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ON THE INVARIANT DIFFERENTIAL METRICS NEAR

PSEUDOCONVEX BOUNDARY POINTS

WHERE THE LEVI FORM HAS CORANK ONE

GREGOR HERBORT

0. Introduction

Let D be a bounded domain in Cn; in the space L (D) of functions on D

which are square-integrable with respect to the Lebesgue measure d z the holo-

morphic functions form a closed subspace H (D). Therefore there exists a

well-defined orthogonal projection PD: L (D) —> H (D) with an integral kernel

KD : D X Z)—>C, the Bergman kernel function of D. An explicit computation of

this function directly from the definition is possible only in very few cases, as for

instance the unit ball, the complex "ellipsoids" Em = {(z> w) ̂  C : | z \ + \ w | m

< 1), or the annulus in the plane. Also, there is no hope of getting information

about the function KD in the interior of a general domain. Therefore the question

for an asymptotic formula for the Bergman kernel near the boundary of D arises.

Bergman [Be] was the first to study the behavior of the function KD(z) '-= KD(z, z)

near the boundary for certain classes of domains in C . After the L -theory for

the d-operator, [Hόr], and the d-Neumann problem, [K 1], was developed a first

precise description of the singularity of KD(z) and its derivatives became possible

in case that D is a strongly pseudoconvex domain with smooth boundary, [Hόr],

[Di 1], [Di 2]. Since the work of Fefferman, [F], and Boutet de Monvel-Sjόstrand,

[B-S], the asympotic behavior of KD at the boundary of strongly pseudoconvex

domains is completely understood.

The methods which worked well on strongly pseudoconvex domains cannot be

extended to the weakly pseudoconvex case. A formula for the complete description

of the singular behavior of KD(z) for general weakly pseudoconvex domains is un-

known. Only partial results in this direction have been obtained, see for instance

[Oh], [He 1], [He 2], [D-H-O]. In [C 1], however, Catlin gave a complete description

of the singularity of KD(z) when D is a smooth bounded pseudoconvex

domain of finite type in C . His work contains also precise estimates from above
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and below for the invariant differential metrics of Caratheodory, Bergman and

Kobayashi. It is by no means clear how to generalize these estimates to domains of

finite type in the sense of d'Angelo, [A], in higher dimension. Here, similar as in

the case of the Bergman kernel, a precise estimate for these metrics is known only

in the strongly pseudoconvex case, [H], [Gr], [Di 1], [Di 2],

In the present article we investigate the behavior of KΩ(z) and the invariant

metrics of Caratheodory, Bergman, and Kobayashi on a smooth bounded pseudo-

convex domain β c c C near a point q ^ dΩ of finite type where the Levi form

of dΩ has at least n — 2 positive eigenvalues. This extends the circle of ideas of

[C 1] and, in a sense, also will complete it. Our main tool is a precise bumping

theorem for Ω near the point q which is obtained from the bumping theorem of

[F-S]. It allows us to simplyfy the techniques of [C 1] and to dispense with the

estimates for the 9-Neumann operator when discussing the growth of the

Caratheodory metric of Ω near q. The plan of the paper is as follows. In section 1

we set up the necessary notations and state the results. In sections 2 and 3 we

will analyze the geometric properties of the boundary dΩ near a point q of finite

type and introduce the appropriate local holomorphic coordinates. Contrary to the

case n — 2 one has to deal with those terms in the Taylor series expansion of a

defining function for Ω at q which reflect coupling effects between the variables in

the "strongly pseudoconvex" directions and the "weakly pseudoconvex direction",

see Theorems 3 and 4. Section 4 contains the analytic part of the proof of

Theorems 1 and 2. In Main Lemma 4.2 the necessary holomorphic auxiliary func-

tions are constructed by solving the 9-equation with weights, see Theorem 5. The

desired precise estimates for the Bergman kernel on the diagonal and the invariant

metrics are given in the normalized coordinates constructed in section 3. Finally,

in section 5 we describe how to express the estimates obtained in section 4 in

terms of the initial coordinates.

Note added in proof. The methods of this paper are also successful on a cer-

tain class of domains with Levi form of higher corank, (cf [He 3]).

1. Statement of the results

Let β C C C be a smooth bounded pseudoconvex domain with a defining

function r. Suppose 0 ^ dΩ, and for a small ball B with centre 0 we have

dr t > 1 /2, for all q €= B. On B we define the vector fields
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dr

L" ~ dza

for 2 < α < n, and by Lb its conjugate, 2 < b ^ n, where we abbreviate ra =

for all α = 1,. . . ,n. The La, a = 2,. . . ,n form a basis for the holomorphic tan-

gent bundle T dΩ restricted to B. By Lλ we denote the normal field

/-.ox r _ 1 ^ 3r 9

Let us further write

\ -1 °) "^ ab

for 2 < a, b < n, and denote by Λaβ the Levi function

(1-4) λdΩ = d e t ( ^ ) ^ = 2 .

Analogously to the definition in [C 1] we introduce the functions

(1.5) A;(z) : = maχ{| La~ι U;1 λdΩ(z) \\ a, β > 1, a + β = 1).

For a vector I e C there are uniquely determined functions 5 : (X), . . . ,

sn(X) satisfying X=Σ%ιsJ(X)Lj.

With these notations we can state our result in the following

THEOREM 1. Assume that the submatrix (!£aη) a,b=2 ^s strictly positive definite on

B, and 0 is a point of finite type 2k in the sense of Kohn, [K 2], (this means A2k > 0

on B, after shrinking B, if necessary). If we write

(1.6) %2k(z) :

then the Bergman kernel function KΩ of Ω can be estimated on Ω Π B by

C is a universal constant.

We can also estimate the invariant pseudodifferential metrics of Caratheodory

and Kobayashi, as well as the Bergman metric. In order to state the precise esti-

mates for these metrics we define the pseudodifferential metric
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/i o\ M (? Y) — ' 5 1 ^ 1 -L V £gb(z}Sa(JθSb(X) ,
(1.8) M f iu, A ; — -1- z. Γŵ Yl

I r(z) I «'*=2 ' v ' '
With this notation we have

THEOREM 2. L^t the hypotheses be the same as in Theorem 1. // then HΩ denotes

one of the differential metrics of Caratheodory, Bergman or Kobayashi, we have on a

small ball Bγ around 0 €Ξ dΩ:

(1.9) ^MΩ(z, X)τ<HΩ(z,X) <CMΩ(z,X)i

where again C is a universal positive constant.

2. Normalization of the defining function

Assume q ^ dΩ Π B, where B is a ball around 0 which lies relatively com-

pact in B. By the transformation

α=l υza

w± = zx — qlf 2 < I < n

we absorb the linear term in the Taylor expansion of r around q. In the

w -coordinates the equation for dΩ will be of the form

(2.1) Re w[v + Ra\w[ι\ (wωY q) = 0,

where R ( q) is a smooth function which is defined on a ball B c: cz B, with

centre 0 and a radius independent of q, (and w' = (w2,.. . ,wn) for all M; ̂  Cw). It

vanishes of second order at 0, and, after multiplication with a positive affine

linear function of the form h = 1 + 2 Re Σ J = 1 αyw; we can even achieve that

RiT (0 #) = 0 for 1 = 1,. . .,n. Here Φaf
= * o- for any differentiable function

Φ, and 1 < a, b < n. Obviously we can solve equation (2.1) for Re w± , and

obtain

(2.2) Re w[ι) + ^ ( 1 )(Im w™, toα))/; q) = 0,

where again R ( q) has the same properties as R (' q). The Levi form of

i?( q) is described by a certain matrix A = (ajj((l))"tl=2> t n e entries of which

depend continuously on #, and for which the submatrix (djjiq))jj=2 * s positive de-
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finite. Thus we can choose a matrix B ^ GL(n — 2, C), and continuous functions

c2(Φ> -fCn-i(q), άniΓ(q) on B Π dΩ such that

where c(#) = (c2(q),.

fw2i

)=(B(qΓ1 0

χ (2) I V 0

then 9ί3 will in the w -coordinates be described by the equation

(2)/o o\ r> ( 2 ) J ^ r » ( 2 ) / τ ( 2 ) / (2)Λ/ Λ c\

(2.3) Re ^ + R (Im ^ , (w ) q) = 0.

Here the function R is smooth on a certain ball around 0, which we denote again

by B. The following couple of steps is inspired by the method of section 1 in

[F-S], where a precise bumping lemma of two-dimensional domains of finite type

was established. At first we write (with υ" := (v2f.. .,fM_1) for v ^ Cn):

/o Λ\ r><2)/τ <2> / ( 2 ) \ / \ r» AV> ί \

(2.4) R (Imwlf(w Y;q)=Refq (wl9...,wn)

Im wf* ( Σ Qy2)^« ί) + σ * + i ( θ )

IT
 ( 2 ) /

+ Σ I wf |2 + 2 Re Σ wf g{a\wt q)

a=2 a=2

+ f73((O")

• ^ o ( 2 ) / (2) x , / (2k

+ ΣPj (wn q) + σ2k+ί(wn ) .

; = 2

Here, fq is a holomorphic polynomial which vanishes at 0, the P ; , Qλ are
(2)

real-valued homogeneous polynomials of degree j , the ga are complex polynomials

of degree at most k, which do not contain holomorphic terms. The symbol σt

stands for smooth functions which vanish at 0 of order i. By means of another

2/c-l steps we eliminate by transformations of the form

«/,—>«;, + awL wn^wn, a = 2,...,n
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all the harmonic terms from the P y ( )'s. During this procedure the functions P/ ,

Qj , ga * a n c * fq will change at each step. After that we let in another k steps all

the harmonic terms in the Q/ 's be absorbed by Re wx. The function R will be

changed at each step, but we can arrange that it retains the form (2.4). We will in

the (3/c + 2) step obta

is given by the equation

the (3/c + 2) step obtain a coordinate system (w ), with respect to which dΩ

Re » Γ + 2 > + Rm+2) dm w[3k+2) (#«*+ 2>)' ; q ) = 0 ,
(2)

where the function K \'\ φ has the form (ZΛ) with j q , Γj , Qj , and ̂ α re-
. , , r(3k+2) n(3k+2) ^(3A:+2) , (3k+2) , . , Λ Ί [ r . „ . .

placed by fq , r} , Qj , and ga , respectively. We now will normalize

the functions ga

 + . For this we write
(3A;+2) / x ,~(3A:+2) • (3A:+2) x , U3k+2) / (3A:+2) x

ga Ww q) = K {wn q) + ga (wn q)

where ha (•; q) is a holomorphic polynomial and the polynomial ga (•; q)

has no longer harmonic terms. Now we can write

Σ | (3Λ+2) 12 , o ^ vp (3A;+2) f (3A;+2) / (3A+2) x
\wa I + 2 Re z, wa ha {wn ^)

α=2 α=2

"vi1 I (3A+2) , f(3k+2) , (3k+2) x 12

= Σ I wa + h a (wn ;q)\
a=2

Σ l f(3A+2) / (3A+2) x |2
I ^fl \wn ; q ) \ ,

a=2

and all the ha (", q) vanish at 0. Thus, if we set

(3A;+3) (3λ:+2)

w, = w1
(3Λ+3) (3fe+2) , ,~(3fc+2)/ (3fc + 2) x o ^ ^ Λ

wa

 = wa + K Wn ; q ) , 2 < a < n ~ 1
(3k+3) _ (3k+2)

we obtain new holomorphic coordinates with respect to which dΩ is described by

equation (2.5), and no harmonic terms appear in the Pjf Qj, or ^-polynomials.

Finally we let all the Taylor terms of the form

^rr(3k+3)/n x

n / (3Λ+3)xr V ' '

i ^— τwτ« i r\ 1 V^ « - l I 1 ^ Λ r (3Λ+3) ,

where ^ N , and γγ — 0, -^ Σ,a=2 7a + ̂  ϊn — 1. appearing in fq , be

absorbed by wι . This will neither introduce new harmonic terms in the Pjf Qj,

or ga's nor change the form of (2.4) or (2.5). The result of our transformations can

now be summarized in
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THEOREM 3. There exists an open neighborhood U of the origin and a mapping

F : Cn X (dΩ ΓΊ U) - • Cn with the following properties:

(1) For any q e dΩ Π J7 £/ι# mapping F(-; q) : C" ^> Cn is biholomorphic, and

F(q q) =0.

(2) The Jacobi matrix of F(", q) is of the form

F'(z q) =

d £ i z ; q)

0

0

0

dF,

dz2

dF,

dz2

dFn_

dz2

iz;

iz;

Hz

0

q) -

q) -

q) -

...

dF,

dzn_x

dF,

dFn_

dzn_x

iz

iz

Hz

0

Q)

q)

q)

dF,
dzn

h2izn

<z

—

1

Q)

qn;q)

qn;q)

\

1
with certain holomorphic polynomials ha (zn — qn q).

(3) For each q e dΩ Π U we have Ωq = F(Ω q) = {rq < 0), where

rq— r ° F{'\ q) has the following form

k

rq(w) = Re(w1 + f(w q)) + Im w1 Σ Qj(wn q)
; = 2

+ Im wλ [σk+1(wn) + σ^w")σ^Wy)] + σ2(Im wj

n-\ n-\

+ Σ I wa \
2 + 2Re Σ waga(wn q) + σ3(w")

a=2 a=2

+ ^ M d ^ t M / J + σ2{wrf)σι(wί)
2k

+ ΣPj(wn;q) + σ2k+1(wn).
j=2

In this formula, w" — (w2, . . . fwn_1) for all w ^ C w , / ( ', q) is a holomorphic

• r 9 r / ( 0 #) Λ , ^ 1 v"1"1 i 1 ^ i
polynomial satisfying — z r22— = ΰ, whenever γx = 0, TΓ 2-.α=2 7Λ ~r -7̂ 77 7M S 1,

dw Δ ΔK

further, Pj and Qj are real-valued polynomials of degree j without harmonic terms, and

the ga are complex polynomials without holomorphic or anti-holomorphic terms. The σt

are error functions which vanish at of i.th order at 0.

3. Estimation of the coupling terms

Let us agree upon the following notation: For a homogeneous polynomial p we

denote by \p || the quantity
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\\P\\= max \p(eu)\.
θe[-π,π]

We have to adapt Lemma (1.5) and Proposition (1.6) from [F-S] to our situation.

This is done in

LEMMA 3.1. There exist positive constants C o , pQ, such that for any 2 < a

< n, and any q ^ dΩ (Ί U the following all hold

(a) If for a radius 0 < p < p0 and any numbers i ^ { 2 , . . . ,2k), / ̂  { 2 , . . . ,λ;}

and

\\P]{-;q)\\pi>ComΆ^\\Pι{-,q)\\p',
iΦi

then it must be that

i<Clp^\\Pι(-,q)\\pi.

(b) If for a radius 0 < p < p 0 and any numbers i ^ { 2 , . . . , 2 k } , j G { 2 , . , . ,/c)

II &.y(" ί ) IIPJ ^ C o m a x II &.,(•; q) II p',

and

then

Here we denote by ga.j the homogeneous part of ga of degree j .

Proof. The proof of (a) goes in complete analogy to that of Lemma (1.5) in

[F-S]. We only need to apply their arguments to the complex two-dimensional sec-

tion ir < 0} Π {w2 = . . . wn_λ = 0). (Here r- = rq). We will even obtain the fol-

lowing statement: There exists a radius r0 > 0 with the property:

(a') If for a radius 0 < p < r0 and a number j ^ {2,... ,k} one has
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| | Q ; . ( - ; ? ) | | | 0 ; " > C o m a x || Q,( ; q)\\p\

then

Qj{-;q)\\pi <Ctp Ίl\\Pi{-;q)\\pt.

Let us now pass to (b). For a, b ^ {2,.. ,,n) we set

Γ(3.1) $aτ = raϊ\ h Γ - W - htr^i + rlΊrarb.

For a fixed number a €Ξ { 2 , . . . ,τz} we choose arbitrary complex numbers wa, wn

close to 0 and additionally a real wx = wx(wa, wn), such that

q ( w a , w n ) = ( w l 9 0 , . . . ,wa, 0 , . . . , α ; n )

becomes a boundary point of £?. Then, by the pseudoconvexity of Ω one has

(3.2) $nn(q(Wa, *O) ^ 0.

Furthermore, one has

[ k 1

Σ Q ;(^w q) + ^ ( w O ^ ί u J + σk+ι(wn)
; = 2 J

« - l w - l

+ <72(Im ^i) + Σ I ̂ f t Γ + 2Re Σ wbgb(wn q)
6=2 α=2

2A;

+ ΣP f K;ί) +8{w'),

where 8 (wθ denotes the error term

S(u/) = σz(w") + σ^w^σ^iw,) + σ2 (w") σλ (wn) + σ2k+ι(wn).

From this we can see that

( 3 . 5 ] wλ I < C(\ w a \ 2 + Σ H P ^ ; ? ) || I wn \* + \ u > a \ ( l +-jf) \\ga.j \\ (•; wn

with some universal positive constant C. If we substitute (3.3) into the formula

(3.1) for £nn(q(wa, wn)), we obtain

(3.6) I £nΈ(q(wa, wn)) - 2 I rx(q<M>a, ^ I' Re ^ ^ ; P ^ t o M ?) I <

2 I /\(?(wβ, Wn)) | 2 I Re W;fl Σ (ga^ήn^n i ί ) I

+ (2 | r n ϊ | I fx\ + \fιτ\\rn\)\rn\ (q(wa, wn))
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2k

+ 4k2Σ\\Pc(-,q)\\\wnr+\gtm\.
c=2

We can find a positive constant Cλ independent of Co such that

( 2k \

\wa\
2+Σ\\Pl( ;q)\\\wnή,

1=2 '

and for | wn \ = p,

I rn(q(wa, wn)) \ < Cι\\wa\pΛl -\- γr) || ga.j ( q) || p~

2k

For small enough p 0 < 1 it follows from (3.2) that

| 2 R e wa (ga,j)n7i(w

Σ
c=2

(3.7) - 2 I r^qiw,,, wn)) | 2 R e wa (ga,j)n7i(wn

Cliik— + 2Po) I wβ I \\ga.j(-;q) ll//"2 + U J 2 + Σ I I P / ;«) l ip" 2 ) .
^0 ' c2

After enlarging the constant C o if necessary, we obtain from (3.7)

(3.8)

2 C 0 °'J nfl Q^ °'J ί = 2

But neither R e ga.j nor Im ga.j contains any harmonic terms. Therefore, with a cer-

tain constant C(j), depending only on./, one has

s u p \{ga.j)*(wn ; q ) \ > C O ) II ̂ ( s q) II P'"*.
\wn\=p

As p0 we may choose po=l/CQ: here we enlarged Co such that for any

: CO) > 2kC\/C0. This will imply

.,<•; 9) II P ;" 2 < V4Q/C0) ( Σ II P f(
V2V=2

The proof of the lemma is now complete.

The following lemma contains the crucial estimates for the coupling terms
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LEMMA 3.2. Let all the notations be as so far. Then we have

(a) // we write j Q > q = minU < k \ \\ Qc{- q) || > 0}, j a Λ = min{; | ga;J(- q) Φ 0},

and iq = minU \ \\ Pc(",q) \\ > 0), thenjQιQ > ^ + 1, j a ; q > ^ + 1.

(b) There exist positive p l t C2, such that for any \wn\ < p λ

k . /2k \j

(3.9) Σ II Qj( q) II | w j ; < C21 M J I Σ II i»( ?) III wB Γ
; = 2 V=2 7

and

(3.10) Σ II &.,(•; ί) 11 «;„ Γ < C2 U J ( Σ || i>r( ; ?) III wΛ \f.
j=2 ' V=2 7

(c) //"P! i5 as in (b) and λ Λ ( # ; q) are the functions appearing in the last column of

the Jacobi matrix of the mapping F(- q) of Theorem 3, then for any 0 < p < pγ/2,

all I wn I < p, and all positive integers m we have the estimate

(3.11) I h?\wn ;q)\< m\C2 (ϊ \\Pe( ; q) \\p)2 i^V\
V=2 / \P'

Proof, (a) O b v i o u s l y w e h a v e f o r 0 < p « p 0 :

II Qj0 (", Q) II plQA ^ C o m a χ II Qλ'9 ΦIIpι>

and

II ga J a S ' •> 9)W PJa'q > Co m a x || &,.,(•; ? ) || p ' .

This, combined with Lemma (3.1) gives (a).

(b) For n = 2, (3.9) is just Proposition (1.6) of [F-S], which is stated there

without proof. Our statements (3.9) and (3.10) are generalizations of that proposi-

tion. Therefore we give a sketch of proof for reader's convenience. Let p0 be the

radius from Lemma 3.1 and 0 < pλ < pQ. We denote by Mj one of the quantities

|| Qj( q) || or || ga;j( q) ||. Also fix a point wn e C, | wn | < p l f and let Γ = C0"
2.

If MΛI M;Λ I > Comax/:?fcA M71 wn \ , then everything will follow from Lemma 3.1,

when we choose C2 ^ Co. If not, let lλ be the largest number less than k, such that

Mk\wn\ < Q M ^ I M;W I \ It is easy to show that
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If now even

we will be done by virtue of Lemma (3.1), otherwise let l2 be the largest number

less than lv such that Mh(T\ wn \)h > C0Mh(T\ wn | ) ' 2 . Then we can prove

MAT21 wn |) ' 2 > Co max M,(Γ2 \ wn | ) ' .
ι>h

We continue in this way and obtain after a finite number of steps a number

lm< k, m < k, for which

Mt (Tm\wn\ym>Com<ιxMι(Tm\wn\y.

By Lemma 3.1 the claim follows with C2 = Co

(c) In order to prove (3.11), we work in the coordinate system (w[,.. .,w'n) =

(w1 , . . . ,wn ) of section 1. The domain Ω is described with respect to this

coordinate system by a defining function r' which has the form (2.4) but the

^-functions, which we denote here by gr

a{' q), still contain antiholomorphic

terms.

We have

g'a(wn q) = ha(wn q) + ga(wn q)

with a holomorphic polynomial ha(' q) of degree at most k, while in the second

member there are no holomorphic or anti-holomorphic terms. Let for a, b ^

2* = K-b\ r[\2 - Kjrft - rtbrχ + rbrft.

For 0 < I wn I < f t w e choose a real q[(wn), such that

q'(wn) : = (qΊ(wn),0,...,wn)

is a boundary point of Ω. Then, given a fixed index a €= {2 , . . . ,n), we have

f_ I2 <

at the point q'iWy). On the other hand

Combining this with (3.12) we arrive at
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where C3 is a universal constant (independent of wn), and $FX, 3^2 are remainder

terms, which can, as also £'nίr(q' (wn)), be controlled, with some universal constant

C4,by

C4Σ\\Pi( ;q)\\\wnΓ
2.

1=2

Altogether we obtain

But the functions ha in Theorem 3 are just given by

So (c) will now follow from the Cauchy inequalities.

We are going to prove the appropriate analogue of the bumping lemma, cf.

Theorem A in [F-S].

PROPOSITION 3.3 (cf. [F-S], Lemma 3.3.2k). There exist positive constants A,

B, p2 < Pi and for each point q ^ dΩ Π ί ( 0 , 2p2) a continuous function P(m q) :

C —> R with the following properties'.

(1) With a positive universal constant C6 one has for each wni wr

n ^ C, R > 0,

such that

the estimate

holds.

P(wn + w'n;q)< P(wn q) + C6 Σ || P,( ; q) || R1

(2) The function P ( ; q) is subharmonic on the disc D = {\ wn \ < 4p2}.

(3) On D the estimates

2k . 2 k 2k

- B Σ WPji q) II \ w j < P(wn ; q ) ~ Σ P,(wn ; q ) < ~ A Σ l P , ( - ; q ) III w n \J

j=2 ;=2 ;=2
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are satisfied.

Remark. In [F-S] the function P is constructed only on a disc and in case

n — 2. Also, property (1) is not discussed. If we pursue step by step all the con-

structions made in that paper, we can see that all of them just so go through in

our situation. One can also obtain property (1), which is crucial for the estimation

of the Caratheodory metric, since one can show it for all the functions constructed

in Lemmas (3.3.i) of [F-S]. All the constants which appear during the single steps

of construction can be chosen uniformly with respect to q.

The proposition enables us to write down a precise bumping function for Ωq

at the origin of the (w) -system.

THEOREM 4. For sufficiently large numbers K, L > 1 the function

φ(w q) = Re(w1 + Lw\ + f(w q)) + -^ I w" Γ + P(wn q)

is plurisubharmonic on the ball B(0, 2p2), for q ^ dΩ Π β ( 0 , 2p2), and it satisfies

the estimate

(3.13) r{w) - Uv\ - K Vq(w) < φ(w q) < - \ Vq{w) + \ r(w),

where υγ = Im wv and Vq(w) = \ w" | 2 + Σ || P y ( q) || | wn \J, and f = rq.

Proof. If we write ux — Re wv we get

2k

(3.14) ux = Hw) - Refiw q) - Rx(w) ~ I w" I - R2(w) - Σ Pj(wn q),

;=2

where

and

σ^wJ + σ2k+1(wn).

Substitution into the definiton of φ gives us

Rx(w) = v1 ( Σ Qj(wn q) + σk+1(wn) + σ^w^σ^wS) + σ2(vi
S=2 '

w - l

R2(w) = 2 Re Σ waga(wn q) + σz(w") + σx(w")σk+1(wn)
0=2
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(3.15) φ(w q) = r(w) - R^w) - ~ \ w" Γ - R2{w)

+ P(wn q) — Σ Pj(wn q) + Lu\ - Lυ\.
3=2.

Because of Lemma 3.2 and the normalization of/we can estimate

I τ-» / \ I ^ /o / 2 i I |2 v 1 II r» / \ II I M i l 2 I I /// | 2 \

I Rx{w) I < C 7 ( ^ + I wn\ Σ | | P ; ( ; q) \\\wn\ + \ w n \ \ u / I ) ,
N ; = 2 7

I R2(w) I < ^ U " |2 + CΊ \wj Σ IIP,{ ?) III ww |
;,

1 U ;=2

and

I n j / \ |2 ^- SΛ 4 i 4 i v"1 I |2 V Ί I |2 ι | v II n / \ II I lA

I Refiw \q)\ < C7 \uλ + vx + Σ I wt \ Σ I Wj \ + Σ || P ; ( q) || I wn | ,
L /=2 ;=1 V=2 ' J

with a universal positive constant C7. Now, for large enough L, the right inequal-

ity in (3.13) is obtained by substituting these estimates into (3.15) and taking care

of proposition (3.3). The left side of (3.13) follows in a similar way.

4. Estimations for the necessary domain functionals in the normalized

coordinates

Throughout this section let us fix a boundary point q of dΩ close to 0 and

a positive number t. We denote by pt the point (— t, 0, . . . ,0). Furthermore,

let Ωq = F(- q)(Ω) — {f < 0}. For a bounded domain flcC" we denote by

KD(z, z) the Bergman kernel function of D, by BD(z, X), CD(z, X), and Kobp

(z, X) its Bergman metric, Caratheodory metric, and Kobayashi metric, respective-

ly. We also will need the functional bD(z, X) = KD(z, z)BD(z, X). The following

relations are well-known:

KD(z, z) = max {| /(*) |2 \f^H2{D), \\f\\ = 1}
bD(z, X) = max {| (df(z), X) \\f<ΞH2(D),f(z) = 0, | |/ | | = 1}
CD(z, X) = max {| (df(z), X) \\f e H°°(D), f(z) = 0, \\f\i = 1}

holomorphic, /(0) = z, f'(0) = X)

for (z, X) e D X Cn. Here we abbreviate HJ(D) = C(D) Π L\D), for = 2, oo?

and || || = || \\L2. We will at first give upper estimates for the functionals defined

above. In order to do so, we introduce (analogously to [C 1]) for any s > 0 the
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radius
2k

Rn(s) = solution to the equation Σ \\Pj(", q) II (R(s)Y = s.
j=2

Then we have the estimates

^ cΛRHω~&
and for any c > 0

γ^Rn(s) < Rn(cs) < (1 + rfi?Mω

with a positive C8 independent of q and 5.

LEMMA 4.1. There exists a constant C9 > 0, such that for all t > 0, Y ̂  Cw

f/i£ following estimates all hold

(4.2) KΩ{pt,pt)<C9f^Rn{ty2

(4.3) Afl (/>„ y) < cf^ Rn(ty2 f-L^J- + "fί - ^ - + —

[I γ I n-\ \ Y \ \ γ
i j τ L i + Σ 14fL+ P 7

(4.5) Kobo (pt, Y) < Co — Γ — h Σ —?^—h 3 -
• y L r ; = 2 v^ ^M

/orαn^reC".

Proof. All the domain functionals under consideration will increase, if the Ωq

are replaced by a domain which is contained in Ωq. For a sufficiently small ε the

polydisc

Δ(pt) = Δ(- t, εt) x \l Δ(0, y/εi) x 4(0, Rn(εi))

will be a subset of Ωr This is apparent from the considerations of section 3. So

(4.2) through (4.5) will follow immediately, since the right-hand sides of these

estimates are just the respective domain functionals for the polydisc.

Because of the well-known inequalities CD < BD, and CD < Kobp for any do-

main D, we only have to estimate the Bergman kernel and the Caratheodory metric
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of Ωq from below. This will be done by constructing certain holomorphic functions

on Ωq using the 9-technique with plurisubharmonic weight functions.

MAIN LEMMA 4.2. There exist holomorphic functions Fo e H2(Ωq), Fίt . . . ,Fn

^ H°°(Ω) with the following properties:

(1) F0(pt) =Γ*Rn(ty\

(2) For any I = ! , . . . , » :

dF,, ,
dw, P'

' • ; •

for I = 1

for2 < l< n-\.

[Rn(t) \ forl=n

For all I, j ^ {!,...,«}, / Φ j one has

dw, (P,) = 0.

(3) There exists a constant C1 0 independent of t> q such that

Proc/. We write φ'(w' q) = φ(0, w' q), where <p denotes the bumping

function from Theorem 4. Further let G be the tube G = C x ^1(0, 4p2), and

Then the function

0,(M>O = log(l + I w' |2) + log(l + Qt{w'))

+ n log Qt(w') + j φ'(w' q)

is plurisubharmonic on G. Furthermore, we define the functions

£0 = ή(Rn{t))-\ on C"

ft. = 1, on C"-1

giiw') = -jj, for / = 2, . . .,n — 1, on CM~

and finally

- also on Cn .
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We first want to construct the functions Flf. . . ,Fn. For this we will solve on G

the Cauchy-Riemann equation

(4.6) du^vr^dίg.χ Qt]

= glX°Qt'dQr

Here, χ is a smooth cut-off function on the real line, such that | χ' \ < 2, χ(x) =

1, for x < 1 /4, χCr) = 0, if x > 1. If ε and / are small enough, then

suppO;,) c [ i < Q, < lj c c {Q, < 2} c c G.

In sections (4.2) and (4.4), in particular Lemma (4.4.1) of Hόrmander's book, [Hor]

the following theorem is contained

THEOREM 5. Let N be a positive integer and D c Qn a pseudoconvex domain, Φ

a plurisubharmonic function, and v be a d-closed (0.1) form with locally square-

integrable coefficients on D. Suppose we are given a strictly plurisubharmonic function

Ψ of class % on D, such that Φ — Ψ is plurisubharmonic on the support of υ, and the

integral

X I | 2 _ ~φ j 2 N

is finite. Then there exists a solution u for the equation

du — υ

which is locally square- integrable on D, and satisfies

X I 12 -Φ j2N ^ o Tf x
\u\ e d z < 2I(v).

In our context D = G, N = n — 1, v = vh for / > 1, Φ = φt, and Ψ — log(l

+ Qt). Next we estimate the integral /(#/). From

dδw 2

(1 + Q,)2

it follows that

I2- <C
\ddW —

where ξM denotes the characteristic function of a set M. The left half of (3.13)



INVARIANT METRICS NEAR PSEUDOCONVEX BOUNDARY 4 3

implies, that on supp vt

φr> -ε2(B + l)t

and in particular

ψt> -nlog4-ε\B + 1).

This gives us

Kv,) < Cnvo\({Q, < 1}) < Cl2Γ
ιRn(f)2.

Let now uι ^ #°°(G) be a solution to duι — vh according to Theorem 5, such that

X I |2 — Ψt i2n—2 r ^ c\ τf \

\uι\ e 'd wr < 2/(1;,).

Since e ' becomes as singular as | w' \ n near 0, all the ut must vanish to at least

second order at 0. Furthermore, the uι are all holomorphic on G\ {Qt > 1}. As in

section 2 of [F-S] we now apply the mean value inequality in order to gain an up-

per estimate for the holomorphic function

defined on Gr = C~2 x Δ(0, 3p2). Let w' e G\ such that Qt(w') < 5; for small

0 < a < ε/n, the polydisc P(wr) around wr with the radii

/ ? = . . . = £ a ^
n~ι 2k'

* aRn(t)
n (l + QM))2k

is contained in Gf as a relatively compact subset. From the inequality | a — b \ >

I a |2/2 - I b | 2 we obtain for any ζ ' e P(α;'), that Q,(ζO > - | 0,(^0 - Qt(w' -

ζ') > 5/2 — (a/n)2 ε > 2. Thus w7 is holomorphic near P(w/). If we denote by

P the polydisc around 0 with the same radii as P(w'), we obtain by the mean

value inequality

(4.7) i u,(un i2 < (R2. . .Rny
2 ί i «,(ζo i v ς . . .rf2ζM

ΛP(«;')

From property (1) for the bumping function φ of Theorem 4 we get for ξr
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Thus the right-hand side of (4.7) can be estimated by

2m ίl \
C 1 4 (l + QΛwO) exp(-r φr(wf q) J,

with universal constants C13, C14, and m = k(n — 1) + n + 2. It is easy to see

that

(4.8) I 7,(M/) I < C1 5(l + Qt(wf))meφ *'* .

Since on {Q^w^O < 5} the right-hand side is bounded from below uniformly with

respect to t, this estimate is also satisfied for wr with Qt(w') < 5. This follows

from the maximum principle. The functions fx all vanish at 0, and

We are now ready to define near 0 ^ dΩ holomorphic functions with the prop-

erties required in the Main Lemma. Let

(4.9) ftiw) = exp [^—ι—jf L)fι(w)

for w e C X G\ 1 < / < n. Finally we have to replace the fx by functions Fx e

H°°{Ω^), with the same behavior at the point pt. We proceed in a similar way as

Bedford-Fornsess did in section 2 of [BF], or Range in [R, proof of Theorem 2.2].

By [C 2] the domain Ωq is regular in the sense of [D-F 1], such that we can choose

a Stein neighborhood basis (Ωq

s)s>0 for Ώq with Ωq

s \ Ωq. Let us choose another

cut-off function ξ, with values between 0 and 1, and which is zero on

[ 2 5 / 4 ^ , °°), and 1 on (— °°, 4p2

2]. For / = 1,. . .,n we define

Further, let Wt = 2 log(l + | w |2) + (n + l)log(| wί + t\2 + \ wr | 2 ) .

Our claim is: For a sufficiently small number 5 > 0 one has

(4.10) f \aι\
2e~Wtd2nw< Cu(s)

JΩq

s

\where C1 6 depends only on s, but not on t, and | ax \ denotes the sum of squares

of the absolute values of the coefficients of ax.

To prove this we choose for a positive number <5 C 1 an s(δ) > 0, such that
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Ωq

siδ) Π 5(0, 3p2) c {r < <5}. This implies

Ωq

siδ) Π supp α, c {3^/2 < U I < 5^/2)} = 5.

By means of the bumping lemma, Theorem 4, we see that on 5:

/ \ ^ δ n 2k 1 / 1 |2 i T r / \\

φ{w q) < -^ ~ βp2 ~ - ^ ( l ^i I + Vqκw)),

where β does not depend on (t, q, δ). For δ < βp2 it now follows that
/"V S(<5) ^>. f / \ I -L /I |2 I T T / \ \ ^ y-γΊ T| /«

i ί f 1 Q j ifkiΛ sy C i if) I II) ' Πi ~\~ 1 It) ~τ~ 1/ I 1J)) ) \ I I f — n/l
uύ a I I OUlJy ULr κ— \W\W , U/ \ Oϋ^VI w i | I v a\lΛ/J / \ \JJ 1V1 .

We show that sλ — s(δ) satisfies (4.8). On supp vι we have for small enough t\

-Wt ^ -2n-2

e ^p2

and, by virtue of (4.8), (4.9)

X I |2 -Wt j2n ^ -2n Γ I /• / \ |2 ,2«

\at\e ιd w < ρ2 / \fικw) I d w
ύe

 si Ωa

sif\supp oti

^ P 2 ~ 2 " C 1 5 Γ
%J Ά/f f

But the last integral is bounded uniformly in t and q by a constant C1 6, since the

integrand is less than a constant times

)

By Theorem 4.4.2 of [Hόr] we find a smooth solution tiι to the equation duι — ah

satisfying

f |«,|V*£C17

uniformly in q, t. Obviously the functions uι are all uniformly (in {q, t)) bounded

on Ωq. Now let

Fι(w)=\ξ(\w\2)fι(w) -uγ{w) -A(pt),

Ft(w) = ξ(\w\2)fι{w) -«,(«;), 2 < l<n.

These functions are holomorphic on Ωψ and behave at pt like the //, and because of

(4.8), (4.9) they satisfy all the requirements of the Main Lemma.

We now construct the function Fo. To do this we apply Theorem 5 with
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N = n, D = Ω, n (C x G) to the 9-data

^o = ^χ ( ' 2 + Q () go-
at

Next we choose the right plurisubharmonic weight functions. First let j 0 be an in-

dex for which

at

and

Then the function

^ (u ) = (1 + ^ ( M ; ) ) e x p ( y φ(z<; q))

is plurisubharmonic and bounded on D, and, for small enough ε0 < 1 also the

function

is plurisubharmonic on the polydisc Δ(pt) used in the proof of Lemma 4.1. From

the properties of <p it follows that λ't is bounded from above uniformly in (q, f).

By the results of [D-F 2] we can choose a small number b > 0 and a large number

M, such that τ •= — (— rexp(— M\ w\ )) becomes a strictly plurisubharmonic

function on D. We set

(7)-λt = exp

Then we have, with a small positive constant c:

So Theorem 5 applies with Ψ = c*(jWι \ ** + Q^j and
t

Φ = c~\c2λt" + λ') 2n\og ξic'* Ψ)
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with a cut-off function ξ, such that ξ(x) = x, for x < 7/8, and ξ(x) = 1, for

x > 1. What we obtain, is a smooth function u0, such that

Fo = X [ 2 + Qt) go + «o

lies in if (Ωq) and has all the desired properties. The proof of the Main Lemma is

complete.

As a corollary we get, using the defining formulas for the domain functionals

KQ9> bΩq, CΩq and Kob^.

THEOREM 6. With a universal positive constant Cl7 the following estimates all

hold:

(4.11) 7 ? - < f(Rn(t))2KΩ{ptjpt) < C1 7

Λ r | γ I2 n-i I γ I2 I y I21

(4.12) ^ - N-ω- + Σ ^ - + - ^ < (CΩt(p, ίθ)2, < ( A JO,
C17 L / 2 ί-2 ' Rn(t) J

v I2 w-! I v I2 I y

/or α// vectors

rl v I
/fo JO < C17 [ i i i - + Σ

Proo/. By means of the function Fo we can estimate the Bergman kernel func-

tion of D = Ωq Π (C x G) in the desired way from below. Replacing D by ί2β is

allowed because of the localization lemma in [Oh].

5. Transformation to the original coordinates

Suppose z ^ Ω Π Blt where Bx is a small ball centered at the origin, which is

contained in the ball B which was introduced at the beginning of this paper. After

shrinking B1 we can find a boundary point q £= Ω Π B and a positive number t,

such that z = q — tev Here £ ~ | Kz) |. We will have finished the proof of

Theorems 1 and 2, if we have shown

(5.D

(Here we write f ~ g for two functions / , g, to indicate that there is a uniform

constant c > 0, satisfying — f < g < cf). Because of the coupling between the
c
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weakly pseudoconvex direction Ln and the strongly pseudoconvex ones, which is

dF
reflected in the appearence of the functions -^f- in Theorem 3, 2 < a < n, it is

quite tedious to convert from the normalized coordinates wlt. . . ,wn to the initial

ones. We agree upon the following

Notations. By Ln we will denote the vector field

where we abbreviate F = F(' q). For 2 < a ^ n we set

f _ ^ dr/dWg d
a ~ dwa dr/dwλ dw{

Then we obtain, with the functions ha{-\ q) from Theorem 3

(5.2) Ln= Σha(wn;q)La,

a=2

where we define hn

 Ξ 1. Furthermore,

.9 n 3F dF

(5.3) ί£ -= \ r (q)\ Σ £ - ° F ι m

l,m=2 VZa OZb

LEMMA 5.1. Let a be a positive integer. We denote by s&a the set of all p- tuples

A = (alf. . . ,ap), with p < a, such that 2 < dj < n for all entries cij of A, and not

all ai are equal to n. Then we have

ΪZ = £» + Σ φALA.

Here LA = Laχ.. .Laχ for A = (alf... ,ap), and

ΨA cAni1 'nip,

with integers cA, pr < p, il9 . . . ,ip, e {2, . . . ,n - 1}, μlf . . . ,μp, > 1, Σyl x ^ =

a — # {i\ at — n}.

/. The proof can be given by induction on α, using (5.2). It consists in a

somewhat long but elementary computation. So we omit the details here.
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LEMMA 5.2. If we setλ = det d£Jtj)"tl=2, then for any a, b > 1:

LTLrλds3-{La-ιϋ;ιλ)'F

is a sum of products of the form

where g is a smooth function, μt, μif and p + p > 2. Furthermore, Σ j μ, ^ a — 1,

Σf/£, < 6 ~ 1.

Proo/. By the definition of Ln we have

The definition of λdΩ gives us immediately

Here, the sum is extended over all multiindices A = (a2,... ,an) of length a and B

= (b2,. . . ,bn) of length b. Next we substitute (5.3) and (5.4) into this and apply

the Leibniz rule.

LEMMA 5.3. For any positive integers a, b one has

fa-l fb-l _ d ,

dwn dwn

a sum of terms of the form Avupσ -, where
dwιdwι\dwndwn

(1) v + μ + p + σ < a + b - 2, and

(2) each of the functions Ampσ is a product of derivatives of ?n/?ι with respect to

(wlf Wy) which contains at least one factor

d(c+d) K

vc

ndwd

n

with c + d<a + b-3.
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Proof Induction over a + b, cf. [K 2], or formula (1.20) in [C 1]. Finally we

will need also

LEMMA 5.4. The function λ can be represented as

φ _ ... φ
^22* y ° L 2 « - 1

\<£ _ _̂  ... (f> _ __

4- V c Φ _ φ _ n

where εvu ^ {—1, 1}, and DVβ denotes the determinant of the matrix which arises from

{^£a1 ° F) by deleting the v row and the μ column.

Proof. Apply the Laplace expansion theorem.

We are now ready for the

Proof of estimate (5.1). Let a, b be positive integers and / = a + b. Then

dι'2λ
~ a-\ ~ -b-1
dwn dwn

n dwn

d£ -
a-l JTb-1 ° F ~*~ ̂ (5.2) + ^(5.3) + ^(5.4)

9M;

= I Ί<«> I' 7 ^ 7 K i «) + (̂5-2) + ^(,3) + (̂5.4) + ^(5.4).
9M;M dwn

Here ^ ( 5 . 2 ) , ^(5.3), and SF(5Λ) are the error terms described in Lemmas (5.2) through

(5.4), and the error term 2F\5Λ) can be estimated by (€2S^ ~ — const -t (&2k(z).

By the choice of the redii we have on Δ(pt)\

dla+βlr, Λ ^ ±%Aw) <
dwadwβ Rn(t)a»+β»

for all multiindices α, β such that ax = β, = 0, and \(Έ"Zl a, + β,) + ^

< 1. In order to estimate the derivatives of the functions ha(wn q)y we apply part
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(c) of Lemma 3.2 with p = Rn(t). This gives

I i (m-1) / \ \ ^ , t

\K (wn;q)\ < const — —

for m < 2k. This enables us to control all the error terms

Θ\ —). The above estimate can now be completed by

(5.4)

d'P,

< const

< const

\-b

+ /1 / 2 tC2 tω] +

+

In this estimate we used

^ ( 5 . 4 ) b y

LEMMA 5.6 If P is a real-valued homogeneous polynomial of degree N in the

plane, then there exists a constant cN, depending only on N, such that

y - II P II < Σ I coefficients of P \ < cN\\P ||.

We take the maximum over all a, b, satisfying a + b = I in (5.4) and sum

over all / = 2, . . .,2/c. This yields

const C2k(

The inequality is obtained in a similar way.

The expression for the invariant metrics. Finally we check that the

pseudometric MΩ(z X) introduced before the statement of Theorem 2 satisfies

Mΰ(z JO + +t2 >-* ' Rn(tΫ

This will conclude the proof of Theorem 2, since if FΩ denotes one of the invariant

metrics under consideration, then
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Fa(z;X)=FΩi(pί;F'(q)X).

Theorem 2 therefore follows from Theorem 6. Now we have

/ (dr(q),X) \

(5.5) F'(q)X= [βiqy'X" + c Xn

\ Xn I

Here, the matrices A = ($ abiq))n

a,b=2

 a n d B(q)(e GL(n — 2, C)), and the vector

C are related by

A=(BT °ΐ(E7 c ) ( B o ΐ .
\ 0 1/ \ f anJ\0 l)

From (5.5) we see that for 0 < η < w:

"Σ \[F'(q)X]j |2 = ( X " ) T ( B ' Y B ' 1 X " + 2RecτB~1X" + \c\2\Xnf

Now the functions S/GO satisfy the relation

(5.6) s,Q0 =Xi-sι(X)rt(q)

for i = 2 , . . . ,w. Furthermore

and

[ F ' ( ί ) A ] w = Xn = sn(X) + Sl(X)rn(q).

This implies

S n ( X ) |2 _

Keeping in mind that for a — 2,.. .,n — 1 one has ca = ha(0 q), we can estimate

i ι2 t

\ c\ < const -. Together with (5.5) we now obtain
(Rn(t)Ϋ

^ const
+ 1

The opposite estimate is shown in similar way. Obviously we may replace
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)=2 by C f̂ljrCz))α,δ=2 The proof of Theorem 2 is now complete.
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