ON VECTOR BUNDLES ON ALGEBRAIC SURFACES AND 0-CYCLES

E. BALLICO

Let X be an algebraic complex projective surface equipped with the euclidean topology and E a rank 2 topological vector bundle on X. It is a classical theorem of $\mathrm{Wu}([\mathrm{Wu}])$ that E is uniquely determined by its topological Chern classes $c_{1}^{\text {top }}(E) \in H^{2}(X, \mathbf{Z})$ and $c_{2}^{\text {top }}(E) \in H^{4}(X, \mathbf{Z}) \cong \mathbf{Z}$. Viceversa, again a classical theorem of $\mathrm{Wu}([\mathrm{Wu}])$ states that every pair $(a, b) \in\left(H^{2}(X, \mathbf{Z}), \mathbf{Z}\right)$ arises as topological Chern classes of a rank 2 topological vector bundle. For these results the existence of an algebraic structure on X was not important; for instance it would have been sufficient to have on X a holomorphic structure. In [Sch] it was proved that for algebraic X any such topological vector bundle on X has a holomorphic structure (or, equivalently by GAGA an algebraic structure) if its determinant line bundle has a holomorphic structure. It came as a surprise when Elencwajg and Forster ([EF]) showed that sometimes this was not true if we do not assume that X has an algebraic structure but only a holomorphic one (even for some two dimensional tori (see also [BL], [BF], or [T])). In the algebraic case the proof given in [Sch] showed at once a slightly stronger statement; not only every pair $(a, b) \in(N S(X), \mathbf{Z})$ arises as topological Chern classes of algebraic bundles, but also every pair $(L, b) \in(\operatorname{Pic}(X), \mathbf{Z})$. In algebraic geometry there are finer equivalence relations on the set of 0 -cycles than just the "topological" one (or "homological" one), which is simply the degree of the given 0 -cycle. By far, the most important such equivalence relation is the rational equivalence relation, which gives the Chow ring $A^{*}(X)$ of X with $A^{1}(X) \cong \operatorname{Pic}(X)$ and $A^{2}(X)$ mapping surjectively onto $H^{2}(X, \mathbf{Z}) \cong \mathbf{Z}$ by the degree map. Mumford discovered that very often $A^{2}(X)$ is huge (see [Mu] or [B], Chapter 1). An algebraic vector bundle E has Chern classes $c_{i}(E) \in A^{i}(X)$ (with $c_{1}(E)=\operatorname{det}(E)$). Thus it seems to be natural to ask if every pair $(c, d) \in\left(A^{1}(X), A^{2}(X)\right)$ arises as "algebraic" Chern classes of some rank 2 algebraic vector bundle on X. In this note we prove that the answer is YES, i.e. we prove the following result.

[^0]Theorem 0.1. Fix a projective complex algebraic surface X. For every pair $\left(L, c_{2}\right) \in\left(\operatorname{Pic}(X), A^{2}(X)\right)$, there is a rank 2 algebraic vector bundle E on X with (L, c_{2}) as Chern classes.

Now fix a polarization H on X, i.e. fix $H \in \operatorname{Pic}(X)$ with H ample. There is a notion of stability (e.g. in the sense of Mumford-Takemoto) with respect to H. It is a natural question to see if the pair $\left(L, c_{2}\right)$ in the statement of 0.1 arises as Chern classes of some rank 2 H -stable vector bundle on X. Even for the corresponding "numerical" problem (with $c_{i}^{\text {top }}$) there are numerical well-known restrictions on $c_{2}^{\text {top }}$ (even on \mathbf{P}^{2}). By [BB], Prop. 1.2, for fixed X, H, and $L \in \operatorname{Pic}(X)$, this assertion $\left(\operatorname{det}, c_{2}^{\text {top }}\right) \in(\operatorname{Pic}(X), \mathbf{Z})$ is true if the integer $c_{2}^{\text {top }}$ is sufficiently large. We were unable to prove the corresponding result for all elements of $A^{2}(X)$ with sufficiently large degree (the construction which proves 0.1 gives very unstable vector bundles). We prove here (see 0.2) a far weaker statement replacing "rational equivalence" with the weaker "abelian equivalence" (see [Sa] or [Li], p. 127) in the following sense; fix a base point $P \in X$ so that the Albanese morphism $\alpha: X \rightarrow \operatorname{Alb}(X)$ is normalized by the condition $\alpha(\mathrm{P})=0$; extend by additivity (as in the case of curves) α to the set of 0 -cycles of degree 0 ; then the Albanese class of a 0 -cycle D of degree b is $\alpha(D-b P)$. Indeed the second result of this paper is the following theorem.

Theorem 0.2. Fix a projective complex algebraic surface X and line bundles H, L on X with H ample. Fix a base point $P \in X$. There is an integer k_{0}, depending on X, H and L, such that for every $k \geq k_{0}$ and every $\mathbf{a} \in \operatorname{Alb}(X)$ there is a rank 2 H-stable vector bundle E on X with $c_{1}(E)=L, \operatorname{deg}\left(c_{2}(E)\right)=k$ and such that \mathbf{a} is the Albanese class of the degree zero 0 -cycle $c_{2}(E)-k P$.

Note that if X has Kodaira dimension $\kappa(X)<0$, then "rational equivalence" and "Albanese equivalence" coincide.

We want to thank the referee for his/her very competent and useful job. The author was partially supported by MURST and GNSAGA of CNR (Italy).

§1. The proofs

Here we prove Theorems 0.1 and 0.2 .

Proof of 0.1. Fix L and c_{2} (as a class in the Chow ring), with, say, c_{2} represented by the cycle $A-B$ with A and B effective and disjoint. Let H be a very
ample line bundle. Just to fix the notations we assume B reduced; it is easy to do the general case changing the notations in step (b) below; alternatively, it is easy to reduce the general case to the case in which B is reduced. The proof will be divided in two parts.
(a) Let F be a rank 2 vector bundle on X. For every integer m the splitting principle shows that in the Chow ring $A^{*}(X)$ we have $c_{1}(F(m H))=c_{1}(F)$. $+2 m H$ and

$$
\begin{equation*}
c_{2}(F(m H))=c_{2}(F)+c_{1}(F) \cdot(m H)+m^{2} H^{2} . \tag{1}
\end{equation*}
$$

Hence to solve our problem it is sufficient to find an integer z and a rank 2 vector bundle Q on X with $c_{1}(Q)=L+2 z H$ and $c_{2}(Q)=c_{2}+z L \cdot H+z^{2} H^{2}$. We will find z and Q solving our problem and with z very negative.
(b) Set $b:=\operatorname{card}(\mathrm{B})$. Fix an integer $c \geq b$ and c smooth curves $C_{t} \in$ $|H|$ with $\operatorname{card}\left(C_{i} \cap B\right)=1$ if $i \leq b, \operatorname{card}\left(C_{i} \cap B\right)=0$ if $i>b$ and $C_{i} \cap C_{j} \cap$ $B=\emptyset$ if $i \neq j$; set $x_{\imath}:=B \cap C_{\imath}, i=1, \ldots, b$. We assume that $(c H-L) \cdot H>$ $2 p_{a}\left(C_{i}\right):=(K+H) \cdot H+2$. Hence there are reduced disjoint effective divisors $F_{i} \subset C_{i}, 1 \leq i \leq c$, with $x_{i} \in F_{i}$ if $i \leq b, F_{i}$ with $\mathbf{O}(c H-L) \mid C_{i}$ as associated line bundle on $C_{i}(1 \leq i \leq c)$. Let \mathbf{Z} be the union of $A, F_{i} \backslash\left\{x_{i}\right\}$ for all i with $1 \leq i \leq b$, and F_{j} for all j with $b<j \leq c$. By construction and the fact that rational equivalence commutes with proper push-forward ($[\mathrm{Fu}], \mathrm{Th} .1 .1 .4$), the rational equivalence class of Z is $c_{2}-z L \cdot H+z^{2} H^{2}$ with $z=-c$. Hence to prove 0.1 it is sufficient to prove the existence of a rank 2 vector bundle Q which fits in the following exact sequence:

$$
\begin{equation*}
0 \rightarrow \mathbf{O}_{x} \rightarrow Q \rightarrow L \otimes H^{\otimes(-2 c)} \otimes \mathrm{I}_{z} \rightarrow 0 \tag{2}
\end{equation*}
$$

since $c_{2}\left(\mathbf{O}_{z}\right)=-Z$ by Riemann-Roch theorem. Furthermore, taking c large enough, we may assume $h^{0}\left(X, K_{X} \otimes L \otimes H^{\otimes(-2 c)}\right)=0$. We will fix any $c \geq b$ with this property. By the choice of c the pair $\left(L \otimes H^{\otimes(-2 c)}, Z\right)$ satisfies trivially the Cayley-Bacharach property (see e.g. [Br] or [C]). Hence among the extensions of $L \otimes H^{\otimes(-2 c)} \otimes \mathbf{I}_{Z}$ by \mathbf{O}_{X} (i.e. like (2)) there is at least one with middle term, \mathbf{Q}, locally free, as wanted.

Proof of 0.2 . Fix the base point $P \in X$ to define uniquely the Albanese morphism $\alpha: X \rightarrow \operatorname{Alb}(X)$ with $0=\alpha(P)$. Fix H and L. We may assume H very ample (taking if necessary a multiple depending only on X of the given polarization). Twisting L by $m H$ for some $m>0$ depending only on X and H, we may assume $h^{0}\left(K \otimes L^{-1}\right)=0$ (a condition used in [BB], §1). We may assume L and $K \otimes L$ very ample (twisting again L by $m H$ for some $m>0$ depending only on X
and $H)$. Set $q:=\operatorname{dim}(\operatorname{Alb}(X))=h^{1}(\mathbf{O})$. Fix the class $\mathbf{a} \in \operatorname{Alb}(X)$ as in the statement of 0.2. Fix an integer $t^{\prime}>0$ such that for every $t \geq t^{\prime}$ the morphism a_{t} : $S^{t}(X) \rightarrow \operatorname{Alb}(X)$ from the t-th symmetric product of X, induced by the Albanese morphism $\alpha=a_{1}: X \rightarrow A$ (with respect to P, i.e. with $a_{t}(D):=D-t P$ for every cycle $\left.D \in S^{t}(X)\right)$ is surjective. The proof will be divided into two steps.
(a) In this step we will show the existence of an integer $t^{\prime \prime} \geq t^{\prime}$ such that for every $t \geq t^{\prime \prime}$ there is a reduced $D \in S^{t}(X)$ such that for every $x \in D$ we have $h^{0}\left((K \otimes L) \otimes I_{D \backslash(x)}\right)=0$ and such that $a_{t}(D)$ is the given class $\mathbf{a} \in \operatorname{Alb}(X)$. Fix any integer $z \geq t^{\prime}$ with $z>h^{0}(K \otimes L)$ and a general $D \in S^{z}(X)$; in particular D is reduced, $p \notin D$ and for every $x \in D$ we have $h^{0}\left((K \otimes L) \otimes I_{D \backslash(x)}\right)=0$. Fix z distinct smooth $C_{i} \in|H|, 1 \leq i \leq z$, with $P \in C_{i}$, $\operatorname{card}\left(D \cap C_{i}\right)=1$ for every i and such that $C_{t} \cap C_{j} \cap D=\emptyset$ if $i \neq j$; set $x_{i}:=D \cap C_{i}$. Set $g:=p_{a}\left(C_{i}\right)$. Note that by Lefschetz theorem and the universal property of Albanese varieties the natural map $\operatorname{Alb}\left(C_{i}\right) \rightarrow \operatorname{Alb}(X)$ is surjective. We want to show that we may take $t^{\prime \prime}:=(2 g+1) z \quad$ (with $z:=\max \left(t^{\prime}, h^{0}(K \otimes L)+1\right)$ if we want). We fix a reduced cycle D_{i} with $\operatorname{deg}\left(D_{i}\right)=2 g+1, x_{i} \in D_{i}, P \notin D_{i}, D_{i}-(2 g+1) P$ linearly equivalent to zero in C_{i} if $i<z$ (hence with $a_{2 g+1}\left(D_{i}\right)=0 \in$ $\operatorname{Alb}(X))$ and with $D_{z}-(2 g+1) P$ a class in $\operatorname{Alb}\left(C_{i}\right)$ mapped under the surjection $\operatorname{Alb}\left(C_{i}\right) \rightarrow \operatorname{Alb}(X)$ into the class \mathbf{a}. By construction we may take as D the union of all D_{i} 's, $1 \leq i \leq z$.
(b) Fix an integer $k \geq t^{\prime \prime}$ (with $t^{\prime \prime}$ described in step (a)). Set $\mathbf{S}:=\{D \subset$ $S^{k}(X): D$ is reduced and for every $\left.x \in D, h^{0}\left((K \otimes L) \otimes I_{D \backslash(x)}\right)=0\right\}$. For any \mathbf{b} $\in \operatorname{Alb}(X)$, let $\mathbf{S}(\mathbf{b}):=\left\{D \in \mathbf{S}: a_{k}(D)=\mathbf{b}\right\}$. Note that $\operatorname{dim}(\mathbf{S})=2 k$ and that for every \mathbf{b} every irreducible component of $\mathbf{S}(\mathbf{b})$ has codimension at most q in \mathbf{S}. Note that every $D \in \mathbf{S}$ satisfies the Cayley-Bacharach property, hence define an extension (2) with Q locally free with $c_{1}(Q)=L$ and $c_{2}(Q)=k$ (in $H^{4}(X, \mathbf{Z})$, i.e. $\left.\operatorname{deg}\left(c_{2}(Q)\right)=k\right)$; if $D \in \mathbf{S}(\mathbf{b})$, then $c_{2}(Q)-(k) P=\mathbf{b}$ in $\operatorname{Alb}(X)$. Hence it is sufficient to show that the set $\mathbf{S}^{\mathrm{un}} \subseteq \mathbf{S}$ giving unstable bundles has codimension at least $q+1$ in \mathbf{S}. Lemma 1.1 of [BB] states exactly the existence of a constant C depending only on X, H and L but not k, such that every irreducible component of \mathbf{S}^{un} has dimension at most $C+q+k$. Thus it is sufficient to take $k>2 q+C$.

We repeat that if X has Kodaira dimension $\kappa(X)<0$, then rational equivalence and abelian equivalence coincide. The proof of 0.2 works verbatim in positive characteristic $\neq 2(\neq 2$ just for the quotation of [BB]).

REFERENCES

[BB] E. Ballico, R. Brussee, On the unbalance of vector bundles on a blow-up surface, preprint (1990).
[BL] C. Banica and J. Le Potier, Sur l'existence des fibrés vectoriels holomorphes sur les surfaces, J. reine angew. Math., 378 (1987), 1-31.
[B] S. Bloch, Lectures on algebraic cycles, Duke Univ. Math. Series, 1980.
$[\mathrm{Br}]$ J. Brun, Let fibrés de rang deux sur \mathbf{P}^{2} et leur sections, Bull. Soc. Math. France, 107 (1979), 457-473.
[BF] V. Brinzanescu and P. Flonder, Holomorphic 2-vector bundles on nonalgebraic 2-tori, J. reine angew. Math., 363 (1985), 47-58.
[C] F. Catanese, Footnotes to a theorem of Reider, in: Algebraic Geometry Proceedings, L’Aquila 1988 (ed. by A. J. Sommese, A. Biancofiore, E. L. Livorni), pp. 67-74. Lecture Notes in Math., 1417, Springer-Verlag 1990.
[EF] G. Elencwajg and O. Forster, Vector bundles on manifolds without divisors and a theorem on deformations, Ann. Inst. Fourier, 32 (1983), 25-51.
[Fu] W. Fulton, Intersecation theory, Ergeb. der Math., 2, Springer-Verlag, 1984.
[Li] D. Lieberman, Intermediate Jacobians, in: Algebraic Geometry, Oslo 1970, pp. 125-139, Wolters-Noordhoff Publ., 1972.
$[\mathrm{Mu}]$ D. Mumford, Rational equivalence of 0 -cycles on surfaces, J. Math. Kyoto Univ., 9 (1969), 195-204.
[Sa] P. Samuel, Relations d’equivalence en géométrie algébrique, Proc. Intern. Cong. Math, Edinburgh 1958, pp. 470-487.
[Sch] R. L. E. Schwarzenberger, Vector bundles on algebraic surfaces, Proc. London Math. Soc., (3) $\mathbf{1 1}$ (1961), 601-622.
[T] M. Toma, Une classe de fibrés vectoriels holomorphes sur les 2-tore complexe, C. R. Acad. Sci. Paris, 311 (1990), Serie I, 257-258.
[Wu] Wu Wen-tsien, Sur les espaces fibrés, Publ. Inst. Univ. Strasbourg, 11, Paris, 1952.

Department. of Mathematics
University of Trento
38050 Povo (TN), Italy
e-mail: (bitnet) ballico itncisca
(Decnet) itnvaxi: ballico
fax: italy +461881624

[^0]: Received June 11, 1991.

