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ASYMPTOTIC DEPENDENCE OF MOVING AVERAGE TYPE

SELF-SIMILAR STABLE RANDOM FIELDS*

PIOTR S. KOKOSZKA AND MURAD S. TAQQU

1. Introduction and main results

As non-Gaussian stable stochastic processes have infinite second moments,

one cannot use the covariance function to describe their dependence structure. We

focus instead on the function

(1.1) r(u) = r(X, u θl9 θ2)

= E exptilθ^iu) + Θ2X(O)]}

- E expliίθ^iu)} E exp{i[θ2X(u)}, u^R1; θlf θ2 e R1,

which is defined for any stationary process {X(u) , u ^ R }.

This paper investigates the asymptotic behavior, as u —• oo , of r(u) for a

large class of self-similar stable processes obtained as 'projections' of random

fields. The function r(u) is the difference between the characteristic function of

the vector (X(u), X(0)) and the product of the characteristic functions of

X(u) and X(0); it vanishes if and only if X(u) and X(0) are independent. If

{X(u)} is a Gaussian process, then r(u) is asymptotically proportional to the

covariance, provided the latter tends to zero, as u—•* oo. (See Levy and Taqqu [6],

Theorem 1.1.)

The present section contains definitions, statements of the main results, and

some comments. The proofs are given in Section 2.

A random field {X(t), t ^ RM} is called SaS (symmetric α-stable) if any

linear combination Σ y = i θjXitj) has a symmetric stable distribution. We say that

{X(i), t ^ R } is self-similar with exponent H if

(1.2) Vc > 0 {X(ct), f e Rw} = {cHX(t), t e Rw},

and has stationary increments if
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8 6 PIOTR S. KOKOSZKA AND MURAD S. TAQQU

(1.3) V/iεR* {X(t+h) -X(h), ί e R*} = iX(t) -X(fi), ί e R " ) .

d

In (1.2) and (1.3) " = " denotes the equality of finite dimensional distributions.

Any field satisfying both (1.2) and (1.3) is called H-sssi.

A necessary and sufficient condition for the existence of a non-trivial SaS

random field is

(a, H) (Ξ {0 < H < I, 0 < a < 2} U {θ < H < ̂ , 0 < a < 2]

(see Takenaka [8], Proposition 1).

The Chentsov type random fields introduced by Takenaka (see Takenaka [8])

are examples of SaS H-sssi random fields with 0 < H < 1 / α , 0 < a < 2. Their

dependence structure is described in Kokoszka and Taqqu [3]. The fields we study

here have parameters a and H in the first region, namely H ̂  (0, 1), a £= (0, 2].

Let p be any norm on R and M a SaS random measure on R with Lebesgue

measure as its control measure, i.e. for any measurable function / : Rw —* R

satisfying / | fix) Γ dx < °°,
JRn

Eexp{if Jix)Midx)} = expj- f n \ fix) \adx].

Consider the random field

(1.4) X(t) = f [p(x - t)"-a/" - p(x)H'a/n]M(dx), t e R".

The following proposition shows that the field (1.4) is well-defined.

PROPOSITION 1.1. Letp be a norm σn R". Then for any n > 1, H e (0, 1), a e

(0, 2],

(1.5) VίeR" f \p(χ-tf'n/a-p(xf-n/a\adx<oo.

Using the homogeneity of p and the shift invariance of the Lebesgue measure

one can easily check that the field (1.4) is H-sssi.

Random fields (1.4) with p being the Euclidean norm were introduced in

Takenaka [8]. By allowing p to be any norm we obtain a much richer family of

fields (1.4). We show, in Kokoszka and Taqqu [2] that there is a one-to-one

correspondence between norms p and the finite-dimensional distributions of fields

(1.4). Thus, the set of all fields (1.4) has the cardinality of the continuum. Because
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we make no special assumptions on p in this paper, our result applies to all fields

of the form (1.4).

Now, for any vector e e RM, define the stationary 'projection' process

(1.6) Xe(u) = X«u + l)e) ~ X(ue)

= fn [p(x - (u + l)e)H~n/a - p(x - ue)H~n/a]M(dx).

Our main result shows that the function r(u) for the process Xe is asymptotically

proportional, as u—•> oo, to the power function u

THEOREM 1.1. For the process {Xe(u), u ^ R } defined in (1.6) and any n> 1,

•7) lim ei ' lf 2 = - e ι 2 \ φ(y θlt Θ2)dy,

where

C(ΘV Θ2) - (i ex r + 1 Θ2 n fRn i pix - e)H-n/a - p(xf-n/a r ^ ;

φ(y θu θ2) = \ θj(y) + θ2g(y) \a - \ θj{y) \a - \ θjiy) \a

g(y) - [H— ^;)pLe(y)p(y)H~n/a~ι, f(y) = g(y — e),

and where

(1.8) P'_M = lim ̂  ~ Se] ~ PW
S>0

is the directional derivative of p.

Theorem 1.1 is proven in Section 2.

Remarks:

• The limit in (1.8) exists because since p is a norm, the function φ(s) — p(y — se),

s e R is convex and hence has one-sided derivatives at every 5 ^ R .

• For a number of norms p one can compute the directional derivative pLe(y). In

what follows we assume y Φ 0, as the definition of g does not admit y = 0.

If p is the Euclidean norm || || then p^e(y) = — \\y\\~ (y, e), where

( , ) denotes the Euclidean scalar product. More generally, if p is of the form
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(1.9) p(y) = ( / I (y, s) | r σ(ds))1/r, r>\,

where Sn = {s €= RM: || s || = 1} and σ is a positive finite Borel measure on Sn,

then

I I (e, s) I σ(ds) — I (e, s)$\gn(y, s)σ(ds), if r = 1
, , v J{(y,s)=0} J{(y,s)ΦO)

p1 r(y) I (e,s) I (y,s) Γ X sign(y, s)σ(ds), if r > 1.
1 J s w

The norms ^ admitting representation (1.9) are characterized in Kokoszka and

Taqqu [2]. They generate random fields (1.4) which can be considered exten-

sions to the parameter space Rw of the fractional Levy motion (see Kokoszka

and Taqqu [2] for the details).

Theorem 1.1 implies that r(u) tends to zero, as M ^ O O , a fact that can also be

deduced from Lemma 6.1 of Kokoszka and Taqqu [2]. That lemma states that if

χ(t) = Γ k(t-χ)M(dx),t£ΞRn,

JΈtn

with the function k satisfying / \ k(x) \*dx < °°, then

E exp i[θxX(t) + Θ2X(O)] - E exp iθxX(t) E exp iθ2X(0) — 0,

as || ί || -> 0.

If a = 2, the rate of decay of r(u) is u " . This type of behavior in the Gaus-

sian case a = 2 is well known. One can derive it using the following argument:

The process Xe is the one-step-increment process of an H-sssi zero mean Gaus-

sian process

= jΓ [p(x - ue)"-"/2 - p(x)"-n/2] M{dx)

which is necessarily proportional to the fractional Brownian motion BH whose

covariances are

( 1 . 1 0 ) E [ B H ( u d B H ( u J ] = 2 " { | u x \ + \ u 2 \ - \ u γ - u 2 \ } .

Therefore, the process Xe has the covariance function
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E[Xe(u)Xe(O)] = -g {| M + 11 - 2\u\ + | w — 1 | },

which behaves like cH(2H — l)u , as w—• oo. As mentioned above, for any

Gaussian process, r(u) is proportional to the covariance function.

' Our result is valid for n > 1. If n = 1, then p(x) = \ x\p(l), so Xe is prop-

ortional to the one-step-increment process of the well-balanced linear fractional

Levy motion

r/ \ Γ rl \H-l/a I ι/f-1/αiw/, \
L i u ) = I [\χ—u\ — \ x \ \ M i d x ) .

J—oo

For the process L, riu) is asymptotic to

uaH~a, if either 0 < a < 1, 0 < H < 1, or

1 < α < 2 , 1 - [aia- l ) ] ~ 1 < / / < 1 and i / ^ 1/α;

M^"""1"1, i f l < α < 2 a n d θ < ^ < l - [a(a - I ) ] " 1

(see Astrauskas, Levy and Taqqu [1]).

Such a "phase transition" of the function r(u) appears only in the one-

dimensional case n = 1. Notice that the exponent H — n/a is negative for any

H ^ (0, 1) and a ̂  (0, 2] when n > 1, whereas it is positive when n = 1 and

α#> 1.

As mentioned above, in many cases, different norms p generate fields (1.4) with

different finite dimensional distributions. Although Theorem 1.1 shows that the

two-dimensional distributions of processes (1.6) are asymptotically proportional,

they need not be proportional. Consider two processes (1.6) with parameters

(nif po βj), i = 1, 2. We list below three typical cases in which

W €= R1 (X€i(0), Xei(D) Φ c(Xβ2(0), X

1. nx = n29p1 = p2, eλ Φ e2

(see Kokoszka and Taqqu [2], Example 3.2).

2. nγ = n2J p x Φ p 2 , eλ = e2

(see Kokoszka and Taqqu [2], Example 3.3).

3. nx Φ n2. In this case one cannot, of course, set p1 = p2, eλ = e2, but one

can take px and p2 to be equal to the Euclidean norms in RMl and R"2, re-

spectively, and choose eγ and e2 so that all their coordinates are equal to 1.
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(See Samorodnitsky and Taqqu [7], Thm. 3.1.)

• The function r(u) can be used to distinguish various SaS H-sssi fields and

processes. While all symmetric Gaussian H-sssi processes are proportional to

the fractional Brownian motion BH defined by (1.10), there are many different

non-Gaussian stable H-sssi processes, and it is often not easy to show that two

such processes are not proportional. One way to show it is by using r(u). For

example, Theorem 1.1 shows no field (1.4) with a < 2 is a Chentsov random

field in the sense of Takenaka [8]. Indeed, if {Y(t), t e Rw} denotes the latter

field, then, for any e ^ Rn, the function r(u) for the process

Y((u + l)e)~ Y(ue), u e R , behaves asymptotically like ua ~2 (see Kokoszka

and Taqqu [3], Theorem 2.1). Other applications of this type are presented in

Kokoszka and Taqqu [2] and Kokoszka and Taqqu [3].

• The asymptotic form of r(u) for ARMA time series with SaS noises can be

found in Kokoszka and Taqqu [4], where we also suggest an interpretation of

the function r(u).

2. The proofs

Throughout this section we shall use the following notation: || || denotes the

Euclidean norm in Rw Sn is the unit sphere in RM, i.e. Sn = {s e RM : || s \\ = 1}

ds stands for the spherical Lebesgue measure on Sn. Thus, for any positive

measurable function / : R —+ R+

(2.1) f f(x)dx= Γ f f f(rs)ds] r"-ιdr.
Jfίn J0 L JSn -1

For the sake of brevity, we set

(2.2) γ:=^-H.

Notice that for any a e (0, 2], H e (0, 1), γ > 0, provided n > 1. In the sequel

we always assume n > 1.

Here are a number of simple facts that will be frequently used:

LEMMA 2.1. For any a e (0,2] and H e (0,1),

(a) aγ < n

(b) a(γ + 1) > n.
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//, in addition a > 1, then

(c) 0 < γ(a - 1) < f.

Also, for any γ > 0 :

(2.3) a~r - b~r = γ(b ~ a)ξ~ir+1), a,b > 0,

where min(<z, b) < ξ < max(<z, b).

Throughout the paper p denotes a norm on R . We often use the scaling prop-

erty p(kx) = kp(x), k > 0 and the fact tha t^ is equivalent to the Euclidean norm

on R i.e. there are positive constants c0 and cx such that

(2.4) c01| ΛΓ || <p(x) < c J U I I , a r e Rn

(see, for example, Kreyzig [5]).

We start with the proof of Proposition 1.1, which is followed by that of

Theorem 1.1.

Proof of Proposition 1.1. We must show

(2.5) VίGR" Γ \p(χ- t)~r -p(x)~r\adx< oo.

One can, of course, assume t Φ 0. Since γ > 0, we have to check the convergence

of the integral in some neighborhoods of points 0, t and oo. It is more convenient

to set x — rs, r > 0, 5 e Sn, and work with the spherical coordinates (r, s).

For small r,

pirs - tr-p^rsΓ = ,-^-'[(-5$^) - l

Since by the triangle inequality
rpis)

p(rs - t)
c,r

have [*(—*)) ~ 1 < 1 for r < r 0 and any S e Sn, and so

Γ"° ( f I ^(rs - tΓr - p(rsΓr I" ̂ r " ' 1 dr
0 S n

r dr < °°,

by Lemma 2.1 (a).

Thus, the integral in (2.5) is finite in a neighborhood of zero. By the shift
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invariance of Lebesgue measure it is also finite in a neighborhood of t.

For large r, we use (2.3) and write

(2.6) pirs - tΓr - pirsΓ7 = γlpirs) - pirs - f)]ξ-(r+ι\

for some $ > cor — pit). Thus, there are constants k and rx depending on t such

that for r > rl9 ξ~(r+1) < Kr~(r+1). Since \pirs) - pirs - t) \ < pit), (2.6) yields

\pirs - tΓ7 -pirsΓr\a < iγpit)K)ar~a(r+1).

Therefore, by Lemma 2.1(b), the integral in (2.5) is finite in a neighborhood of

infinity. D

Although in the sequel we invoke neither formula (2.1) nor inequalities (2.4), they

are implicitly used in most arguments dealing with the convergence of integrals.

The remainder of the paper is devoted to the proof of Theorem 1.1.

Proof of Theorem 1.1. Notice that the function riu) = KXe, u θlf θ2)

defined by (1.1) can be factored as follows:

(2.7) riu) =e-
c(Wie-I(u) - 1),

where

c(θ19 θ2) = - [In E exp iθ^iu) + In E exp iθ2Xei0)]

= (I 0i Γ + \Θ2Γ) J \pix- eYΎ - pix)~r \a dx,

and

Iiu) = UXe, u θv θ2) = - In E exp iYθxXeiu) + θ2Xei0)Ί

+ In E exp iθxXeiu) + In E exp iθ2Xei0).

Setting aiu, x) = pix — iu + l)e)~r — pix — ue)~7, we have

Xeiu) = f aiu,x)Midx),

and so

(2.8) Iiu) = f [| θxaiuf x) + θ2ai0, x) \a - \ θλaiuy x) Γ - | θ2ai0y x) \a] dx.

JRn

After setting y = u~ x and taking into account (2.2), (2.8) becomes
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(2.9) I(u) = uaH~a f φ(u, y)dy,

where

(2.10) φ(u, y) = φ(u, y θu θ2)

= I θjiu, y) + θ2g(u, y ) \ a - \ ΘJiu, y ) \ " - \ θ2g(u, y) \a,

a n d

(2.11) g(u, y) = u[p(y - u~ιe)~Ύ ~ p(y)~r],

(2.12) f(u, y) = u[p(y - (1 + u~ι)e)~r - p(y ~ e)~r] = g(u, y - e).

Now suppose that

(2.13) lim Γ φ(u,y)dy= f φ(y)dy,

where φ(y) = φ(y θv θ2) is defined in the statement of Theorem 1.1. If (2.13)

holds, then, by (2.9), I(u)^0, and so Theorem 1.1 follows from (2.7). Thus, to

establish Theorem 1.1 it is sufficient to prove (2.13). We shall do it in a number

of lemmas.

LEMMA 2.2. If φ and φ are as defined above, then

Vz/ e RM\ {0, e) lim φ(u, y) = φ(y).

U->°o

Proof. In view of (2.11) and (2.12), it suffices to check that

(2.14) Vy Φ 0 lim g(u, y) = g(y).

Recall that

(2.15) g(y) = - rP'-

where

PLM = lim

Now, using (2.3), we have

(2.16) g(u, y) = γu[p(y) - p(y - w"^)]?; ( r + 1 ) (y),
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where ξu(y) is a point lying between p(y) and p\y e) and hence linv^g(u, y)

= ~ ϊP-e lim

w-oo ξu(yy(r+Ώ Since p is continuous, limu^u(y) = p(y), and so

(2.14) follows. D

We shall use the following inequalities:

(2.17) I u(p(y) - p(y - u~ιe)) | < p(e)

(2.18) \p-e(y)\

Inequality (2.17) follows from the triangle inequality and (2.18) from (2.17). We

shall also extensively use the following inequalities which hold for any real

numbers r and 5

, o i m ii j - ι« I ι« I ι « ι ^ \2\Λ\ for α e (0,1]
2 . 1 9 ) \ \ r + s \ - \ r \ - \ s \ \ < \ , ,, { a - i . , , 1 N | ,a , ^ (Λ O Ί

[ α | r | | s | + (0 + 1) | r | for α e (1,2] .

To prove (2.13) we shall show that for each λ ^ (0, 1),

(2.20) lim f ^ [φ(u, y) - φ(y)]dy = 0

and

(2.21) lim Γ [ 0 ( M , y) - φ(y)]dy = 0.
«—oo J{p(y-e)<λp(e)}

We shall first focus on the proof of (2.20) which consists of a number of lemmas.

LEMMA 2.3. For each λ e (0, 1),

Γ ( sup |/(κ,»)Γ)<fc<°o.

Proo/. It is sufficient to find constants Kx and K2 such that for u > 2λ~ and

p(y- e) > λp(e),

(2.22) |/(tt, y)\£Klt

and

(2.23) I /(«, y) I < ^ ( z / ) " ( r + 1 ) , provided £(z/) > 2^(β).

The lemma then follows because by Lemma 2.1(b), ~(γ + l ) α + n ~ 1 < — 1.
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Using (2.3) and (2.17), we get

(2.24) | / ( « , y) I < γp(e)(min[p(y- e),p(y- (1 + u'ι)e)λyir+ι)

Since p(y - e) > λp(e) and, as u > 2λ~~\ p(y - ( l + —)ej > p(y - e) -
\ \ 141 I

^ p(e) > λp(e) --ϋ(e) >^p(e), (2.24) shows that (2.22) holds with Kx =
14 14 A

γ2r+1λ~<r+1>p(e)'r. If p(y) > 2p(e), then p{y - e) > ^p(y) and, for u > 2λ~\

p{y - (l + l)e) > (\ - fjp(y) > \p (y). Again (2.24) yields (2.23). D

Relation (2.20) for a e (0, 1] follows from Lemma 2.3, inequality (2.19) with

r = f(u, y), Lemma 2.2 and the Dominated Convergence Theorem. The case of

a ^ (1, 2] is more difficult because one must apply inequalities (2.19) with

5 = g(u, y), a function which behaves badly around y — 0, as u-^> oo. To prove

(2.20) for a > 1 we shall assume u large enough, choose δ and ε so that 0 < 2u

< δ < ε ^ 2 and integrate separately over the regions (p(y) < 2u p(e)},

{2u'ιp(e) <p(y) < δp(e)}, iδpie) <p(y) < εp(e)}, {p(y) > 2p(e)}, while ex-

cluding the ball {p(y — e) < λp(e)} with radius λp(e) and center e.

LEMMA 2.4.

(2.25) R(u) = f [| φ(u, y)\ + \ φ(y) \]dy
J{p(yX^p(e)}

tends to 0, as u—+ oo.

Proof. Choose u0 > 2λ~ so large that for u > u0

{p(y) < 2u~1p(e)} c {p(y - e) > λp(e)} Π {p(y) < 2p(e)}.

Then, by (2.22), the functions \ f(u, y) \, u > u0 are bounded on \p(y) <

2 }
— p(e)\ by a constant which does not depend on u. Since the measure of the set

(p(y) < —p(e)\ tends to zero, we have

(2.26) lim f [|/(«, y) \a + \f{y) \a]dy = 0.
M-OO J{pi.y)<jip(e)}

We shall now show that
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(2.27) lim f I g(u, y) \"~ι dy = 0

and

(2.28) lim f 9 \g(y)Γ1dy = 0.

Notice that once (2.27) and (2.28) have been proven, the lemma will follow by

applying inequalities (2.19) first with r = | f(u9 y) | and 5 = | g(u, y) |, then with

r = I f(y) I and s = | g(y) |.
To prove (2.27) note that

I g(u, y) I < u[p(yΓr + p(y - M Λ ) " 7 ]

implies for a ^ (1,2],

/ 9 I g(u, y) Γ"1 dy
J{p(y)<^p(e)}

<ua-l\( 2 P(yyr'a'l> dy + f 2 p(y-u-ιeΓna-vdy\
lJ{p(y)<fp(e)} J{p(y)<^p(e)} J

a-l-n+r(a-l) \ Γ ., \-r(a-l) * , Γ ./ χ-r(α-l) j 1

= u \ I p(x) dx + I p{x — e) dx\.

As, by Lemma 2.1(c), — γ(a — l)+n~l>~1 and a — 1 — n + f ( α — 1)

< 0, (2.27) follows. To show (2.28), it is enough to check that the function

I g(y) T~ is integrable in a neighborhood of zero. This, however, follows

immediately from (2.15), (2.18) and Lemma 2.1(c). D

LEMMA 2.5. Fix 0 < <5 < 2 and define

(2.29) Dδ(u) = f I φ(u, y) - φ(y) \dy,u> 2δ~\
JΩiu,δ)

where

(2.30) Ω(u, δ) = {p(y - e) > λp(e)} Π {2u~ιp(e) < p(y) < δp(e)}, u > 2δ~\

Then,

lim( sup Dδ(u)) = 0.
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Proof. In view of inequalities (2.19) it suffices to check that

(2.31) lim( sup f \ f(u, y)\ady) = 0
«-0 V «>2max(r1,δ-1) JΩiu,δ) '

(2.32) lim ( s u p f | f(y) \ady) = 0

(2.33) lim( sup Γ | g{uy y) Γ"11 f(u, y) \ dy) = 0

(2.34) lim ( s u p f \ g(y) Γ"11 f(y) \ dy) = 0.
5-0 x

 w>2maxU-1,<5-1) ^ ( « . « ) 7

As the measure of the sets Ω(u, δ) tends to zero, as δ~* 0, (2.31) and (2.32) fol-

low from (2.22). In the proof of Lemma 2.4 we have shown that | g(y) \a is

integrable in a neighborhood of zero, so (2.34) also holds. To prove (2.33), notice

that p(y) > ^p(e) implies p(y - ^ej > \p(y), so by (2.3) and (2.17), for each

sup \g(u,y)\<rp(e)2r+ιp(yΓ'r+ι),
U>2δ'1

and Lemma 2.1(c) again completes the proof. •

LEMMA 2.6. Fix 0 < δ < ε < 2 and define

(2.35) Hδ>ε(u) = f I φ(u, y) - φ(y) \ dy,

where

(2.36) Δ(δ, ε) = {p(y - e) > λp(e)} Π iδp(e) < p(y) < εp(e)}.

Then,

lim Hδ>ε(u) = 0.

Proof By (2.3),

(2.37) £(κ, y) = γU[p(y) -p(y - wΛ)]

where ξu(y) is a point lying between p(y) and ply e). If y ^ Δ(δ, ε), then
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clearly, p{y) > y δp(e), and if, in addition, u > 2cΓ\ then p\u e) > p(y) —

~p(e) > ~ δp(e). Thus, ξu(y) > \ δp(e), and so, by (2.17),

(2.38) \g(u,y)\<2r+1

rδ-'r+1)p(eΓr.

To complete the proof combine inequalities (2.38) and (2.22) with inequalities

(2.19) applied to r = \ f(u, y) | and s = | g(u, y) \ and apply the Dominated Con-

vergence Theorem. •

COROLLARY 2.1. For λ ^ (0,1) define

A(λ) = {p(y - e) > λp(e)} Π {p(y) < 2p(e)}.

Then, limM_0 Γ [φ(u, y) - φ(y)]dy = 0.
JA(λ)

Proof. For any δ ^ (0, 2) and sufficiently large u

AQ) = ip(y) < 2u~ιp{e)} U Ω(δ) U Δ(δf 2),

so

I Γ [φ(u, y) - φ(y)]dy
I JA(λ)

<R(u) +DΛu) +HaΛu).

By Lemmas 2.4 and 2.6,

lim sup / lφ(u, y) — φ(y)]dy < sup Dδ(u).

To complete the proof, let δ—+ 0 and use Lemma 2.5. D

LEMMA 2.7. One has

lim Γ [φ(uf y) - φ(y)]dy = 0.
w-oo J{p(y)>2pie))

Proof We shall first show that for a ^ (1, 2],

(2.39) Γ {sup I /(«, y) \ \ g(u, y) Γ"1) dy < oo.

Using (2.3) and inequality (2.17) we get
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\f(u,y)\<rp(e)Cr+1)(y);

I g(u, y) I < τp{e)ηlir+1){y) ,

where ζu(y) lies between p(y — e) and piy — ( l H—jej, and ηu lies between

p(y) and p(y - ^ ej. Since £(y) > 2£(e), p(y - e) > \ p{y) and for u > 2,

p(y - (l + l)e) > p(y) - (l +^)p(e) > p(y) ~ f pie) > jpiy), so ξu(y) >

1 3 1
-jί(^). By a similar argument ηu(y) > ~£p(y) > jp(e). Thus,

\f(u, y)\<γp(e)Ar+1p(yy
{7+1);

\g(u,y)\<rp(e)4r+1p(yyir+1\

whenever u > 2. Since - (γ + l )α + n ~ 1 < 1 by Lemma 2.1(b), (2.39)

follows. By the same argument,

Γ (sup|/(«, y) \a)dy

so the lemma follows from inequalities (2.19) and the Dominated Convergence

Theorem. •

Notice that Lemma 2.7 and Corollary 2.1 yield relation (2.20). Thus to prove

(2.13) it remains to establish (2.21). To prove (2.21) (for any λ e (0, 1)) use rela-

tions f(uf y) = g(u, y — e) and f(y) = g(y — e) to verify statements analogous

to Lemmas 2.4, 2.5 and 2.6 with the corresponding sets centered at vector e,

namely:

lim J i [| φ(u, y)\ + \ φ(y) \]dy = 0

lim ( sup f _χ I φ(u, y) - φ(y) I dy) = 0, 0 < δ < λ

lim / ίφ(u, y) — φ(y) \ dy — 0.
u-^oo J{δp{e)<p{y-e)<λp{e)}

Having proven Relation (2.13), we have completed the proof of Theorem 1.1.

D
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