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REMARKS ON FUJIWARA'S STATIONARY PHASE

METHOD ON A SPACE OF

LARGE DIMENSION WITH A PHASE FUNCTION

INVOLVING ELECTROMAGNETIC FIELDS

TETSUO TSUCHIDA

1. Introduction

We consider an oscillatory integral of the form

(1.1) /({*,}, S, β, v)(xL, x0) =

π Vo^Γ) \ e a(xL, •••, x0) Π dxr

Here each xj9 j = 0, 1 , . . . , L, runs in R , v > 1 is a constant and tjf j = 1 , . . . ,

L, are positive constants. Fujiwara [5] discussed this integral for L large and de-

veloped the stationary phase method with an estimate of the remainder term for

the phase function S(xL,..., x0) coming from the action integral for a particle in

an electric field. But his results cannot be applied to the integral which naturally

arises in the discussion of quantum mechanics of a charged particle moving in a

magnetic field. In this paper we extend his results to the case for the phase func-

tion involving both electric and magnetic fields.

We denote the l-th component of x ^ R by (x) h and use the notations: df =

K) = dfx^ ''' due*), w i t h a multi-index a = (χxί9..., ad), and dj{xj) = dx.f(Xj)

as the gradient of f(Xj).

Our assumption for the phase function S(xL,..., x0) is the following:

(H.I) S(xL,..., x0) is a real-valued function of the form

L

(1.2) S(xL,..., x0) = Σ Sj(tj9 xj9 Xj.J,

where
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\X.O) Oj\ί<j, Usjj Λj — \/ pi I UJj\lj) O/j, ^j—\} j J - L , . . . , A-/,

and (ύjitj, xjf xj_ί) satisfies the following conditions:

(i) For any m > 2 there exists a constant κm > 0 independent of j and f; such

that

(1.4) max sup | dx dy ωj(tj, x, y) \ < κm.
2<\a+β\<m x,vf=Rd

(ii) Let (xL,..., x0) be an arbitrary solution of the system of the equation

(1.5) dXjSj+1(tj+1, xj+ι, Xj) + dxSj(tjt xjf Xj^) = 0, = 1, . . . , L - 1.

For any m > 1, there exists a constant Bm independent of (xL,..., x0), L and tβ, j

— 1 , . . . , L, but dependent on d such that

(1.6) Σ Σ I [ ( 9 ^ + dXl + dxJ
adB

x^ + ωj+ι)](x^, x,, xj+ι) | < Bm,
i = l l < l α l ^ m

where (9^^ + dXj + dXj+)a = n^= 1(9 ( x._ i ) A + 9(a.y)t + 3^+ l ) / t)
a* for a multi-index

α = (a?!,..., ad).

Fujiwara's assumption for the phase function in [5] is strictly stronger than

that of ours. He assumed that the phase function is of the form

L

o\XL,..., XQ) 2-( bj\tj, Xj, %i-\)>

with
I 12

Sj(tj9 xjf Xj^) = — ; 2t J~1 ^ hωi% XJ> Xi-J> = 1, . . . , i ,

where ωy(fy, xjf Xj_ ) satisfies the estimate (1.4). In his case, our condition (H.l)(ii)

is automatically satisfied. Let Sj{tjy xjy Xj_ι) be the classical action of a charged

particle moving in an electromagnetic field discussed in Yajima [9]. Then S ; (^ , Xj,

Xj-i) satisfies our assumption (H.I) but does not satisfy the assumption in [5].

This will be discussed at the end of §2.

When S(xL9..., x0) satisfies (H.I), then if TL = tλ + + tL is small

enough, for any x0, xL ̂  R there exists the unique critical point {xL_x,..., xx),

i.e.

(1.7) dXjSj+ι(tj+ι, x*+l9 x*) + dxSj(tj, x*, xfLj = 0, = 1, . . . , L - 1,

where xL = xL, x0 = x0 (The proof is in §3).
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To state the assumption for the amplitude function, we use Fujiwara's nota-

tion:

a(x^jco) = a(xL, x*_lf..., x*t x0).

Similarly, for any pair of integers k, m with k + 1 < m let (xk+ι,..., xm-i) be

the partial critical point, i.e.

dxfr+ittj+i* x*+i> x*^ + dxSjίtj* x*' x*-d = 0, = A: + 1 , . . . , m - 1,

ϊk ϊk

where xk = xk, xm = xm. Then we set

, . . . , Xm, Xk, . . . , Xo) — Ct\XLi. . . ,Xm, Xm-ι,. . . , Xic+i, Xjc> - f xo) -

If m = k + 1, we define

U\XL, . . . , Xjc+v xk> ' ' > x<y u %k' - ' x^y

The assumption for the amplitude function is the following:

(H.2) a(xL,..., x0) is a real-valued function in # ( R d ( L + 1 ) ) . For any X > 0 there

exist constants Aκ and X^ with the following properties:

For any sequence of positive integers with j 0 = 0 < j λ — 1 < j λ < j2 ~ 1 < * * *

(1.8a) I d^d^ Π d"iu~'d"iM a{xL^xi, Xj _lf xj , . . . , Xj-ίf ~x0) I ^ AκXχ,
u = \ )u l u s s s

if I ai I < K, j — 0, y : — 1, y i ? . . . , j s — 1, j s , L. If ;'5 = L, then we read the above

inequality as

(1.8b) ζ: Π 9^9;* βCr,, x^^i,,.,,..., x~Γx0) I < AX

Let us state our main theorems. Let H be the d(L — 1) X d(L — 1) matrix

H =

1 1 . 1 1

\
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and W the Hessian matrix of Σ ; = 1 &)_,-(//, xj9 Xj-\) at the critical point (xL__lf...,

X*).

THEOREM 1. Assume (H.I) and (H.2). There exists a positive constants δ such

that ifTL= tx+ -" + tL<δ then

(1.9) f

(
\d/2

2πT ) exρ{- iv Six^io)} det(/ + H~ιW)~ι/2(a(x^x^) + rCrL, x0)),

and for any K > 0 ί/î re £xtsί positive constants Cκ and M(K) such that if\cto\, \(XL\

(1.10) I d%d£r(xLt x0) I < Amκ)(U (1 + CKXMUDu'ltf) - 1).

Constants δ and Cκ are independent of a, L, U; ), xL, x0 and v but depend on the

dimension d of space R and {fcm} and {Bm}, M(K) depends only on K and d.

THEOREM 2. Assume that a = 1 and (H.I) and let δ be the constant as in

Theorem 1. Then for any K > 0 there exists a constant Cκ such that if | α o | , | aL \

(1.11) I d%d%r(xL, x0) I < Π (1 + C^tjTj) - 1.
; = 1

We remark that our estimate of r(xLf x0) in Theorem 1 is the same as that in

Fujiwara [5], but that in Theorem 2 differs from his in the power of TL : our pow-

er is 1 while his power is 2.

In §2 we see that the phase function coming from the action integral for a

charged particle in an electromagnetic field satisfies (H.I). In the later sections we

mimic the discussion of [5]. The existence of the critical point of the phase func-

tion is proved in §3. In §4 we write down a lemma about the stationary phase

method on a space of large dimension. Theorems 1 and 2 are proved in §5.

2. Piecewise classical path in electromagnetic fields

We give an example of S(xL,..., x0) which satisfies the assumption (H.I). We

consider a charged particle in an electromagnetic field in R which satisfies the

assumption considered by Yajima [9]. In this section we denote the /-th component
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of x €= R by xt. We make the following assumption for the vector and scalar

potentials Ait, x) and V(x)\

ASSUMPTION (A). For k — 1 , . . . , d, Ak(t, x) is a real-valued function of it, x)

e R X Rrf, and for any a, d"Ak(t, x) is C1 in (/, .r) e R x Rd There exists

ε > 0 such that

(2.1) I d"Akit, *) | + | 3 ; 9 Λ ( Λ J?) I ̂  C β f | a \ > 1, (f, *) e R x R r f,

(2.2) | 3 Γ 5 ( ί , * ) | < C β ( l + | αr l ) " 1 " 6 , k | > l ,

where B(t, x) is the skew symmetric matrix with (k, /)-component Bkl(t, x) —

(dAι/dxk — dAk/dxι)(t, x) and | B\ denotes the norm of matrix B regarded as

an operator on R , V(x) is a real-valued C°° function which satisfies

(2.3) \ da

xV(x) \ < Ca, \a\>2.

In the form of oscillatory integrals Yajima [9] constructed the propagator for

the Schrόdinger evolution equation with a vector potential satisfying Assumption

(A). We remark that this assumption is satisfied by constant magnetic fields.

Let Hit, x, ξ) be the Hamiltonian

H(t,x,S) =2-\ξ-A(t,x))2+ V{x).

Then Hamilton's differential equation is

x=dξH(t,x,ξ), ξ=-djf(t, x, ξ)

with x = dx/dt and ξ = dξ/dt. When we introduce the position-velocity vari-

ables by (q(t), v(f)) = (x(t), ξ(t) - A(t, x(t))), then Hamilton's differential

equation is equivalent to Lagrange's differential equation:

(2.4) q(t) = v(t), ύ(t) = Bit, qit))vit) + Fit, qit)),

where Fit, x) = — idfoit, x) — idxV)ix). The next lemma is a result of Yajima

[9].

LEMMA 2.1. Let \t — s\ < 1.

(i) For any a with \ a \ > 1, there exists a constant C'a such that for any solution

iqiτ), υiτ)), s < τ < t, of (2.4),

f \ida

xB)iτ, qiτ))\\υiτ)\dτ<Ca.
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(ii) There exists a constant T > 0 such that if 0 < | t — s | < T, then for any x, y
d

Rd there exists a unique solution (q(τ), υ{τ)), s < τ < t, of (2.4) with q(s) = z/

q(t) = x.

. We refer the proof to Yajima [9, Lemma 2.1 and Proposition 2.6]. •

Let Γ > 0 be as in Lemma 2.1(ii) and \ t — s \ < T. We write the unique solu-

tion q(τ) of (2.4) with q(s) = y and #($ = x as

q(τ) = q\τ) + q\τ)

where q°(τ) = y ^ — Or — y) + z/. Then we have

(2.5) q(τ) = B(τ, q(τ))υ(τ)

and

q\s) = q\t) = 0.

Let G be the Green operator of the Dirichlet boundary value problem:

- <?(r) = /(τ) , s < r < t, q(s) = ί(ί) = 0.

Then we have

= f g(τ, u)f(u)du,

where

(w - s)(ί — r)
, u) = ^ _ ^ , if s < u < τ < t,

(τ — s)(t— u)
— ? if 5 < r < w < /.

Put H/ILi = Γ I /(r) I rfr and \\f\\L~ = s u p ^ ^ , |/(r) |. Then we have

LEMMA 2.2. There exists a constant 0 < T < m i n ( T , 1) such that if\t—s\

< T° then for any α , β with \ a + β \ > 1,
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(2.7) || dxd
β

yq
ι ||L- < || dxd

β

yq \\Lι < Caβ \t - s |.

Proof. The first inequality is Poincare's inequality. Differentiating (2.5) and

using (2.6), we have

II dx q \\Li ̂  I t — s I || B - dx (q° + q1)
d d

+ Σ dXι(q° + q)JXmB-q + Σ dXl(q° + q')m d,MF\L,

< \t - s I [Cjd + II dXιq ||Li) + d ' d +1 | a,,?1 IL-)

+ Q I t - s I (1 + || dxfl ||L-)]

< 11 - s I (Q + Cί + Cx I / - s |)(1 + || ^ / ||Li),

o <5/m o δlm(τ — s)
noting dXιqm = /± _ \ , dxflm ~ —/± _ \— and Lemma 2.1(i) and using the first

inequality of (2.7). Hence if | t — s \ is sufficiently small, we have the second

inequality of (2.7). Similar arguments lead to (2.7) for general a and β. •

Let S(t, s, x, y) be the action of the classical path (q(τ), υ(τ)) joining (s, y)

to (t, x) :

(2.8) S(ί, s, x,y)= f L(τ, ?(r), v(τ))dτ,

where L(r, q, υ) is the Lagrangian corresponding to H(τ, x, ξ) :

2

L(τ, ^, ?;) = vξ — H(τ, x, ξ) = ~γ + A(τ, q)υ — V(q).

For any sequence 0 = To < Tλ < < TL < T and any points x e R , j =

0, . . . , L, we put

where tj = T} — Tj_v We denote by qΔ — qΔ + ^ the piecewise classical path

joining (Tjf χ}), j = 0,..., L, i.e. qΔ is

0/ \ *" •*• ΐ—1 / J j — 1 \ I j—1 rr\ ^- ^ rr* ' t T
π \ T) ^ — i ΊΓ — y ) H— T* / \ 7" \ / 1 ̂  I /
qΔ V ί-/ ± \^ vL ) I O/ , 1 j_γ -i: 6 - ^ 1 j, j ± , . . . , -L>,

and qΔ satisfies

qqΔ(τ) = β ( r , ^ ( r ) ) ^ ( r ) + F(τ, qΔ(τ)), THl < τ < Tj9



164 TETSUO TSUCHIDA

and qΔ(Tj) = 0, j = 0 , . . . , L. The action along the piecewise classical path can be

written as

S(qΔ) — S(xL

y..., x°) — Σ Sjitj, x\ x3'1),
; = i

THEOREM 2.3. Let TL < T\ Then S(x\.,.,/) = Σy= 1 Sj(tjf x3', xj~ι)

satisfies Assumption (H.I).

Proof. First we verify (H.I). Let q(τ) = q°(τ) + ^ ( r ) be the classical path

joining (5, y) to (t, x). We have

/*t /I *^/ ^ ) 1 / \ i2 .

S(/, s, *,y)= £ ( 2

 + Λ ( r ' ^ ( r ) ) ^ ( r ) ~ V(q(τ)))dτ

X — U\2 ft l\ λX(τ) I2+ I2(t- s) Js \ 2
|2

~~ —? \~~ H~ co\t s x ti)

where

i . 1 \ 12

(2.9) ω(̂ , s, x, y) = f ( I +A(τ, q(τ))q{τ) - V(q(τ)))dτ.
Js \ Δ I

Since q satisfies (2.5), it follows that

(dyω)(t, 5, x,y) = f dykq°(B(τ, q(τ))q{τ) + F(r, q(τ))dτ - Ak(s, y).

Noting dykq°m = (t — τ)(t — s)~1δkm, we obtain

(2.10) (dydyω) (ί, 5, x, y) = jΓ' | = ~ (JS β Λ m 9 ^ w + ̂ Σ i dyflndxBkmqm

d \

+ Σ dyιqm'dXmFΔdτ— {dyAk)(sy y).

So from Assumption (A), Lemma 2.1(i) and Lemma 2.2, we have

I dydyω I < d ( l + C \t - s I) + C[(X + C \t - s \) +
C, \t - s I (1 + C \t - s\) + d < κ2,

where /c2 is independent of x, y and ί — s. For the other higher derivatives of ω,

similar arguments hold. So we have proved (H.l)(i).
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Next we show (H.l)(ii). We put

(2.11) ω ; Cry, xj~l) = ω(Tjt Tj_y, χj, xHl)

In the same way as above we have

d^d^(ωy+1Cr;+1, x}) + ω^x1, x3"1))

T,

d

q\)f qΔ)m + Σ d^i
n,m=l

d

^QΔ + Om + Σ 9^(^

+ Σ

\x')

and

Σ
n,m=l

+ Σ d^Λ

This together with

and

^ 1 , THl < τ < Tjf

yields that
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\ xJ,

Σ
n,m=l

dχi)(gΔ)ndXnBlcm(qΔ)m+ Σ
m=l

Γ•'rί1

n,m=l

Σ

When (x , . . . , x ) is a critical point of S(g^), the piecewise classical path

QΔ(τ) coincides with the classical path q(τ) joining (0, x ) and (TL, x ). So we

have from Lemma 2.2

\ x1, xJ+1)

< C(ίy+1 + ί,) + C f I (95) (r, ί(τ)) 11 i (r) | dr

Therefore, we have by Lemma 2.1(i)

L-l

Σ '-\ x1, x'+ι)

CTΔ + C f LI (9B) (r,

where Bι is independent of Cr , . . . , x ), L and TL if TL < T . Similar discussions

hold for other differentiation (9^-1 + d^ + 9^>i)α. Thus we have proved (H.l)(ii).

D

Finally we remark that our phase function S(t, s, x, y) does not satisfy

Fujiwara's assumption in [5]. In fact, in the case that V(x) = 0 and A(t, x) —

A x, where A is a real constant d X d matrix, we can see from (2.10) that

Γι t — T ( d \

(dydyω)(ί, s,x,y) = Js η—j (JC Bkmdyιqm)dτ - (dyAk) (s, y)

X
t t — T / d ,

jZΓziΣB^dM

° 4- A°
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as t — s goes to zero.

3. Phase functions

In this section we discuss the unique existence of the critical point of S

(Lemma 3.5) and study some of its properties. The method is similar to that of

Yajima [9]. In what follows, we assume (H.I) and abbreviate Sj(tj7 xjf Xj_ι) as

SjiXj, Xj_λ) and a)j(tjy xjf xj_1) as ω ;Cr ; , x^-). To avoid additional complexity we

put d = 1.

LEMMA 3.1. Let 2tjfc2 < 1, = 1 , . . . , L. Then for any y and k ^ R, there

exists a unique C r 0 , . . . , xL) = (xo(y, k),...,xL(y, k)) which satisfies x0 = y,

4 -y , ,
= k and

7

h

(3.1)

Proof. We have xλ = x1(y, k) = tjc + y. Put

(3.2)

Then the system of the equation (3.1) is equivalent to

(3.3) k*+1 - k" = djCϋjix^ + tjkj, Xj_,)

+ d^j+l{x-_x + tjk* + tj+1k*+1, x-_, + tjk*), j = 1 , . . . , L - 1.

If 2t2fc2 < 1, for any y, k e R, the map Φ{.

k2 »-> Φ^kz) = k + {dxω^ (y + t,k, y) + (d^2) (y + tγk + t2k2, y + txk)

is a contraction. So there exists a unique k2 = k2(yf k) which satisfies (3.3) for

j = 1. Hence we have x2 (y, k) = x\(y, k) + t2k2(y, k). Similarly we have the

unique existence of k3,..., kL and x3,..., xL, successively. Π

Ύ* i 7/ H§ —— Ύ* (?J H)

As in the proof of Lemma 3.1, we set kj (y, k) — — r— ,

j = 1 , . . . , L, where kλ = k and x0 = y. Let T; = tλ + + tj.
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LEMMA 3.2. If2t}κ2 < 1, = 1 , . . . , L, then for \ a + β\ > 1,

(3.4)

(3.5)

yXj {y, k) — y — Ijl

Jydβ

k(k (y, k) - k ) \ < CaβTJβ].

Proof We prove this by induction on / = \ a + β\. We denote Xj (y, k) by

xj9 k*(y9 k) by kj9 d"dβχ* by xf* and dydβ

kk* by k"β.

Let / = 1. Then we have from (3.2,3),

\o.Ό) JLj Ίj-l ~ ιjK>j i j ~ J-? •> -k>

kf+1 ~ kT ~ (9^-1 + 9/ + dj+l)dj(ωj + ω ; + l)^;W
+ (9 ;

2 (ω ; + ω ; + 1 ) + dj+idjCΰj+Jtjk** + dj+ιdjωj+1tj+ιk"β

lf j = 1 , . . . , L — 1.

So we obtain with 0̂  = O ^ + dj + dj+^d^iωj + ωJ+ι)(xH1, xjt xj+1)

(3/c2a i \ \ 1 O(β

- κ 2 t J + 1 ) I A ;-+ 1 j

Hence if 1 — /c2ίy+i ^ 1 / 2 , then

Here we have used (1 + b) (1 - a)'1 < 1 + 2(a + b) for 0 < 2a < 1. Since *£*,

j : o

α = 0 or 1, it follows from Assumption (H.l)(ii) that | kf+ί \ + | x?β | < C. So

we have

Σ
/ = 1

I dy(kj - k) I < C and | 9 ^ ^ - y - Tjk) \ = | Σ ^ 9 ^ , |

Moreover since we have

;y - y) \ = | Σ ^ 9 ^
/ 1

we obtain by summing (3.6) for j

I a,(/c ; - k) I < CΓ y and I 9Λ Σ= | Σ ^^(/c, - k) \ < CT*.

Next we suppose that (3.4,5) are true for | α + j8 | ^ / and prove them for

| α + j 8 | = / + 1. We put

j-i, kjf kj+ι)

ίyAy + tj+ιkj+19 Xj_λ + tjkj).
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Differentiating (3.3) we have

,aβ _ ,aβ __ ~ aβ , -> # , α£ , ^ # , α0

where the sums are taken in the suitable manner, and

(α1 ( ft) + • + (α l r l , 0,,,) = (a, β), 2 < \ r\ < I + 1,

(«„ A) + + (a,,,, i8lrl) + (αί, A') + + (αίίi. jSfβι

It is clear that

ε .

and

By induction hypothesis (3.4) we have

We can show that

xj-ι
Ύ

< cα j 8α ; + ί m )r^"" 1 ) + ,

with (d)+ = max(β, 0). In fact, in the case 0 <\ β\ — | ^ + + βlrl | < 1, it

is clear from | δ + ε | > 1. In the case that \β\ — \ βx + + β i r j | = 5 > 2, if

s < I δ + ε I, then the left-hand side of (3.7) is less than or equal to

If s > I δ + ε |, then the left-hand side of (3.7) is less than or equal to

with σ = Σlβm]>2 \β'm\ + Σ,^ m i > 2 1 β'fm I, because | δ + ε \ - 1 > Σ\β'm\=ί \β'm
Σ ι ^ ! = i I β'm |. So we have together with x^B — xf\ — tft^,

(1 - κ2tJ+ί) I k%x I + \xf I < (1 + (2/c2 + Dip I kf I + (1 + I 0 ; I) I x £
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where φ)ι+1)(Xj_lf xj9 xJ+1) = Σ i<ι*ι< / + 1 I Oy_i + 9, + dj+ι)
adj{ωj + ωί+1)(xj_l9

XP χj+ι) l Hence if 1 — £2^+i — 1/2, then

I C i I + U / Ί ^ (1 + 2 I 0 ; I + 2(2/c2 4- l)f, + 2* 2 f m ) (I kf I + I < * I)

4- 2Cαj8(| 0 α + 1 ) I Γlfj 4- (ίy 4- t-+l)T(l[l~1)+).

It follows from Assumption (H.l)(ii) and x" = A f = 0 that

Hence we have

j
I j CXβ I ^ /~\ rr\ \β 1 I Qίβ I I ^~"l i -I Oίβ I ^s

The proof is completed. D

We need the inverse of the map (y, k) •-* (y, xL (y, k)). To this end we intro-

duce the new variables:

(3.8) x{y9 k) = x*(y9 k/T) and kj(y9 k) = T;/c;

#(z/, Λ/7;), = 1 , . . . , L.

LEMMA 3.3. For any a and β, there exists Caβ such that

I (Jy (sj. \C/j.tX/j J./ I I I C/j. (sL- \OL-Xj J-/ I

I dy dk κdyx ) I + I dy dk (dkkj — 1) | < CaβTj.

Proof. This follows from Lemma 3.2. •

LEMMA 3.4. There exists a constant T > 0 such that if TL < T, then the map

(y, k) >-+ (y, x) = (y, xL(y, k)) is a global diffeomorphism on R x R.

Proof. Let T satisfy 2C00T < 1 with the constant Coo in Lemma 3.3 and 2tc2T

< 1. Then by Lemma 3.3 the map k »-* U(k) — x + k — xL(y, k) is a contrac-

tion. So Lemma 3.4 is proved. •

Let (y, k(y, x)) be the inverse of the map (z/, k) »-• (z/, x) = (y, xL(y, k))

in Lemma 3.4 and set k(y, x) = k(y, x)/TL. Put

(3.9) Xj*(y9 x ) = x * ( y 9 k ( y , x ) ) , j = 1 , . . . , L — 1 ,
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where x0 = y and x* = x.

LEMMA 3.5. If TL < T, then Xj (yfx)fj — 1 , . . . , L — 1 is the unique critical

point of S with xQ = y and xL = x, i.e. it satisfies (1.7).

Proof. Let y, x ^ R. Then by Lemma 3.1, for y, k = k(y, x) there exists a

unique (zo

#(y, /c),..., #/(#, k)) which satisfies (3.1). And we have x[(y, k{y> x))

= x by Lemma 3.4. These xβ (y, k(y, x)) are nothing but the desired Xj (y, x). D

The next lemma gives the estimates of the critical point.

LEMMA 3.6. We have

(3.10) I TLdyk* + 1 I + I TLdJc* -1\<CTL, 1 < j < L .

(3.11) \dffikΐ\£Caβ, \a + β\>2, I < j < L.

(3.12) I 9 ^ * I + I dxX* I < C, 1 < < L - 1.

(3.13) I dXx* I < CaβTLJ \a + β\>2, l<j<L~l.

Proof (3.10): From the facts that TLkf(y, x) = TLk(y, x) = k(y, x) and

(3.14) xL(y, k(y,x)) =x9

differentiating (3.14) and using Lemma 3.3 we have (3.10) for the case; = 1.

(3.10) for 2 <j < L follow from Lemma 3.3, (3.10) for j = 1 and from the

fact that

(3.15) Tjkf(y, x) = Γ;7c;

#(z/, k(y, x)) = kj{y9jl-k(y9 x)).

(3.11): For | a + β \ > 2, differentiating (3.14) we have

0 = dXxL(yy k{yy x)) = dkxL-d^dβ

xίc

+ Σ CdfdB

k'xL-d^k - dayx%

where 2 < | a! + βf |, 0 < / < | a + β |, (0,0) ̂  (α w , j8m) < (α, j8), 1 < m < /

and (αx, &) + ••• + (α,, j8,) < (α, β). Hence we have (3.11) for the case = 1:

\{da

yd
B

xk){y,x)\<Ca,TL

by induction on n = | α + β |, using Lemma 3.3.

Similarly, differentiating (3.15) we have
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\{d^dB

xTik*){y,x)\<Ca,T,

by induction, using Lemma 3.3 and the estimate for dy dxk(y, x).

(3.12): Since we have

Xj (y, x) = Xj (y, k(y, x)) — x\y, -^k(y, x)),

the proof is clear by (3.10) and Lemma 3.3.

(3.13): For | a + β \ > 2, we have similarly to the proof of (3.11)

Z-J l-Όy Uk Xj \-Lj' lL'™y ^x "* \J-jf IL'^V ^X "'»

where 2 < | a! + β'\, 0 < / < | a + β |, (0,0) Φ (am, βj < (a, β), 1 < m < I

and (av βλ) + + (αz, ft) < (α, j8). Therefore from (3.11) and Lemma 3.3,

we have (3.13). Π

We introduce the same notations as in [5]. Let m and k be two positive inte-

gers with m> k + 1. We define (x w _!, . . . , ^ + i ) as the partial critical point, i.e.

Here xm — xm and ΛTΛ = xk. We denote the critical level by Smιk+1(xm, xk), i.e.

O ( T* T* ) — ^ \ Ύ* Ύ ) ~l~ * * * ""!"" Ŝ  ( T* Ύ I

If /c + 1 = m, then we set Smk+ι(xm, xk) = Sm(xm, xm-0 For any m > k, we put

Γ(m, k) — tm + + tk, and T(k, k) = tk. For a sequence of integers (/Ί> > is)

such as 0 = ; 0 <jι<j2< '" <js<L = js+1, we put

# s ί ί #

LEMMA 3.7. L ί̂ TL < T. Then SJs..9Jι(xLf xjs,..., xji9 x0) satisfies (H.I) with

constants κm and Bm different from κm and Bm :

(ϊ) S*rJr_i+1(xJr, xh_) is of the form

X* -

°U-l+l lV XJrJ 2T(jr, j r _ ι + 1 )

For any rn > 2, there exists κm such that

L *

(3.16) m a x s u p dxdyωjj+1(x9y)\<iίcm9
2<\a+β\<m x,y
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where κm depends on {/c,} and {B) but not on r and tj.

(ii') Let (xL, xjs,. . . , xjif x0) be an arbitrary critical point of S,s...,y i.e.

(3.17) dj S" j +1(xj , x.) + dj S- * +1(xj, x* ) = 0, r = 1 , . . . , s.

Then for any K ^ 1 there exists Bκ such that

( 3 1 8 ) 5 δ J m" + dl'+ d'rΛK^ + < ^ Crw x)r, £,J I

Bκ depends on {/cz} αnίί {Bt} but not on (xL, Xj,..., Xj , x0) and s.

Proof (i) We investigate simply S(xL, x0) instead of Sjrtjr_ί+ί(xjr, xJr_), to

which a similar argument applies. Since (xL_v..., xt ) is the critical point of S,

we have

d0S(x^Ίϊc0) = do(S(xL, # * _ ! , . . . , x*9 x0))
\OQOI) \X{ , XQ) .

Hence we have

d2

QS(x^Ίoo) = (dlSJίx?, x0) + (dfioSJίx?, xQ)dox*

= C + d2

0ωx + (~ t;1 + d&ωj (1 + t&k*)

= 30

2ω1 + dίdoωί + (— 1 + t^dyω^djc^,

where we have used doxι — 1 + tyd^kγ which follows from (3.9). Since by

(3.10,11) of Lemma 3.6 we can write

9<Λ*(χu χi) ~ ~ ~Ψ~ + b(χL> x<)> b(xL, x0) e | ( R x R ) ,

we have

d2

0S(xL, x0) - -7fr + 9oωx + do 9 i ω i ~ "τ~ ̂ l ^ i + (~ 1 + tφ^dλω^b{xL, x0).

For the other derivatives of S(xL, x0), similar arguments hold, since we have

dodLS(x^Ίxo) = dLk*(— 1 + t^d^^ = dok*(\ — tLdLdL_^L)

and so on. Therefore we obtain (i')

(iθ To simplify the notation we put / = j r _ l f m — j r and n = j r _ v We have
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(3.19) (9, + dm + dn)dm(ω#

mJ+1(xmi *,) + < w + 1 C r M , xj)

dn)dm(s*mtl+1(xm, X l ) + s*n,m+1(xn,

+ d2

mωm + dmdm_xωm + d2

mωm+1 + 9 w 9 w + 1 ω w + 1

+ dmk*+1(tm+1dmdm+1ωm+1 - 1) + dmk*(l - tndndn.^n),

where kι+1 and km are functions of (xl9 xm) and km+ι and kn are of tew, J: M ). We

can show that

m—l

where φj(xj-v xjf xj+1) = [(9 y _! + 9 ; + 9 ; + 1 ) 9 ; ( ω ; 4- ω ; + 1 ) ] (xy_!, ^ , «r, _i). In

fact we have

tmdmk* = 1 - 9 A

where ^ ^ = ( Λ ; / + 1 , . . . , xm- ) and PF(/ 4- 1, m X/fW) is the Hessian matrix of

ωy with respect to Cr / + 1 , . . . , a:m_1) at Z ^ :

*, rn;X*J

/df+1(ωι+ι + ω / + 2 ) dι+1dι+2ωι+1dι+2ωι+2

/ 2

+ 2 (a) / + 2 + ω / + 3 )

0

Therefore we have

(3.20) (9, + 9W + 9B)9w(

= Σ φ,(x*lt x*, x*+1)dmx*(xt, xj + φm(x*.v x*, x*+ι)

n-\

Σ φjix^x^x
; = m + l

When (x £ , ^ ; V . . . , xJif xQ) is a solution of (3.17), (xL, x^ix^ Xj),..., x*(xjl9

x0), X0) is a solution of (1.5). So summing the absolute value of (3.20) over r (be-

cause / = j r _ l y m — j r and n = jr+ί) and substituting (xL, xjs,..., x ; i , x 0 ) , we have
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(3.18) for K = 1 by (3.12) and (H.l)(ii).

Next we show (3.18) for the case K = 2. We can rewrite (3.20) as

(3.21) (9, + dm + dn)dm(ω*mJ+1(xm, xt) + ω#

n>m+ι(xn, xj)

= Σ φj(x* ~ tjk*, x*, x* + tj+1k*+1)pj(xlf xm, xn),

where pi are bounded in 58 by (3.12,13). Differentiating (3.21) by (9, + dm + dn),

we have

(3.22) {dι + dm + dnΫdm(ω*m>ι+1(xm, xt) + ω#

n>m+1(xn, xj)

dn)k*+φ,

where φf = (d,^ + dt + 9 y + 1)
29 y(ω y + ωJ+1). On the other hand by (3.10,11) we

have

*

m,(9, + dm + dn)k* = O, + djk* = qt, l + l<

(9, + dm + dn)k* = (dm + dn)k* = q)t m + l<j<n,

where #; are bounded in ®. So from (H.l)(i) and (3.12,13) the right-hand side of

(3.22) is of the form

(3.23)
n-l

Σ
; = /+!

where p'jf p] and q] are bounded in 58. Summing the absolute value of (3.23) over r

and substituting (xL, xjs,..., xjχt x0), by (H.l)(ii) we have (3.15) for K = 2. For

the other higher derivatives similar arguments hold. So (ii') is proved. D

Next we consider the Hessian matrix at the critical point. The Hessian matrix

of S is equal to H(L) + W(l, L x), where

Hit) =

t
L2

0 \

+

t ft t
ι2 ι2 L3 L3
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and for x — (xly..., xL__^),
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dl(ω1 + ω2) d1d2ω2

, L x) = ω3)

We have

det H(L) = , TL , .

Let G(L) be the inverse of H(L). Then its (ij) entry is

( G ω ) , , = Γ ' ( Γ l

Γ ~ r ' ) , i i i < i < > < i - i ,

We set

i ( L ) — ^n ' * + h) ~

- 1 ,

h

+ tL)

h -
Ά -

τ3 -

h
Ά
T

-h ~ h

and

c2α) =

't3 0 - 0

h h o -

h h - h

Then we have G(L) =

x e R

We use two norms || x |L =
L-l

, ! | x} | and || x Hj = ΣyΓi I xf I for any
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LEMMA 3.8. Let x* = Or*, . . . , xL^ = (xλ (x0, xL),..., xL_x{xQi xL)) be the

critical point Then we have for any u Ξ R

G2(D Wil, L x*)u I < (9/t2 + B,)TL \\u || « and

, L x*)M L ^ (9A:2 + β χ ) TL || M || „.

Proo/. For the proof we have only to sum the magnitudes of all component of

the matrix G2(L) W(l, L x ). Since the first column of G2(L) W(l, L\x ) is

A , =

t2dl(ω1 + ω2)

t3(d1(ω1 + ω2) + dλd2ω2)

tA0[{ωι + ω2) + d^ω^

tL(d1 (ωx + ω2) + dλd2ω2)

we have || hλ \\λ < 3ιc2TL. For 2 < j < L - I, the -th column of G2(L) W(l, L

X ) IS

* < =

\

where φj = (9 ;_! + 9 ; + 9 y + 1)9 y(ω ; + ω y + 1 ). So we have || hi \γ < 3tc2(tj +

W + ^i I 0y l Therefore by (H.l)(ii), we have Σ^l \\ h} \\x < (9fc2 + BJT^ D

Let xx be the critical point of S2(x2, xj + S^x^ x0) with respect to xv We

define a function D(S2 + Sx J:2, X0) through the Hessian determinant at xx in the

following way:

det Hessx*(S2 +

For m > A: + 1 we define /)(^ m , xk) by

= *' Z)(S2
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t,
( ^ . . . ( 4 + i ) ( S m + • + Sk+ι)) = \ + i ... tm " D(xM, xk).

LEMMA 3.9. Let 0 < Γ 1 < T with 2(9/c2 + BJT1 < 1. // TL < T\ then we

have

D(xL, x0) = Π D(Sk + S*k_ltl;xk,
k=2

Proof. When 2(9A:2 + BJ TL < 1, we have that

detHess C c *_ l , . . . f J ? ) (S j f e ( j ; Λ , x*^) + + ^ C r f , x 0 ))

= f* t ' " f+^ d e t ( / + G ( A ) i F ( l , k x*)) Φ 0, k = 2 , . . . , L ,

because / + G(k)W(l, k x) has the inverse matrix by Lemma 3.8. So applying

[5, Proposition 2.6], we can prove the lemma by induction on L, similarly to

[5, Proposition 2.8]. D

LEMMA 3.10. If TL < T , we can write

( 3 . 2 4 ) D(xL, x 0 ) = 1 + TLg(xL, x 0 ) ,

where g(xL, x 0 ) remains bounded in 58(R X R ) uniformly with respect to tlf..., tL.

Proof By Lemmas 3.6, 3.7 and 3.9, we can write

U\Xτf X(y -*••*- ^ k k 1 1 t kt 0 '

k=2 v 1k

= Π (1 + tkpk(xL,x0)),
k=2

where pk(xL, x0) are bounded in 3B(R x R). So the lemma is proved. •

It is noted that Lemma 3.10 differs from Fujiwara [5, Proposition 2.10] in the

power of TL our power is 1 while his is 2.
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4. Key lemma

In this section we write down key lemmas to prove Theorems 1 and 2. Their

assertions are the same as those of [5] except for the form of the phase function.
I I 2

Let Sj(tj, x, y) — w. ^ ωMv x^ ti)> ι'• = 1>2 be phase functions satisfying

(H.l)(i), and a(x, z, y) an amplitude function in 38(R x R x R). We set τ =

t1t2/(tι + t2) and E = vi/(2π). The notation D(S2 + Sλ x, y) is given in §3.

LEMMA 4.1. Assume that 8τ/c2 < 1. Then

/ Γ \ l / 2 / Γ \ l / 2 r

I7-J \-r) I e a(x, z, y)dz
\tι/ \ΐ2/ JR

= (-~)1/2e-ivSil(x y)D(S2 + Sι;x, yy1/2b(x, y),

with

b(x, y) = a(x, z*, y) + (-J~)D(S2 +S1;x, y)~ι\^(Aza)(x, / , y)

+ τD(S2 + S1;x, y)~1r1(xf y)\ + (£) D(S2 + S, x, y)~2r2(x, y),

where Δz is the Laplacian with respect to z. For any m > 0 there exist Cm and

M(nϊ) such that if \ a \, \ β \ < m,

dxdy^ix, y)\ + \ d"dyr2(x, y) \ < Cm max sup | 9"'dζd r

z 'a(x, z, y) |,
z

where max is taken for a' < a, βf < β and γ' < M(m). M{m) can be chosen as

2nι + Ad + 2.

Proof We have only to apply the stationary phase method (cf. [1, Theorem

4.1].) D

The next lemma plays an important role.

LEMMA 4.2. For the phase function we assume (H.I). Let a(xL,.. ., x0) be an

amplitude function in 58 (R ). Then there exists a constant δ > 0 such that if

TL< δ then

tj), S, a, v)(xL, xQ) = (9 T ) exp(— ivS(xL, xo))b(xL, xQ).
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For any m > 0 there exist constants Cm and K{m) such that if \ a0|, | aL | < m,

I d?d?b(xL, xQ) I < CL

m max sup | dβ

L

Ldf^ dζ°a(xL,..., x0) I,
β

where max is taken for (βL,..., β0) satisfying β0 < a0, βL ^ αL and | β ; | ^

y = 1 , . . . , L — 1. Cm and i£(m) do not depend on L, v and a. We can choose

K{m) = Urn + 48d + 21.

For the proof of this lemma we refer to §3 of Fujiwara [5]. Though the

assumption here for the phase function is more general than that of [5], the argu-

ments there apply to our case word by word.

5. Proof of Theorems 1 and 2

The arguments in the proof of Theorems 1 and 2 will be the same as those in

[5] except for taking (1.8b) in (H.2) into consideration.

For any l> k we put T(l, k) = tt + + tk and T(k, k) = tk. We set

E = vi/(2π). Let δ be as in Lemma 4.2 and let T be as in Lemma 3.9. Put

δ' = min(<5, T 1 ). When TL < δ\ we consider the oscillatory integral

(5.1) /({f,}, S, a, v) =

L /E\ι/2 r i L \ L~ι

Π (ηr j I exp( - iv Σ Sj(xj9 xH1) )a(xL,... ,x0) Π dxj.

First we perform integration over xγ space. Applying the stationary phase

method, we have

(5'2) ( f Γ ( f Γ X e - ^ ^ s ^ a { x L , . . . , xo)d^
I E \ 1 / 2 *

= \ Γ(2 1) / e~wS2'liX2'Xo)((S^) (Λi,..., x2i xQ) + (Rxa) (xL,... ,x2, x0)),

where Sλa is the main term

(5.3) (S^) (xL,..., x2, x0) = a(xL,..., x2, Ίro)D(S2 + Sί x2, xo)~1/2,

and i ? ^ is the remainder term.

Next, we integrate Sxa over x2 space and apply the stationary phase method,

then we have
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( 17 \ 1/2 / 171 \ 1/2 /•

TJ ( π f j y ) JRe'MS3(X3'X2)+S2l(Vo))(S1a)(xL,...,x2,xo)dx2

\ 1/2 #

) / e~iVS3liX3'Xo)^S2Sιa) (xL, ...,xz, x0) + m&a) (xL,..., x3f x0)).

Here S ^ α is the main term and R2Sιa is the remainder term, i.e.

(5.5) (S^ά) (xL,..., x3, x0) = ( *

where x2 is the critical point of S3 + S 2 1 with respect to x2.

Repeating this process L — 1 times, by Lemma 3.9 we have the main term of

Theorems 1 and 2:

(5.6) (-^j e-'vStM) (S^S^ • • • Sl0) (xL, x0)

Next we treat the remainder term. Since (Rxa) (xL,..., x2, x0) has compli-

cated structure as a function of x2, we postpone integration over x2 space of the

term including (Rfl) (xL,... ,x2, x0) and perform integration over x3 space before-

hand. The stationary phase method gives

/ P\l/2 / p\l/2 / p \ 1/2 r

^ (f) (f) (nfϊy) le-**™^
X (i?^) (xL,..., x2, xo)dx3

/ p \ 1/2 / p \ 1/2 Λ #

_ f Ά \ I & \ -ιv(St3(x4,x2)+slι(x2,x0))

\T(4,3)/ VΓ(2,1)/
x ((Sgi?^) Cr L , . . . , ^ 4, x2, ^0) + (R3Rιθ) (xL,..., x4, x2, x0)),

where S3Rλa is the main term and R3Rγa is the remainder i.e.

(5.8) (Sβ^) (xL,..., x4, x2, x0) = (R^) (xL,..., ^47^2. x<)D(SA + S3 x4, x2)~1/2.

Similarly, we skip integration over x3 space of the term including (R^^) (xL,...,

x3, xQ) and integrate it over x4 space.

We continue this process: if Rk appears we skip integration over xk+1 space.

Thus we can write /({ί; }, S, a, v) as

(5.9) Mtj}, S, a, v)(xL, x0) = A0(xL, x0) + Σ Ά ^ . ^ f e , x0).

Here the main term is
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(5.10) A0(xL, x0) =

The sum Σ ' is taken over the sequences of integers (js, j s _ l f . . . , jλ) with the

property

The summand is

(5.11) AhJ^...h(xL, x0)

E

The amplitude of this is

(5.12) bJsJsι...^(xL, Xjs,..., .r^, XQ) — \QL-\QL-2 ' * ' QIG) \χu xjs> 1 xj^ x<) >

where

Qj = id, if y = y5, y5_i,..., j v

= R ; , if y = ys - 1, ys_! - 1 , . . . , jλ - 1 ,

= Sjf otherwise.

The phase is

# sίi #
(£. 1 Q\ C# ίr* r* r r 1 = V V f-r T ^

w=l

where we understand S^+ i Λ + 1 = 0 when j s = L, and S,#

s+lJ 5 + 1 = SL

#

L = SL(xL,

xL_ι) when 75 = L — 1. In (5.11), when j s = L then the integration over x ; is not

performed. Moreover we understand -ψ?- Γ ~τrτy = 1 when j s = L, and T(js+ι,

j s + 1) = Γ α , L) = ί* when j s = L- 1.

te. Fujiwara [5] did not take the case j s — L into consideration in the sum

of (5.9).

By Lemma 3.7 we know that (5.13) satisfies (H.I). So we can apply Lemma

4.2 to A* j ...,• and obtain

(r r) - (—
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where ajsjs_ι-..jι satisfies the estimate: For any m > 0 there exist Cm and

Kim) such that if | aL |, | a0 \ < m,

(a) when j s < L,

(5.14a) I dlLdQ°aJsJ _ ... ; ixL, x0) \

< Cs

m max sup | dβ

L

Ldj*s d*lιdl%sJs_ι...h(xL, xjs,..., xh, x0) |,

where max is taken for βL < aL, β0 < a0 and βju < Kim) = 12m + 48 + 21,

u = 1, . . . , 5,

(b) when ; 5 = L,

(5 .14b) I dLLdQ°aJsJsί...jιixL, x0) \

< Cs

m m a x s u p I dB

τ

Ld®is~ι d^d^b* , ,.mi (xr, xf , . . . , J:,- , X 0 ) L
w Γ I i^ J S-l •'I •'S ' S - 1 •'1 •'S—1 Ί

where max is taken for βL < aL, β0 < a0 and βj < Kim) = 12m + 48 + 21,

u = 1 , . . . , s — 1. So we have

/ p \ 1/2 #

(5.15) Mtj), S, α, y) = (-ψ-) e-ivSL'liXL'Xo)D(xL, x0Γ
1/2ι(a(x^x0) + r(xL, x0)),

r(xL, x0) = D(xL, xo)
1/2 Σ' aJsJsι...h(xL, x0).

Therefore from (5.14a, b, 15) we see that we have only to estimate δ ; ; ..; to

prove Theorems 1 and 2.

Proof of Theorem 1. Assume (H.2).

LEMMA 5.1. Let TL < δf. Then for any m > 0 there exist constants CmΛ and

M(m) such that for any a0, aL, aju < m, 1 < u < s,

(5.16) I W J Π d^biίlM...h(xL, xis,..., xh, x0) I < C'aΛ ^Π y" 1 ^

x max sup | 9^90

flβ Π df^d

max ts ία^n /or ̂  < aL, β0 < a0, βju < aju and βju_λ < Mini) and sup is

taken for xju-ι, 1 ^ u < s. Here when j s = L, the notation dL

L appears only once and

we understand xL, xjs — Xj on both the sides of the inequality (5.16). We can choose

Mini) = 2m + 4 + ' 2 .

We assume Lemma 5.1 for the moment and prove Theorem 1. From (H.2) the
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right-hand side of (5.16) is majorized by C^Λ(Yls

u=ι v~ t^Amm)X
s

mm). So combin-

ing (5.14a, b) with Lemma 5.1, we have with wΐ — K(m)

It follows with (5.15) that

( Σ cs

mcs

m,Λrmml) π ( y - \ ) ) ι A
M ( M Ί

J — 1

- l)Ammn.

This is the estimate (1.10) in Theorem 1 with Af(m') = M(K(m)) = 2(12m + 48

+ 21) +4 + 2.
Lemma 5.1 follows immediately from the next lemma. For any sequence of in-

tegers 0 < kx — 1 < k1 < k2 — 1 < < kr - 1 < kr < L, we set

( 5 . 1 7 ) Pkrkr_1*»»k1{3'L> %L-V ' - •> Xky+1* %kr> ^kr.λf •» Xkχy %0'

~ (QkrQkr-l ' * ' QiQ) \χU XL-H - y Xkr+1> Xkr'
 Xkr_χy » ̂ Λ^ XW t

where

Qy = Id, if; = fcr, Λr_!, — , Λlt

= i? ;, if; = k r - 1, /cr_! - 1 , . . . , /q - 1,

= S ; , otherwise.

LEMMA 5.2. For αnjy m > 0 ί^rβ ^wί constants Cm2 and M(m) such that for

arbitrary aL, if a0, ak. < rn, I < j < r, then

(5.18) I d?d? π 0 ^ , , , ^ ^ , ^ . ^ - ^ ' χo) I
.7 = 1

r /f. 7 ( ^ - 1 , ^ + 1)N

x max sup d"Ldo° Π dffid*k

max is taken for β0 < a0, βk. < akj, βkrl < M(m), 1 < < r, and sup is

taken for xk lf 1 < j < r. Moreover, for any sequence of integers kr < lx — 1 < lx

< l2 — 1 < * * < lq ^ L, and for arbitrary multi-indices aL, aι , at _ly 1 < u

< q, ifa0, ak. < rn, 1 < j < r, then

q r

(5.19) I dL

LdQ° Π (9, ' "9, ι ^) Π dk

k}

«=i u u i=i 7
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q r

x max sup | oL oQ Π (9, _ι oι

 u Π okLιdk')

X U\XLi X^, %ιq-i, Xl^i > ̂ /j-lί -̂ Λr> > Xk-L-l* %W l>

max is ίαkn /or j80 < α 0, j8Aj ^ αΛj, >Sfei_x < M(rn), I < j < r, and sup is

taken for xk._lf 1 < j < r. Here when kγ — L and lq — L respectively, the notation d"L

appears only once and we understand xL, xkr — xk- and xL, xι — xι on both the sides

of the inequalities (5.18) and (5.19) respectively. We can choose Mini) — 2m + 4 + 2.

Proof. We prove only (5.19) by induction on r. (5.18) will be shown similar-

ly. To prove the case for r = 1, we abbreviate kx as k. We have

Pk^L' %L-V ' •> %k + l> ^k> %0' ^^k-l^k-2 ' ' ' ^ l ^ / V«̂ L> "^X-l' * •» "̂ A:> •̂ 0-'> AC s^ O,

We set

ίS\Jbκ i f X(y ^^-Xj_,f L 1' * * * f k* k 1' 0 ' 1 ^ ^ '

d\X^f . . . , ^2» *^Ί> * ^ 0 ^ II At Z .

Let S*tl(xίf xQ) = S^Xi, x0). Then we have

tj

*

tj

_ /
\T(k, I)) e

X D +

Therefore, if k < lx - 1 < I, < l2 - 1 < < lq < L, then

( Z?\ 1/2f)
X
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( z? \ 1/2

T(k, e

~Γ O/c_ιι I X Λ , «£0/ Q^XU Xlq>
 Xlq-l> ^lq-ι> ' ' '> Xlι~l> ^k> X0'

' PΛXL> Xlq>
 Xlq-l> ^lq-ι> ' '> *Z'/1-1» ^k> %θ))

Differentiating (5.22) with respect to xL, xt , xι _x and applying the stationary

phase method Lemma 4.1, we have the estimate: For any m > 0 there exists Cm

such that for arbitrary aι , aι _v aL, if a0, ak < m,

°k °0 iL ^°lu

 ϋlu-l'υL

ftkT(k- 1, 1)\
°^ \ pΓ(/c 1) / P * Λ 1 ° _

where max is taken for β 0 < α0, βk < ak, βk_λ < K(m) = 2m + 4 + 2. When

/9 = L, the notation 9^L appears only once on both the sides of this inequality.

From (5.20) Leibnitz' rule gives

k υ0 Ll ^°lu °lu-l )ϋL Vh\XL > Xlq>
 Xlq-V •> ^/i-U X/c» Xθ'

q

max sup | d^d^d^ Π (d^ud^H~ι)d^L

where max is taken for β 0 < α0, j8Λ < αΛ, βk_λ < K(m) = 2m + 4 + 2. We

choose Cm>2 > C W C;. This proves (5.19) for r = 1.

Next we suppose (5.19) for r and prove it for r+ 1. Let A:r < /cr+1 — 1

< K+ι < l l - l < h < •" <lq<L We set

/ Q . . . C »̂ "\ //y> /y. -γ> /y. \

Then we have from (5.23)

/ F \i/2/ ? \i/2

(5.24) / ^ N / ^
E γ/2( E

ΰj \T(knl-\, *,
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X qvXL, Xlq,. . . , X^-i, Xkr+1>
 Xkr+1-V xk,

( E \ 1 / 2 #

\ T ( k k + l ) ) e? I p

T(kr+1!kr+l)) e

r+1-hkr+l > ̂ kr+1>
 Xk) Q\XL> Xlq> t Xlλ-1> Xkr+1>

 Xkr'> •>

We apply Lemma 4.1 to (5.24). Then we have from (5.23) for any m > 0 if α^,

(5.25) I d"Ldo

α° Π (d^'d?1?!1) Π (dk

k

u=ί U U u=l U

m — 1 k 4-,.r+1 r+l 1, /t r T-

<cn

x max sup | ^ C Π
r-1

Π

vT(kr+1, kr

x max sup | d"Ld"0 Π ^i1) Π (d^d
'« i , κu κr+

u 1

X Pkr'"kSXU Xlq> - - i Xl1-1> Xkr+1>
 Xkr+ι-l> Xkr> > ^A;^ ^ θ

where max is taken for Bk < ak . Bk < ak , βk , < if (m) = 2m + 4 + 2. If

/̂  = L, then 9^L appears only once in any of the three members of (5.25). When

we assume that α 0 , aku <rn, l<u<r-\~l as in Lemma 5.2, we can estimate

for any aL, alu, (Xt lf 1 < u < r + 1 the last member of (5.25) by the induction

hypothesis for r where q is replaced by q + 1 and (llf..., lq) is replaced by

(kr+1, llt..., lq). Hence we have

1) Π (d"*")ρkM.

τlku-ι,ku-i

π

k k +1)

x max sup oL σ0 Π {oι

udιz1) Π κdk

uok^)
Q

Π
M = l
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w h e r e m a x i s t a k e n f o r β 0 < a 0 9 β k u < a k u , β k u _ ι < K i r n ) = 2 m + 4 + 2 f l < u

< r + 1 and sup is taken for xku-v Thus Lemma 5.2 has been proved.

Proof of Theorem 2. Let a = 1 and AV"S-Γ Λ ̂ e a f u n ction defined by (5.17)

with (js, > Jd i n P l a c e o f (̂ r» > ̂ i)

LEMMA 5.3. LetTL<δ'. Then pjjs_ι.m.Ji(xL9xL_l9.. .9xJs+l9xJs9xJs_ι9. ...x^xj

is a function of only (xjs, xj$_ιf..., xji9 x0), i.e., PJSJS_1...J1 is independent ofxk9 k > j s

+ 1. It is of the form

(5-26) pjsjs_i...Ji\XL9 XL-U > xjs+i> xjsj
 xjs-ί> y xjχy

 XW

= Π̂ ι>-\T(jr - 1, ;,_! + l)/>ίr(rv x y j

/or αn>; α, 3̂,

constants Caβ depend only on a, β.

c β ί .

We note here that Lemma 5.3 differs from Fujiwara [5, Lemma 5.1] in the

power of T(jr — 1, j r _ x + 1) our power is 1 while his is 2. However, we shall be

able to prove Lemma 5.3 in the same way as there. We only indicate here one

different point. Namely, we have by Lemma 3.10

D(xj_u xo)~ι/2 = 1 + T(j ~ l,l)?y-ite;_i, *o),

for some qj^ixj^, x0) ̂  S ( R X R), where the power of T(j — 1,1) is 1, not 2.

The proof of Theorem 2 will also proceed in the same way as in [5, §5]. We

have

P— D{XL, Xj)

where if j s — L or L — 1, then D(xL, xjs) = 1. So we combine Lemma 5.3 with

(5.14a, b) to obtain that if α0, aL < m,

< Cs

m max sup
s

Y-\

x D(xL, xisy
U2 Π v~XT(jr - 1, ]r_, + l)p'ir(xir, xir_)
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<Cs

mΛή (iΓ1f,rΓ(;V-i,;r_1 + i)).

Therefore, from (5.15) we have

I da

L

Ldo°r(xL, x0) I < Σ ' Π {Cm>2v-ιTL)tJr

< Π (1 + C^v-'TJj) - 1.

This is the estimate (1.11) of Theorem 2.
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