . ,Λ. We have a G τro(Φ°) Π

^ ^doC^ )) Q F(Φ°) Π p(vt), where /oC^ ) is the closure of p{υ^) in V, thus

F(Φ°) Π lόC^ ) # 0, and therefore /XΦ°) is a facet of p(^) for every i = 0, 1, . . . , # .

This implies that jθ(^ ) e F(/V(φθ)), thus p(/) is a path of ΓF(φθ)t and therefore /

is a path of Θ (since origin(/) = υ0 G F ( θ ) ) . It follows that end(/) = tc; e

Now, let w G V(θ). Choose a path / = α j 1 . . . α^n of θ beginning at #0 and

ending in Mλ Write ft = e n d i ^ 1 . . . a*') for ί = 0, 1, . . . ,w. We have π°(Φ°) Q

Δi^ipivi)) Π A^ipiVi+J) for t = 0, 1, . . . ,w — 1 (since p(/) is a path of

ΓpίφO)), thus, by the definition of Del (d), we successively have Φ Ξ̂ ^ ^ ^ f , ) for

i = 0, 1,...,«. In particular, Φ° c ^ . ^ M ; ) , namely, w e V(Γφo). Π
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Part 2.

For a simplex φ of S , we denote by K(φ) the cone over φ\

K(φ) = Ux\λ > 0

Note that K(φ) <Ξ F(0) for every simplex 0 of S ~ , and{ϋί(0) | φ a simplex of

S'"1} is a partition of V~ {Oh

Let S be a simplicial complex, and let φ and 0 be two simplexes of S. We set

φ > φ if φ ^ φ, where 0 is the closure of φ in 5. The relation " > " is a partial

order in the set of simplexes of S.

Recall that, for a chamber C of d and for a facet F, we denote by CF the

unique chamber of d\F\ containing C.

For a simplex 0 of S and for a chamber C of «sί, we write

R(φ, O = U CK(0) + /CFW).
0>0

We have i?(0, C) £ M(C).

LEMMA 3.3. Let φ be a simplex of S , and let C be a chamber of d. Then

J?(0, C) is an open subset of M(d).

Proof Pick z = (x + iy) e j?(0, C). Let 0 be the simplex of S / - 1 such that

x e # ( 0 ) . Then we have y e CF ( 0 ). If φf > ψ, then F ( 0 θ > F(φ), thus C F ( 0 O 3

CF(Φ). Furthermore, the subset U 0 ,> 0 i f (0O is an open cone. It follows that

Fm

T(z) = ( U K{ψ)) + iCF

is an open neighbourhood of z, and T(z) Q R(φ, C). CH

Recall that, for every chamber C of d,

q-\M(C)) = U MW,

this union is disjoint, and q sends M(v) homeomorphically onto M(v) = M(C) for

every υ ^ p~ (C) (see Lemma 2.7). For a simplex 0 of S " and for a vertex v of

ΓW), we denote by R(φ, υ) the lift of R(φ, p(v)) into M(v). By Lemma 3.3,

R(φy v) is an open subset of Γ(d).

Now, let us define f/(Φ), where Φ is a simplex of DelW).

If Φ is a simplex of DeΓW), then
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U(Φ) = U R(π°(Φ), v),
V

where the union is over all the vertices of Γφ.

Assume that Φ = ω(B (v)), where v is a vertex of Γ(d). Write C = p(v).

The set U(Φ) = U(ω(Bι(v))) is the lift of (V + iC) £ M(C) into M(v).

Assume that Φ has the form Φ = Φ° V ω(B (v)), where f is a vertex of

Γ(d) and Φ° is a simplex of Όel°(d) contained in S ~ (v). Write φ = π°(Φ°) and

C = p(v). Then C/(Φ) is the lift of

u

into M(v).

Part 3.

LEMMA 3.4. i) Let ω0, ωly...,ωr be (r + 1) vertices of Όel°(d). //

Π ̂ =0 [/(cOj) Φ 0 , ί/ien ω 0 , ωίt... , ω r are £/ιe vertices of a simplex Φ° ofY)e\°{d).

ii) L^ί ω 0 , c u x , . . . ,a>r be the vertices of a simplex Φ of Del W ) . Then

Proof, i) Let ω0, ω^ . . . ,ωr be ( r + 1) vertices of Όel°(d) such that

n ; = 0 U{ωt) Φ 0 . Write x{ = π°(ωt) for ί = 0, 1, . . . ,r. Pick ^ e Πr

i=0 U{ωt).

Write z — (x + ί'y) = ^(^). For every i = 0, 1 , . . . ,r, we choose a vertex #,- of /^.

such that e e Λ(x,-, f,), and we write 4̂,- = p(υ^).

Let 0 be the simplex of S / - 1 such that x e i ί (0) . By the definition of i?(^,

A,-), we have φ > x{ for 2 = 0, 1,. . .,r, thus x0, xv.. ,,xr are vertices of 0.

By the definition of R(xif A}), we have z/ e (A,-)/?̂ ) for every ί = 0, 1,. . . ,r,

thus n ^ o C ^ ) ^ Φ 0 , therefore (AO)F(Φ) = (A^FW = > . > = (Λr)F(φ) Let C be

the chamber of d having F(φ) as facet and such that CFiφ) — (AO)F(Φ)

 = . . . =

Let t ^ {0, 1, . . . ,r}. The facet F(xt) of ^ is common to Af and C (since

F(φ) > F(Xj)). We fix a positive minimal path /• of /%rf) beginning at A{ and en-

ding in C. By Lemma 3.1, /) is a path of ΓFiXi). We denote by / t the lift of ft into

ΓW) beginning at v{. By Lemma 3.2, / t is a path of Γω..

Write M; = end(/ 0 ). First, let us prove that w = end(/, ) for every i = 1 , . . . ,r.

By Lemma 2.6, we have * e R(x0, v0) Π i?(x,, ^ ) Π (Z(z;0, f̂ ) + z'V), therefore

x e Z(t;0, ^ ). Furthermore, .r e F(0) and Z(v0, v{) is a union of facets of d,

thus F(φ) c Z(t;0, t;,). Finally F(0) c C and Z(t;0, vj is an open subset of V,
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therefore C <Ξ Z(vQ, v{). Thus, by the construction of Z(v0, vt), there exists a ver-

tex u{ e Σ(# o ) ^ Σ ( ^ ) such that p(u) = C. This can happen only if ut =

end(/ 0) = end(/ f ) .

Now, consider the simplex Ψ° of Def UO such that Ψ° <Ξ z J ^ t e ) and

7Γ (?F ) — 0. Let us show that ω, is a vertex of ?P" for every i — 0, 1,. . . ,r.

Recall that / , is a path of Γω, thus e n d ( / , ) — ω ^ FCΓω.), therefore ω, ^

^ = 1 ( M ; ) . It follows that ωt is the unique vertex of Ψ° ^ Δ^^w) swoh that
Of \

π (ω ) = x{.

ii) Let ω0, ωlf. . .,ωr be the vertices of a simplex Φ of Del 0$). Write xi —

π°{ω) for z = 0, 1,.. .,r, and φ = π°(Φ°).

Let ^ e U[= o [/(ω,-). Write 2 = (x + zy) = q(e). For every i = 0, 1, . . . ,r,

we choose a vertex î  of Γω. such that ^ ^ ^ ( ^ , fj), and we write At — p(vt). Let

^ be the vertex of Γ{sέ) defined in the proof of i). Let us prove that w €= V(Γφo)

and e e ^ ( 0 , w). This shows that e e J7(Φ°).

Consider the simplex Ψ° defined in the proof of i), and write φ — π°(Ψ°).

The simplex φ is the (unique) simplex of S such that x €= K(φ). Since

ω0, (Dp.. . ,ω r are vertices of Ψ°, we have 3 ^ > Φ°, thus ^(Γ^o) ^ V(Γφ0), there-

fore M; e V(Γφo) (since M; e F ( f ^ ) ) .

In order to prove that e ^ ^ ( 0 , w), by Lemma 2.6, it suffices to show that

0, A0) n i?(0, c) n (z(v0, w) + iV),

where Ao — p(v0) and C = p(w). By the starting hypothesis, we have

2 ^ i?Cro> A ) The inequality φ > 0 and the inclusions x ^ K(φ) and z/ ^ CF(^)

= (A0)Fiφ) imply z <^ R(φ, C). Now, C £ Z ( % w) (since w G Σ(^ o ) Π Σ(w))

and F(φ) Q C, thus F(φ) Q Z(v0, w). Since (AO)F(Φ) = CFiφ), no hyperplane of d

which separates Ao and C contains F(φ), thus, by Lemma 2.5, ^ £= F(φ) Q

Z(v0, w). It follows that z = {x + iy) e (Z(v0, M;) + iV).

Now, let ^ e U(Φ°). We choose a vertex f of Γ φ 0 such that e e ^ ( 0 , f).

Then we have v ^ V(fω) and J?(0, f) ^ R(xn υ) for every z = 0, 1,. . . ,r, thus

' •

LEMMA 3.5. I ) Let υ and w be two vertices of Γ(d). If υΦw, then

U(ω(Bι(υ))) Π U(ω(Bι(w))) = 0 .

ii) Let Φ° be a simplex ofΌeΐ(d), and let υ be a vertex of Γ(d). // U(Φ°) Π

U(ω(Bι(v))) Φ 0, then Φ° Q ^Ήv).

iii) Let v be a vertex of Γ{d), and let Φ be a simplex of Del (d) such that

Φ° c S ' " 1 ^ ) . Write Φ = Φ°V ω(Bι(v)). Then U(Φ°) Π U(ω(Bι(v))) = t/(Φ).
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Proof, i ) Let v and w be two vertices of Γ(d). Assume U(ω(B (v))) Π

U(ω(Έι(w))) Φ 0, and let us prove that υ = w.

We have

q(U(ω(Bι(v)))) Π q(U(ω(Bι(w)))) = (V + ip(υ)) Π (V + ip(w)) Φ 0

=> p(v) n p(w) Φ 0

=> p(t ) =

Write C = p(v) = p(w). We know that

= U M(«),
M€i0"1(C)

this union is disjoint, U(ω(Bι(υ))) £ Af(ι ), and C/(ω(B'(u;))) ^ M(w). Thus

0 = w.

ii) Let v be a vertex of Γ(d), and let Φ° be a simplex of DeΓW). Assume

U(Φ°) Π t/(α>(B'(t;))) * 0 . Write φ = π°(Φ°). Pick an e G C/(Φ°) Π

[/(ω(B (#))), and write z = (r + iz/) = q(e). We choose a vertex w of /V> such

that e ^ R(φ, w). We write Λ = p(v) and B = p(w). Let 0 be the simplex of S ~

such that x e 7^(0).

We have y e 4 (since z <B (V + iA)) and 2/ e β F ( 0 ) (since z G i?(0, β ) ) ,

thus AF ( 0 ) Π BF{ψ) Φ 0 , therefore AF(Φ) = BF{φ). Let C be the chamber of d hav-

ing F(φ) as facet and such that CF(Φ) = AF{φ) = BF{φ). Let / be a positive minimal

path of Γ{d) beginning at A and ending in C, and let g be a positive minimal path

of Γ(d) beginning at B and ending in C. By the definition of R(φ, B), we have

φ > φ (since (x + iy) G i?(0, β ) and x G K(φ)), thus F(0) > F(0), therefore

F(φ) is a facet of C. On the other hand, we have Φ° ^ J^^zi;), thus F{Φ°) =

F(0) is a facet of p(^) — B. It follows that JB and C are vertices of ΓF(φ) and,

consequently, by Lemma 3.1, g is a path of ΓF(φ).

We denote by / the lift of / into Γ{d) beginning at v, and by g the lift of g

into Γ(d) beginning at w. First, let us prove that end (/) = endQ?). By Lemma

2.6, we have

z = (x + iy) G ( 7 + iA) Π i?(0, β) Π (Z(z;, w) + iV),

thus J: G Z(t;, w;). Furthermore, J: G F(φ) and Z(z;, M;) is a union of facets of d,

thus F(0) c Z(z;, w). Finally, F(φ) Q C and Z(v, w) is an open subset of V,

therefore C <Ξ Z(v, w). This implies, by the definition of Z(v, w), that there ex-

ists a vertex u G Σ ( f ) Π Σ(M^) such that p(w) = C. This can happen only if

end(/) = end(^) = u.

Now, let us prove that Φ° ^ Δ^iu) Q &ι~ι(v). The path g is a path of
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ΓF(φθ} — ΓFiφ), the vertex w is a vertex of Γφo, and Γφ0 is a connected component of

P~ (Γp^o)) (Lemma 3.2), thus g is a path of Γφo, and, consequently, u = end(^) G

V(Γφo). It follows, by the definition of Γφ0, that Φ° Q ^^(w). On the other hand,

« e Σ(tf), therefore, by the definition of S ~ (v), we have Δ^iu) <Ξ S ~ (#).

iii) Let υ be a vertex of Γ(d), and let Φ° be a simplex of DeΓW) such that

Φ° c S'"1^). We write Φ = Φ° V ω(Bι(v)) and 0 = π°(Φ°).

Let e G £/(φ") Π U(ω(Bι(v))). Pick a vertex w of / > such that e G J?(0, w).

Write Λ = p(^) and B = p(w). We have

e G t7(w(B'(t;))) Π R(φ, w)

( F + ^ ) Π i?(0, β) Π (Z(t;, «;) + iV) (Lemma 2.6)

( ( Π ^ / ί ( 0 ) ) + t4) Π i?(0, β) ίΊ (Z(t;, w) + iV)

(indeed, if (x + iy) e i?(0, 5), then r e Π φ>φK(ψ))

e e f/(φ) Π i?(0, β) (Lemma 2.6)

Now, let ^ e ί/(Φ). Write 2 = (x + ίy) = ?W and A = p(v). Let φ be the

simplex of S such that x €= K(φ), and let J5 be the chamber of ^ having

F(φ) as facet and such that AFiφ) — BF{φ). Pick a positive minimal path / of

Γ(d) beginning at A and ending in B, and denote by / the lift of / into

Γ{d) beginning at v. Set w = end(/). Let us prove that w ^ V(Γφ0) and

g e j?(0, w), This shows that g e C/(Φ°), and, consequently, e e ί/(φ°) Π

C/(ω(B'(t;))) (we obviously have ^ e C/(φ) c £/(ω(Bz(t;))).

Since 0 ^ 0 and 0 Q ^ ^ ^ B ) , we have φ £ Δ^B). Thus there exists a

simplex 0/O £ Δ^iw) such that π°(φ/0) = 0. Moreover, ^ . ^ M ; ) £ S/-I(t;) (since

M; ̂  Σ(f)) and the restriction of π° to S ~ (f) is an isomorphism S ~ (v) —• S " ,

therefore 0/O = Φ°. It follows that w G K ( / » .

In order to prove that e e J?(0, M;), by Lemma 3.6, it suffices to show that

z e ( 7 + ιA) Π i?(0, β) Π (Z(υ, w) + iV).

By the starting hypothesis, we have z G (V+ iA) and 2 = Or + iy) ^ OKX0) +

ί'βF(0)) £ i?(0, β). Now, w G Σ(t ) Π Σ(M ), thus C G Z(ϋ, W). Moreover,

F(φ) c C, therefore F(0) ^ Z(f, w). Finally, since AF(Φ) = -BF(0), no hyperplane

of £ί/ containing F(0) separates A and 5, thus, by Lemma 2.5, x G F(0) c

Z(t;, w), therefore 2 G (Z(t;, M;) + ί'V). Π

LEMMA 3.6. The set % — {U(ω) \ ω a vertex of DelW)} is a covering of
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Proof. Let e G M(d). Write z = (x + iy) = #0).

a : x = 0.

Then there exists a chamber C of d such that y ^ C. We have £ = Cr + iy)

7 + i θ £ M(O. By Lemma 2.7,

q'ι(M(C)) = U

~and this union is disjoint, so there exists a unique vertex v ^ p~ (C) such that
~\e G q~\V+ iC) Π

Case b : x Φ 0.

Let φ be the simplex of S ~ such that x G K(φ). Let C be the chamber of d

having F(φ) as facet and such that y e C F W (recall that X(0) £ F(0)). We have

z= (x+ iy) €Ξ (ϋΓ(0) + iCF W) £ i?(0, C) .c M(C). By Lemma 2.7,

ϊ^αifίo) = u MW,

and this union is disjoint, so there exists a vertex υ ̂  p~ (C) such that e ^

q~ι{R(φ, O) Π Af(t ) = .ff(0, t;). We have φ c 4 ^ ( 0 , thus there exists a sim-

plex Φ° £ ^ i ί t ; ) such that 7Γ°(Φ°) = 0. We have e G ̂ (0 , v) and 0 G (fφ 0),

therefore e G U(Φ°). By Lemma 3.4, 0 e [/(ω), where ω is any vertex of Φ°. Π

Part 4.

LEMMA 3.7. i ) Let v be a vertex of Γ{d). Then U(ω(Bι(v))) is contractible.

ii) Let v be a vertex of Γ(d), and let Φ° be a simplex ofΌe\°(d) contained in

Sl~l(v). Write Φ= Φ° V ω(Bl(v)). Then U(Φ) is contractible.

Proof, i) Write A = p(v). Then

q(U(ω(Bι(v))) = (V + iA)

is clearly contractible, thus the lift U(ω(Bι(υ))) of q(U(ω(Bι(v)))) into M(v) is

also contractible.

ii) Write A = p(v) and φ = π°(Φ°). Then

q(U(Φ)) = ( U K(φ)) + iA
XΦ>Φ '

is clearly contractible, thus the lift U(Φ) of q(U(Φ)) into M(v) is also contract!-
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ble. D

LEMMA 3.8. Let Φ° be a simplex of Def (d). Then U(Φ°) is homotopically

equivalent to ΛfWx(φθ)).

Following Lemmas 3.9 and 3.10 are preliminary results to the proof of Lem-

ma 3.8.

For a simplex φ of S , we write

W(φ) = U R(φ, C),
c

where the union is over all the chambers C of d having F(φ) as facet (i.e. over

all the vertices of V(ΓF(φ))). The set W(φ) is an open subset of M(d). We denote

by e°φ: W(φ) -> M(d) the inclusion map of W(φ) into M(d), by c\:M(4)-*

M(dx(φ)) the inclusion map of M(d) into M(dx(φ)), and by cφ = cφ ° cφ : W(φ) —*

M(dx(φ)) the inclusion map of W(φ) into M{dx{φ)).

LEMMA 3.9. Let φ be a simplex of S . Then cφ : W(φ) —> M(dXiφ)) is a homo-

topy equivalence.

Proof We have to define a continuous family (^;)o<f<i •' M(dx(φ)) —•

M(dx(φ)) of maps such that:

a) ho(z) = z for all z e M(rfx(φ)),

b) hλ(z) e W(φ) for all 2 e M(dx{φ)),

c) A,(2) e ff(0) for all z e fF(0) and all f e [ 0 , l ] .

We set

K= U

and we fix a point x0 ^ 0. Since iΓ is an open cone of V and x0 ^ iί, there exists

a continuous map Λ : K—• [0, + 00 [ s u c h that (x + /ί(x)x0)
 G ^ f o r all Λ: ̂  V.

For every z = (x + iy) e M(dX{φ)) and for every ί e [0, 1], we set

*,(*) = (x+ tλ(x)x0) +iy.

The family (^/)0<i<i M{dx{φ)) —• K c is a continuous family of maps, and

ho(z) = 2: for all z ^ M(dx{φ)). It remains to prove:
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1) ht(z) e M(dx(φ)) for all z e M(dx(φ)) and all ί e [0, 1],

2) A^*) e ff(0) for all z e M(dx(φ)),

3) *,(*) e W(0) for all 2 e ΪF(0) and all ί e [0, 1].

1) Let z = Or + zy) G M(dX{φ)). Suppose that there exists a ί ^ [0, 1] such

that ht(z) £M(dx(φ)). Then there exists a hyperplane H & dx(φ) such that

A,(z) e Hc (i.e. Or + WOrW ^ H and y^ W. Since x0 ^ φ ^ H and H is a

linear space, we have x ^ H and y ^ H, thus £ ^ i / c . This contradicts the fact

2) Let z= (x+ iy) e M(dx(φ)). We have (x + /i(^)x0)
 e ^ so there exists

a simplex 0 of S ~ such that φ > 0 and Cr + >ί(x)^0) ^ iί(0).

Let G be the facet of dx(φ) with φ ^ G. Let us prove that | G | =

I F(0) I (recall that F(ψ) is a facet of ^ but not necessarily of dx(φ)). If a hyper-

plane H ^ d contains F(ψ), then /f 3 X(0) (since φ > φ), thus H is a hyper-

plane of ^(0) containing 0, therefore H Ξ> G. This shows that | G | £Ξ | F(0) |. If a

hyperplane H e ^ x ( φ ) contains G, then H ^ d and // 3 F(0). This shows that

Now, since (x + λ(x)x0) + iy ^ M(dx{φ)) and (x + /ί(x)z0) e G, there ex-

ists a chamber D of ^ | G | = dlFiψ)l such that y ^ D. Let C be the chamber of d

having F(φ) as facet and such that D = CF ( 0 ). The inequality φ ^ φ implies

F(φ) > F(φ), thus C has also F(φ) as facet. It follows that hλ(z)

, C) c

3) Let z= (x+ iy) e ff(0). There are a chamber C e F(/V(0)) and a

simplex 0 > 0 of S " such that 2 G (K(φ) + iCFiφ)). Since x0 ^ φ Q

K(φ) (where K(φ) is the closure of K{φ) in F) and K(φ) is a convex cone, we

have Or + tλ(x)x0) e X(0), thus A^z) = (Or + //ίθr).ro) + /y) e (K(φ) +

iCF(φ)) £ 17(0) for every f e [0, 1]. D

Let Φ° be a simplex of Del0 W). We denote by qφo: U(Φ°) -+ M(d) the res-

triction of q to U(Φ°). Note that #φo can be viewed as a map qφo: £/(Φ°) —•

Φ°)) onto

LEMMA 3.10. Lei Φ° 6̂  α siwpto o/ Όe\°(d). Then qφo: ί/(Φ°)

(Φ )) is α
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Proof. Write φ = π°(Φ°). In order to prove Lemma 3.10, it suffices to show,

for every chamber A of d having F(φ) as facet, that

qφi(R(φ9A)) = U R(φ, υ),
V

where the union is over all the vertices υ of Pφθ(A); indeed, this union is disjoint

(Lemma 2.7), the sets R(φ> v) are copies of i?(0, A), the map qφo is surjective,

and {R(φ, A)\A& V(ΓF{φ))} is a covering of W(φ) by open subsets.

Fix A G V(ΓF{φ)), and pick e G q~o(R(φy A)). By the definition of U(Φ°),

there exists a vertex w of Γφo such that e G i?(0, w). On the other hand, by Lem-

ma 2.7,

^i(i?(0, A)) c q-\R(φ, A)) = U i?(0, ύ),
v&ρ~ι(A)

thus there exists a vertex i G p " 04) such that 0 G i?(0, ι>). Write z — (x + «/)

= #(#) and 5 = p(w). Let 0 be the simplex of S ~ such that x G if(0). Since

^ G /?(0, A) Π i?(0, £ ) , we have y G AF(φ) Π J3F ( 0 ) f thus i4F(0) = J5F(0). Let C be

the chamber of d having F(φ) as facet and such that CF{φ) = i4F ( 0 ) = BF{φ).

Let / be a positive minimal path of Γ{d) beginning at A and ending in C, and

let g be a positive minimal path of Γ{d) beginning at B and ending in C. The

facet F(φ) is common to A (since A G VCΓF(0)), to 5 (since M; G Vί^o)), and to

C (since F(φ) ^ F(φ)), so, by Lemma 3.1, the paths/and g are paths of ΓF{φ).

Let/ denote the lift of/into Γ(d) beginning at v, and let g denote the lift of

g into Γ(d) beginning at w. Let us prove that end(/) = end(^). This shows that

v G pφQ(A), thus ends the proof of Lemma 3.10; indeed, gf~ is a path of ΓF(Φ),

the oriented graph Γφo is a connected component of p (ΓF{φ)) (Lemma 3.2), and w

is a path of F and consequently υ end(gf~ )G V(Γφθ), thus ^/~ is a path of -Fφ<>, and, consequently, υ — end(gf~ )

By Lemma 2.6,

A) Π i?(0, β) Π (Z(t;, w) + iV),

thus x G Z(v, w). Moreover, Z(v, w) is a union of facets of d and .r G F(φ),

therefore F(φ) Q Z(v, w). Finally Z(v, w), is an open subset of Fand F(φ) Q C,

thus C £Ξ Z(t;, M )̂. By the definition of Z(v, w), there exists a vertex

u & Σ(v) Π Σ(w) such that p(«) — C. This can happen only if u = end(/) =

D

Proof of Lemma 3.8. Let Φ° be a simplex of Def W). Write 0 = π°(Φ°) and

Z = Z(Φ°). We denote by qx: M(dx) -> M(dx) the universal cover of M(dx).

Since q is the universal cover of M(d) and ^ is a cover, there exists a map
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fφo: M(d) —• M(dx) such that the following diagram commutes.

Λ

Midx)

1x

Q

Mid) M{slx)

We denote by fΦo: U(Φ°) -^ Mid) the inclusion map of U(Φ°) into Mid). Then

the following diagram commutes.

UiΦ0) -> Mid)

Wiφ) Mid)

We write ΐφo = cφo ° ιφo. By the above considerations, the following diagram com-

mutes.

UiΦ") Midx)

Wiφ) Midx)

The map cφ is a homotopy equivalence (Lemma 3.9), qφo is a cover (Lemma 3.10),

and qx is the universal cover of Midx), thus qφo is the universal cover of

Wiφ) and ΐφo is a homotopy equivalence. •

PROPOSITION 3.11. Let d be a real and essential arrangement of hyperplanes.

Assume dx to be a Kiπ, 1) arrangement for every X e £id) different from {0}.
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Then Όe\(d) has the same homotopy type as the universal cover M(d) ofM(d).

Proof. Lemmas 3.4, 3.5 and 3.6 show that °li = {U(ω) \ ω a vertex of

Όel(d)} is a covering of M(d) having Όel(d) as nerve. Lemmas 3.7 and 3.8 and

the hypothesis "dx is a K(π, 1) arrangement for every X ^ !£(d) different from

{0}" show that every nonempty intersection of elements of °ίί is contractible. It

follows, by [We], that Όe\(d) is homotopically equivalent to M(d). D

Part 5.

PROPOSITION 3.12. Let d be a real and essential arrangement of hyperplanes.

Assume that there exists an X ^ ί£(d) different from {0} such that dx is not a

K(π, 1) arrangement Then Όel(d) is not homotopically equivalent to the universal

cover M(d) ofM(d).

Proof We are going to construct a space MTO by attaching cells to M(d), and

a covering Ίl^ = {U^iω) \ω a vertex of DelW)} of M ^ by open subsets,

having DelW) as nerve, and such that every nonempty intersection of elements of

%«> is contractible. By [We], the space MTO will be homotopically equivalent to

DelW). Afterwards, we will prove that there exists an integer n0 > 0 such that

the inclusion map M(d) —* M^ determines a surjective morphism πnQ(M(d)) —*

τ r Λ o ( M J which is not injective. This shows that πno(De\(d)) — πno(M J Φ

πn[(M(d)).

Choose an X<^!£(d) different from {0} such that dx is not a K(π, 1)

arrangement. Pick a simplex Φ° of Όel°(d) such that X(Φ°) = X. By Lemma 3.8,

U(Φ ) has the same homotopy type as M(dx), so is not contractible.

It follows that there exists an integer n0 > 0 such that:

l ) πn(U(Φ°)) = {0} for every simplex Φ° of Def (d) and every n e {0, 1,. . .,

Wo-1},

li) there exists a simplex Φ° of Def W) such that πnQ(U(Φ°)) Φ ίθ).

Recall that, if Φ is a simplex of DelW) not contained in Όe\°(d)y then U(Φ) is

contractible (Lemma 3.7).

We set M W Q _! = M(d), and ί/Λo_i(Φ) = U(Φ) for every simplex Φ of

DelW).
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First, we are going to define, by induction on k > n0,

a) a space Mk,

b) an open subspace Uk(Φ) of Mk for every simplex Φ of .

such that:

1) Mk_λ c Mk,

2) Uk_x(Φ) = Uk(Φ) ίΊ iβΓΛ_1 for every simplex Φ of DelCrf),

3) the inclusion map Mk_ι~*Mk induces an isomorphism of groups πn{Mk_^)-^

πn{Mk) for every n Ξ {0, 1,.. .,& — 1}, and induces a surjective morphism

4) πn(Uk(Φ)) = {0} for every simplex Φ of DelGaO and every » e { 0 , l , . . .,£},

5) let ω0, α>i,. . . ,ω r be ( r + 1) vertices of Όel(J), if Πj= oί/Λ(ω ; ) =£ 0 , then

ύ)0, o)lf.. ,,<Dr are the vertices, of a simplex Φ of DelW),

6) let α)0, α^, . . .,ωr be the vertices of a simplex Φ of DelW) then Πy= ot/Λ(ω ; ) =

7) Wk(Φ) I O) a vertex of DelCrf)} is a covering of Mk.

Assume MΛ_X to be defined. Let Φ be a simplex of DelW) such that

7ΓA.(ί/Λ_1(Φ)) T^ ίθ}. We fix a base point eφ €Ξ Uk_ι(Φ). We choose a generator

system (7,}^^ of πr(Uk_1(Φ), ^ φ ) , and, for every z ^ /φ, we fix a representative

map/i : S*—> U^iΦ) for 7,. We write /φ = 0 if nk{Uk_^)) = {0}. We set

/ = U /#,
Φ

where the union is over all the simplexes Φ of DelW). The space MA is obtained

by attaching a (k + l)-cell £,- to Mk_λ by means of the map f{ : S -^ Mk_1

defined on the boundary of E( for every z' ^ /. In other words, for every i €= /, we

fix a copy B +1 = {x e RA+11 || # || < 1} of B*+1. Then

where ~ is the equivalence relation on M k_111(11 / e / B z
 + ) defined by

/•Cr) for every i ^ I and for every x ^ 9Bj- = S . We denote by gt : Bj -

the natural map, and by E{ the image of g{ (where i e / ) . We have ^ |aBA+i =

Let Φ be a simplex of DelW). The set Uk(Φ) is defined by:

a) Uk(Φ) Π Mk_x= U^iΦ),

b) let i e /, if 9£. c U^iΦ), then £ , c [7A(Φ),

c) let z e /, if 3£\ £ U^iΦ), then

C/.(Φ) Π £f- = eA{λx I 0 < ^ <
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Let i e /, and let Φ be a simplex of DelUO. Then g{(0) e Uk{Φ) if and only if

dEt Q Uk_λ{Φ), and g^λx) e ί/A(φ) if and only if g,(x) = /,(*) €= C/^ίΦ),

where Λ e [0, 1] and x e S7"1.

Now, let us prove Properties 1) to 7).

1) and 2) are obvious.

3) The space Mk is obtained by attaching (k + 1)-cells to Mk_υ so πn{Mk,

Mk-ι) — {0} for every n e {0, l,...,/c}, thus the inclusion map Mk_1—*Mk

induces a group isomorphism πn(Mk_-) —• πn(Mk) for every w ^ {0, 1,...,Λ; — 1),

and induces a surjective morphism πk(Mk_1) —* πk(Mk).

4) Let Φ be a simplex of DelGtf). We denote by Uk(Φ) the subset of Mk de-

fined by:

a) ί/;(Φ) Π I H = ί/.-^Φ),

b) let i e /, if 9£. c C/^^Φ), then ^ £ Uk(Φ),

c) let i e /, if dEf S U^iΦ), then ^ Π ί/^Φ) = 0 , where £,- is the

interior of E{.

The set Uk(Φ) is a strong deformation retract of Uk(Φ) and is obtained by

attaching (k + 1)-cells to U^iΦ). If follows that the inclusion map U^iΦ) —*

Uk(Φ) induces a group isomorphism TC^U^^Φ)) —* πn(Uk(Φ)) for every

n^ {0, 1,...,&— 1}, and induces a surjective morphism <̂  : πk(Uk_1(Φ)) —»

πk(Uk{Φ)). A first consequence is, by the inductive hypothesis, that πn(Uk(Φ)) —

πn(Όk_x(Φ)) = {0} for every ^ e (0, 1,...,Λ — 1). On the other hand, by the

construction of Mk, every generator γ{ of πk(Uk_1(Φ), eφ) is sent by ξk onto 0,

thus the image of ξk is {0} = πk(Uk(Φ)).

5) Let ω0, ω ^ . . .,ω^ be (r + 1) vertices of DelCrf) such that Πj=ot/A(α>; ) Φ 0.

Pick an ̂  e Πj= 0[/Λ(ω ; ).

Cαs^ a: ^ €= Mk_v Then ^ ^ ^ ^ o ^ - i ^ P ' thus, by the inductive hypothesis,

ω0, ω ^ . . ,,a>r are the vertices of a simplex Φ of DelW).

Case b: There exists an / e / such that ^ e £ . and £ = ^^(O) . Then, by the

construction of Uk(ωJ), we have dEf G U^iω) for every = 0, 1,.. .,r, there-

fore Π^ot/^.iCcϋy) = £ 0 . It follows, by the inductive hypothesis, that

ω0, α^, . . ,,ωr are the vertices of a simplex Φ of DelW).

Case c: There exists an i ^ I such that e ^ £ ; and 0 Φ g~ (0). There are

an x G S and a Λ ̂  ]0, 1] such that ^ = g{(λx). By the construction of

J7Λ(ωy), we have ^ ( x ) = /j Cr) ^ U^iω) for every = 0, l , . . . , r , therefore
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Π/=o UkSωj) =£ 0 It follows, by the inductive hypothesis, that ω0, ωlf . . . ,ωr

are the vertices of a simplex Φ of DelCrf).

6) Let ω0, ωlf.. . ,ω r be the vertices of a simplex Φ of DelW).

a) (n;_oc/Λ(α>,)) n kk_γ = n;=0£/,_>;> = u^io) = uk(Φ) n Mk_v

b) let i G / such that ftE, £ U^iωj) for every = 0, 1,. . . ,r. Then 5^- £

Π y ^ ί / ^ ^ ω p = [ / ^ ( Φ ) , and, consequently,

(n;=oί/,(ω; )) n £, - £, = ί/,(Φ) n E<.

c) Let ί e / such that there exists a e {0, 1,. . . ,r} with 9^- 2 U^iω,).

then 9 ^ 2 Uk_λ(Φ), and, consequently,

(Π;= ot/,(ω ; )) Π £ , = ft(Ux| 0 < λ < 1 and x e Z"1 ( n ;

" 1 ( ^0 < ^ < 1 and x e /

= Uk(Φ) Π £,.

a), b) and c) show that nr

j=oUk(a)j) = Uk(Φ).

7) Let e ^ Mk. lί e ^ Mk_v then, by the inductive hypothesis, there exists a

vertex ω of Όel(d) such that £ e U^iω) Q Uk(ω). Assume now that there

exists an i e / such that e ^ £",-. Let Φ denote the simplex of Del(^) such that

ί G /φ. By the construction of MΛ, we have 9.E, Q U^iΦ), and, by the construc-

tion of Uk(Φ), we have e ^ E{ Q Uk(Φ). By Property 6), e e Uk(ω), where ω is

any vertex of Φ.

Now , we set:

a) M^ = lim Mfc

b) t/ooίΦ) = lim t/A(Φ) for every simplex of DelW).

We have the following properties.

1) πn(Mj = πn(M(d)) for every n G {0, 1, . . . ,w0 - 1}, and πn(Mj =

πn(Mn) for every n > n0.

2) π^U^iΦ)) = {0} for every w > 0 and for every simplex Φ of DelCrf).

3) Let ω0, ω^ . . . ,ωr be ( r + 1) vertices of DelUO. If Π^oί/^CωP ^ 0,

then α>0, ω x , . . .,ωr are the vertices of a simplex Φ of DelW).

4) Let α)0, cϋi, . . . ,ω r be the vertices of a simplex Φ of Όel(d). Then

n .oίUω,) - UJΦ).
5) ^ = {[/^(ω) \ω a vertex of DelW)} is a covering of M^ by open

subsets.



REAL ARRANGEMENT OF HYPERPLANES 6 5

Properties 3), 4) and 5) show that <?/«, is a covering of M M having

as nerve. Properties 2) and 4) show that any nonempty intersection of

elements of %«, is contractible. It follows, by [We], that Όel(d) is homotopically

equivalent to M^.

Since π^iMj) — πn(Mn^) and the inclusion map MW) ^ MWo induces a

surjective morphism ζnQ: πnQ(M(sd)) —* 7ΓWo(MMo), in order to prove that DelW) is

not homotopically equivalent to M(d), it suffices to show that ξno is not injective.

Choose a simplex Φ° of Del°W) such that πnQ(U(Φ°)) Φ {0}. Let fφo\

U(Φ°) -* M(d) be the inclusion map of U(Φ°) into MW), and let v M(d) ->

Misέχ^O)) be the map defined in the proof of Lemma 3.8. Then cφo = rφo ° £φo is a

homotopy equivalence (see the proof of Lemma 3.8), thus (cφo)% : πnQ(U(Φ°)) -+

πnQ(M{d)) is injective. Furthermore, by construction of MHQ, the morphism ζHo °

(fφ0)* : πno(U(Φ°)) — πWo(MWo) sends τrWo(C/(Φ°)) onto {0}. This shows that ξHo is

not injective. •
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