COMPLEXES OF COUSIN TYPE AND MODULES OF GENERALIZED FRACTIONS

SANG-CHO CHUNG

0. Introduction

Let **R** be a commutative (Noetherian) ring, **M** an **R**-module and let $\mathscr{F} = (\mathbf{F}_i)_{i \geq 0}$ be a filtration of $\operatorname{Spec}(\mathbf{R})$ which admits **M**.

A complex of **R**-modules is said to be of Cousin type if it satisfies the four conditions of ([GO], 3.2) which are reproduced below (Definition (1.5)). In ([RSZ], 3.4), Riley, Sharp and Zakeri proved that the complex, which is constructed from a chain of special triangular subsets defined in terms of \mathcal{F} (Example (1.3)(3)), is of Cousin type for **M** with respect to \mathcal{F} (Corollary (3.5)(2)). Gibson and O'carroll ([GO], 3.6) showed that the complex, which is obtained by means of a chain $\mathcal{U} = (\mathbf{U}_i)_{i \geq 1}$ of saturated triangular subsets and the filtration $\mathcal{G} = (\mathbf{G}_i)_{i \geq 0}$ induced by \mathcal{U} and \mathbf{M} , is of Cousin type for \mathbf{M} with respect to \mathcal{G} (Corollary (3.5)(3)).

The purpose of this paper is to show that, when the complex is defined by a chain of triangular subsets, one can give a simpler criterion, consisting of only two conditions, for being of Cousin type (Theorem (3.1) and Corollary (3.2)). In fact, we prove that, for every complex induced by a chain of triangular subsets, the first and the second conditions of the definition of Cousin type hold (Remark (2.5)).

In ([RSZ], 3.3), Riley, Sharp and Zakeri proved that every complex of Cousin type for \mathbf{M} with respect to \mathcal{F} is isomorphic to the Cousin complex. Hence when we investigate the structure of a complex of Cousin type, it is useful to study the complex $\mathbf{C}(\mathcal{U}, \mathbf{M})$ of Cousin type which is constructed from special modules of generalized fractions (Corollary (3.5)) whose properties are well known.

We also get a refinement of the Exactness theorem ([SZ2], 3.3 and [O], 3.1) in our Proposition (2.13).

We wish to thank Prof. H. Matsumura for his continual and stimulating interest in this work.

Received October 28, 1993.

1. Preliminaries

Throughout this paper, **R** is a commutative ring with identity and **M** is an **R**-module. We use T to denote matrix transpose and $\mathbf{D}_n(\mathbf{R})$ to denote the set of all $n \times n$ lower triangular matrices over **R**. For $\mathbf{H} \in \mathbf{D}_n(\mathbf{R})$, $|\mathbf{H}|$ denotes the determinant of **H**. **N** denotes the set of positive integers.

Definition (1.1) ([SZ1], 2.1). Let n be a positive integer. A non-empty subset \mathbf{U}_n of \mathbf{R}^n is said to be *triangular* if

- (i) whenever $(a_1,\ldots,a_n)\in \mathbf{U}_n$, then $(a_1^{\alpha_1},\ldots,a_n^{\alpha_n})\in \mathbf{U}_n$ for all choices of positive integers α_1,\ldots,α_n ; and
- (ii) whenever (a_1, \ldots, a_n) and $(b_1, \ldots, b_n) \in \mathbf{U}_n$, then there exist $(c_1, \ldots, c_n) \in \mathbf{U}_n$ and $\mathbf{H}, \mathbf{K} \in \mathbf{D}_n(\mathbf{R})$ such that $\mathbf{H}[a_1 \ldots a_n]^T = [c_1 \ldots c_1]^T = \mathbf{K}[b_1 \ldots b_n]^T$.

DEFINITION (1.2) ([S4], 1.1 and 1.2). Let \mathbf{R} be a ring and \mathbf{M} an \mathbf{R} -module. A filtration of Spec(\mathbf{R}) is a descending sequence $\mathscr{F} = (\mathbf{F}_i)_{i \geq 0}$ of subsets of Spec(\mathbf{R}), so that

$$Spec(\mathbf{R}) \supset \mathbf{F}_0 \supset \mathbf{F}_1 \supset \cdots \supset \mathbf{F}_i \supset \mathbf{F}_{i+1} \supset \cdots$$

with the property that, for each $i \geq 0$, each member of $\mathbf{F}_i \setminus \mathbf{F}_{i+1}$ is a minimal member of \mathbf{F}_i with respect to inclusion. We then set $\partial \mathbf{F}_i = \mathbf{F}_i \setminus \mathbf{F}_{i+1}$. We say that the filtration \mathscr{F} admits an \mathbf{R} -module \mathbf{M} if $\operatorname{Supp}(\mathbf{M}) \subset \mathbf{F}_0$. Let $\mathscr{F}_M = (\mathbf{F}_{Mi})_{i \geq 0}$ be the \mathbf{M} -height filtration of $\operatorname{Spec}(\mathbf{R})$, i.e., $\mathbf{F}_{Mi} = \{ \mathfrak{p} \in \operatorname{Supp}(\mathbf{M}) : \operatorname{ht}_{\mathbf{M}} \mathfrak{p} \geq i \}$.

We say that a sequence of elements a_1, \ldots, a_n of $\mathbf R$ is a *poor* $\mathbf M$ -sequence if a_i is not a zerodivisor on $\mathbf M/(a_1,\ldots,a_{i-1})\mathbf M$ for each $i=1,\ldots,n$; it is an $\mathbf M$ -sequence if, in addition, $\mathbf M\neq (a_1,\ldots,a_n)\mathbf M$.

EXAMPLE (1.3). Let \mathbf{R} be a Noetherian ring. Then the following five non-empty sets are triangular subsets of \mathbf{R}^n .

- (1) ([SZ1], 3.10) Let \mathbf{M} be a finitely generated \mathbf{R} -module. $(\mathbf{U}_r)_n = \{(a_1, \dots, a_n) \in \mathbf{R}^n : a_1, \dots, a_n \text{ forms a poor } \mathbf{M}\text{-sequence}\}.$
- (2) (cf. [SZ2], 5.2) Suppose that **M** is a finitely generated **R**-module. $(\mathbf{U}_n)_n = \{(a_1, \ldots, a_n) \in \mathbf{R}^n : \operatorname{ht}_{\mathbf{M}}(a_1, \ldots, a_i) \mathbf{R} \geq i \ (1 \leq i \leq n) \}.$
- (3) ([RSZ], 2.3) Assume that \mathbf{M} is an \mathbf{R} -module such that $\mathbf{Ass}(\mathbf{M})$ contains only finitely many minimal members.
- $(\mathbf{U}_{\overline{h}})_n = \{(a_1, \ldots, a_n) \in \mathbf{R}^n : \text{ for each } i = 1, \ldots, n, \quad (a_1, \ldots, a_i) \mathbf{R} \not\subset \mathfrak{p} \text{ for all } \mathfrak{p} \in \partial \mathbf{F}_{i-1} \cap \text{Supp}(\mathbf{M})\}.$
- (4) ([C], 1.1) Suppose that **M** is a finitely generated **R**-module of dimension d.

 $(\mathbf{U}_s)_n = \{(a_1, \dots, a_n) \in \mathbf{R}^n : \dim \mathbf{M} / (a_1, \dots, a_i) \mathbf{M} = d - i \quad (1 \le i \le n) \}.$

(5) ([C], 1.2) Suppose that (**R**, m) is a local ring and **M** is a finitely generated **R**-module.

 $(\mathbf{U}_f)_n = \{(a_1, \dots, a_n) \in \mathbf{R}^n : a_1, \dots, a_n \text{ is an } f\text{-regular sequence (See [SV], p. 252) with respect to <math>\mathbf{M}\}.$

$$=\{(a_1,\ldots,a_n)\in\mathbf{R}^n:\frac{a_1}{1},\ldots,\frac{a_n}{1}\text{ in }\mathbf{R}_{\mathfrak{p}}\text{ forms an }\mathbf{M}_{\mathfrak{p}}\text{-sequence for all }\mathfrak{p}\in\mathrm{Supp}(\mathbf{M})\backslash\{\mathfrak{m}\}\text{ such that }(a_1,\ldots,a_n)\mathbf{R}\subset\mathfrak{p}\}.$$

For a given triangular subset \mathbf{U}_n of \mathbf{R}^n , let $\bar{\mathbf{U}}_n = \{(a_1,\ldots,a_i,1,\ldots,1) \in \mathbf{R}^n : \text{ for all } i \ (0 \leq i \leq n), \ \exists \ a_{i+1},\ldots,a_n \in \mathbf{R} \text{ s.t. } (a_1,\ldots,a_i,\ a_{i+1},\ldots,a_n) \in \mathbf{U}_n \}.$ This is a triangular subset of \mathbf{R}^n and is called the *expansion* of \mathbf{U}_n ([SZ1], p. 38). Then, by ([SZ1], 3.2), we may assume without loss of the generality that \mathbf{U}_n is *expanded*, *i.e.*, $\mathbf{U}_n = \bar{\mathbf{U}}_n$, when we consider the module of generalized fractions for \mathbf{M} with respect to \mathbf{U}_n . So, from now on, we assume that every triangular subset is expanded by means of the expansion of itself.

For a fixed non-negative integer n, $\mathbf{U}_{n+1}^{-n-1}\mathbf{M}$ denotes the module of generalized fractions of \mathbf{M} with respect to \mathbf{U}_{n+1} ([SZ1]). The other notation and terminology about the module of generalized fractions follow ([SZ1]).

DEFINITION (1.4) ([RSZ], p. 52). Let **R** be a ring. A family $\mathcal{U} = (\mathbf{U}_i)_{i \geq 1}$ is called a *chain of triangular subsets* on **R** if the following conditions are satisfied:

- (i) U_i is a triangular subset of R^i for all $i \in N$;
- (ii) $(1) \in \mathbf{U}_1$;
- (iii) whenever $(a_1,\ldots,a_i)\in \mathbf{U}_i$ with $i\in \mathbf{N}$, then $(a_1,\ldots,a_i,\ 1)\in \mathbf{U}_{i+1}$; and
- (iv) whenever $(a_1, \ldots, a_i) \in \mathbf{U}_i$ with $1 < i \in \mathbf{N}$, then $(a_1, \ldots, a_{i-1}) \in \mathbf{U}_{i-1}$.

Each \mathbf{U}_i leads to a module of generalized fractions $\mathbf{U}_i^{-t}\mathbf{M}$ and we can obtain a complex

$$0 \xrightarrow{e^{-1}} \mathbf{M} \xrightarrow{e^{0}} \mathbf{U}_{1}^{-1} \mathbf{M} \xrightarrow{e^{1}} \mathbf{U}_{2}^{-2} \mathbf{M} \xrightarrow{} \cdots \xrightarrow{} \mathbf{U}_{i}^{-t} \mathbf{M} \xrightarrow{e^{t}} \mathbf{U}_{i+1}^{-t-1} \mathbf{M} \xrightarrow{} \cdots,$$

denoted by $\mathbf{C}(\mathcal{U}, \mathbf{M})$, for which $e^0(m) = \frac{m}{(1)}$ for all $m \in \mathbf{M}$ and

$$e^{i}\left(\frac{x}{(a_1,\ldots,a_i)}\right) = \frac{x}{(a_1,\ldots,a_i,\ 1)}$$

for all $i \in \mathbb{N}$, $x \in \mathbb{M}$ and $(a_1, \ldots, a_i) \in \mathbb{U}_i$

 $H_U^i(\mathbf{M})$ denotes the *i*-th cohomology group of $\mathbf{C}(\mathcal{U}, \mathbf{M})$. That is $H_U^i(\mathbf{M}) = \ker e^i / \operatorname{Im} e^{i-1}$.

DEFINITION (1.5) ([GO], 3.2). Let \mathbf{R} be a Noetherian ring and \mathbf{M} an \mathbf{R} -module. Let $\mathcal{F} = (\mathbf{F}_i)_{i \geq 0}$ be a filtration of $\operatorname{Spec}(\mathbf{R})$ that admits \mathbf{M} . A complex $\mathbf{X}' = \{\mathbf{X}^i: i \geq -2\}$ of \mathbf{R} -modules and \mathbf{R} -homomorphisms is said to be of *Cousin type for* \mathbf{M} with respect to \mathcal{F} if it has the form

$$0 \xrightarrow{d^{-2}} \mathbf{M} \xrightarrow{d^{-1}} \mathbf{X}^0 \xrightarrow{d^0} \mathbf{X}^1 \longrightarrow \cdots \longrightarrow \mathbf{X}^t \xrightarrow{d^t} \mathbf{X}^{t+1} \longrightarrow \cdots$$

and satisfies the following, for each $n \in \mathbb{N} \cup \{0\}$,

- (i) $Supp(\mathbf{X}^n) \subset \mathbf{F}_n$;
- (ii) Supp(Coker d^{n-2}) $\subset \mathbf{F}_n$;
- (iii) Supp(Ker $d^{n-1}/\text{Im } d^{n-2}$) $\subseteq \mathbf{F}_{n+1}$; and
- (iv) The natural **R**-homomorphism $\xi(\mathbf{X}^n): \mathbf{X}^n \to \bigoplus_{\mathfrak{p} \in \partial \mathbf{F}_n} (\mathbf{X}^n)_{\mathfrak{p}}$, such that, for $x \in \mathbf{X}^n$ and $\mathfrak{p} \in \partial \mathbf{F}_n$, the component of $\xi(\mathbf{X}^n)(x)$ in the summand $(\mathbf{X}^n)_{\mathfrak{p}}$ is x/1, is an isomorphism.

LEMMA (1.6). Let **R** be a ring and **M** an **R**-module. Let \mathbf{U}_n be an expanded triangular subset of \mathbf{R}^n . Let (a_1, \ldots, a_n) and (b_1, \ldots, b_n) be elements of \mathbf{U}_n such that $\mathbf{H}[a_1 \ldots a_n]^T = [b_1 \ldots b_n]^T$ for some $\mathbf{H} \in \mathbf{D}_n(\mathbf{R})$. Then we have

- (1) ([SZ1], 2.8 and 3.3(i)) $\frac{m}{(a_1, \dots, a_n)} = \frac{|\mathbf{H}| m}{(b_1, \dots, b_n)}$ and $\frac{a_n m}{(a_1, \dots, a_n)} = \frac{m}{(a_1, \dots, a_n, \dots, 1)}$ in $\mathbf{U}_n^{-n} \mathbf{M}$.
- (2) ([SZ1, 3.3(ii)] and [SY, 2.2]) If $m \in (a_1, \ldots, a_{n-1})\mathbf{M}$ then $\frac{m}{(a_1, \ldots, a_n)} = 0$ in $\mathbf{U}_n^{-n}\mathbf{M}$. In particular, if each element of \mathbf{U}_n is a poor \mathbf{M} -sequence, then the converse holds.

(3) ([SZ2], 5.1 and [SZ3], 2.1)
$$\operatorname{Ann}_{\mathbf{R}} \left(\frac{m}{(a_1, \dots, a_n)} \right) = \operatorname{Ann}_{\mathbf{R}} \left(\frac{m}{(a_1, \dots, a_{n-1}, \ 1)} \right)$$

LEMMA (1.7) ([C], 2.4). Let (\mathbf{R} , \mathbf{m}) be a Noetherian local ring and let \mathbf{M} be a finitely generated \mathbf{R} -module of dimension d. Let $(\mathbf{U}_s)_{d+1}$ be the expansion of the triangular subset $\{(a_1,\ldots,a_d,1)\in\mathbf{R}^{d+1}:\dim\mathbf{M}/(a_1,\ldots,a_d)\mathbf{M}=0\}$. Let $\{x_1,\ldots,x_d\}$ be a fixed system of parameters for \mathbf{M} . Then we have

$$(\mathbf{U}_s)_{d+1}^{-d-1} \mathbf{M} \cong \mathbf{U}(x)_d [1]^{-d-1} \mathbf{M} \cong \mathbf{H}_m^d (\mathbf{M}),$$

where $\mathbf{U}(x)_d[1] = \{(x_1^{\alpha_1}, \dots, x_d^{\alpha_d}, 1) \in \mathbf{R}^{n+1} : \text{ there is } i (0 \leq i \leq d) \text{ such that } \alpha_1, \dots, \alpha_i \in \mathbf{N} \text{ and } \alpha_{i+1} = \dots = \alpha_d = 0\}.$

LEMMA (1.8) ([GO], 3.4). Let **R** be a ring. For a positive integer n, suppose that $\frac{m}{(a_1,\ldots,a_n,\ 1)}=0$ in $\mathbf{U}_{n+1}^{-n-1}\mathbf{M}$. Then there exist $(b_1,\ldots,b_{n+1})\in\mathbf{U}_{n+1}$ and $\mathbf{H}\in\mathbf{D}_n(\mathbf{R})$ such that $\mathbf{H}[a_1\ldots a_n]^T=[b_1\ldots b_n]^T$ and $b_{n+1}|\mathbf{H}|m\in(b_1,\ldots,b_n)\mathbf{M}$.

LEMMA (1.9) ([GO], 3.3 and [SY], 2.7). Let \mathbf{R} be a ring and \mathbf{M} an \mathbf{R} -module. Let $\mathcal{U} = (\mathbf{U}_i)_{i \geq 1}$ be a chain of triangular subsets on \mathbf{R} . Then in $\mathbf{C}(\mathcal{U}, \mathbf{M})$, for all $n \in \mathbf{N}$

Coker
$$e^{n-1} \cong \mathbf{U}_n^{-n} \mathbf{M} / \text{Im } e^{n-1} \cong \mathbf{U}_n[1]^{-n-1} \mathbf{M}$$
,

where $U_n[1] = \{(a_1, \ldots, a_n, 1) \in \mathbf{R}^{n+1} : (a_1, \ldots, a_n) \in U_n\}.$

2. Associated prime ideals of modules of generalized fractions

LEMMA (2.1). Let **R** be a ring and **M** an **R**-module. Fix a positive integer n. Let \mathbf{U}_n be a triangular subsets of \mathbf{R}^n . Let $0 \neq \frac{m}{(a_1, \ldots, a_n)} \in \mathbf{U}_n^{-n} \mathbf{M}$. Then we have, for all $(b_1, \ldots, b_n) \in \mathbf{U}_n$,

$$(b_1,\ldots,b_n)\mathbf{R} \not\subset \left(0:\frac{m}{(a_1,\ldots,a_n)}\right).$$

Proof. Suppose that for some $(b_1,\ldots,b_n)\in \mathbf{U}_n$

$$(b_1,\ldots,b_n)\mathbf{R}\subset\Big(0:\frac{m}{(a_1,\ldots,a_n)}\Big).$$

Then by the definition of triangular subset there are $(c_1, \ldots, c_n) \in \mathbf{U}_n$ and \mathbf{H} , $\mathbf{K} \in \mathbf{D}_n(\mathbf{R})$ such that $\mathbf{H}[a_1 \ldots a_n]^T = [c_1 \ldots c_n]^T = \mathbf{K}[b_1 \ldots b_n]^T$. Hence we get $(c_1, \ldots, c_n)\mathbf{R} \subset (b_1, \ldots, b_n)\mathbf{R}$.

On the other hand, by Lemma (1.6)(1)(3) we have

$$\left(0: \frac{m}{(a_1, \dots, a_n)}\right) = \left(0: \frac{|\mathbf{H}| m}{(c_1, \dots, c_n)}\right) = \left(0: \frac{|\mathbf{H}| m}{(c_1, \dots, c_{n-1}, 1)}\right)$$
$$\supset (b_1, \dots, b_n) \mathbf{R} \supset (c_1, \dots, c_n) \mathbf{R}.$$

Therefore we have the following contradiction.

$$\frac{c_n \mid \mathbf{H} \mid m}{(c_1, \dots, c_n)} = \frac{\mid \mathbf{H} \mid m}{(c_1, \dots, c_{n-1}, 1)} = 0.$$

From now on, we suppose that $\mathbf{U}_0[1]^{-1}\mathbf{M}=\mathbf{M}$, $\mathbf{U}_0^0\mathbf{M}=\mathbf{M}$ and n is a non-negative integer.

LEMMA (2.2). Let **R** and **M** be as above. Then in $C(\mathcal{U}, \mathbf{M})$ we have

$$\operatorname{Supp}(\operatorname{U}_{n+1}^{-n-1}\operatorname{M}) \subset \operatorname{Supp}(\operatorname{U}_n[1]^{-n-1}\operatorname{M}) \subset \operatorname{Supp}(\operatorname{U}_n^{-n}\operatorname{M}).$$

Proof. For the first half, this follows from the following short exact sequence

$$0 \to \operatorname{Ker} e^{n} / \operatorname{Im} e^{n-1} \to \operatorname{U}_{n}^{-n} \operatorname{\mathbf{M}} / \operatorname{Im} e^{n-1} \to \operatorname{U}_{n}^{-n} \operatorname{\mathbf{M}} / \operatorname{Ker} e^{n} \to 0,$$

$$\parallel \qquad \qquad \parallel$$

$$\operatorname{U}_{n}[1]^{-n-1} \operatorname{\mathbf{M}} \qquad \operatorname{Im} e^{n}$$

since Supp($\mathbf{U}_{n+1}^{-n-1}\mathbf{M}$) = Supp(Im e^n) by Lemma (1.6)(3).

For the second inclusion, it follows from Lemma (1.9) that

$$\operatorname{Supp}(\mathbf{U}_n[1]^{-n-1}\mathbf{M}) = \operatorname{Supp}(\mathbf{U}_n^{-n}\mathbf{M}/\operatorname{Im} e^{n-1}) \subset \operatorname{Supp}(\mathbf{U}_n^{-n}\mathbf{M}).$$

EXAMPLE (2.3). In general, $\operatorname{Supp}(\mathbf{U}_{n+1}^{-n-1}\mathbf{M}) \neq \operatorname{Supp}(\mathbf{U}_{u}[1]^{-n-1}\mathbf{M})$. Let $(\mathbf{R}, \mathfrak{m})$ be a Noetherian local ring. Suppose that \mathbf{M} is an f-module (see [SZ4], 1.8(ii)) of dimension d. Then $Supp((\mathbf{U}_f)_d[1]^{-d-1}\mathbf{M}) = Supp((\mathbf{U}_s)_{d+1}^{-d-1}\mathbf{M}) = \{\mathfrak{m}\}.$ But Supp($(\mathbf{U}_f)_{d+1}^{-d-1}\mathbf{M}$) = \emptyset by ([C], 2.3).

LEMMA (2.4). Let **R** and **M** be as above. Then in $C(\mathcal{U}, \mathbf{M})$ we have

$$\operatorname{Supp}(\mathbf{U}_{n+1}^{-n-1}\mathbf{M}) \subset \operatorname{Supp}(\mathbf{U}_{n}[1]^{-n-1}\mathbf{M}) \subset \mathbf{F}_{\mathbf{M}n} \subset \mathbf{F}_{n}.$$

This follows from Lemma (2.2), ([HS], 3.1) and ([C], 2.7).

Remark (2.5). Lemma (2.4) shows that, for every complex $C(\mathcal{U}, \mathbf{M})$, the first and the second conditions of the definition of Cousin type hold by Lemma (1.9).

Lemma (2.6). Let \mathbf{R} and \mathbf{M} be as above. Then in $\mathbf{C}(\mathcal{U}, \mathbf{M})$ we have the following.

- (1) $\partial \mathbf{F}_n \cap \operatorname{Supp}(\mathbf{M}) = (\bigcup_{i=0}^n \partial \mathbf{F}_{Mi}) \cap \partial \mathbf{F}_n$. (2) (cf. [ST], 2.7) $\partial \mathbf{F}_n \cap \operatorname{Supp}(\mathbf{U}_{n+1}^{-n-1} \mathbf{M}) \subset \partial \mathbf{F}_n \cap \operatorname{Supp}(\mathbf{U}_n[1]^{-n-1} \mathbf{M})$
- $(3) \ \partial \mathbf{F}_n \ \cap \ \partial \mathbf{F}_{\mathrm{M}n} = \ \cup_{\ \mathbf{q} \in \partial \mathbf{F}_{n-1} \cap \partial \mathbf{F}_{\mathrm{M}(n-1)}} (V(\mathbf{q}) \ \cap \ \partial \mathbf{F}_n \ \cap \ \partial \mathbf{F}_{\mathrm{M}n}).$

Proof. (1) Let $\mathfrak{p} \in \partial \mathbf{F}_n \cap \operatorname{Supp}(\mathbf{M}) \setminus \bigcup_{i=0}^n \partial \mathbf{F}_{Mi}$. Hence $\operatorname{ht}_{\mathbf{M}} \mathfrak{p} > n$. Therefore there is $\mathfrak{q} \in \partial \mathbf{F}_{\mathtt{Mn}}(\subset \mathbf{F}_{\mathtt{n}})$ such that $\mathfrak{q} \subsetneq \mathfrak{p}$. That is, \mathfrak{p} is not minimal in $\mathbf{F}_{\mathtt{n}}$.

(2) Since $\operatorname{Supp}(\mathbf{U}_{n+1}^{-n-1}\mathbf{M})\subset\operatorname{Supp}(\mathbf{U}_{n}[1]^{-n-1}\mathbf{M})\subset\mathbf{F}_{\mathbf{M}n}$, we have

$$\begin{split} \partial \mathbf{F}_n \, \cap \, \operatorname{Supp}(\mathbf{U}_{n+1}^{-n-1} \, \mathbf{M}) \, \subseteq \, \partial \mathbf{F}_n \, \cap \, \operatorname{Supp}(\mathbf{U}_n[1]^{-n-1} \, \mathbf{M}) \, \subseteq \, \partial \mathbf{F}_n \, \cap \, \operatorname{Supp}(\mathbf{M}) \, \cap \, \mathbf{F}_{\operatorname{M}n} \\ & \subseteq \, (\bigcup_{i=0}^n \partial \mathbf{F}_{\operatorname{M}i}) \, \cap \, \partial \mathbf{F}_n \, \cap \, \mathbf{F}_{\operatorname{M}n} = \, \partial \mathbf{F}_n \, \cap \, \partial \mathbf{F}_{\operatorname{M}n} \end{split}$$

by (1).

(3) Let $\mathfrak{p}\in\partial\mathbf{F}_n$ and $\mathrm{ht}_{\mathrm{M}}\mathfrak{p}=n$. Suppose that $\mathfrak{q}\not\in\partial\mathbf{F}_{n-1}$ for some $\mathfrak{q}\in$ Supp (M) such that $ht_M \mathfrak{q} = n-1$ and $\mathfrak{q} \subseteq \mathfrak{p}$. Hence $\mathfrak{q} \in \mathbf{F}_n$, since $\partial \mathbf{F}_{n-1} = \mathbf{F}_{n-1} \setminus$ \mathbf{F}_n and $\mathbf{F}_{M(n-1)} \subseteq \mathbf{F}_{n-1}$. This contradicts that \mathfrak{p} is a minimal element in \mathbf{F}_n .

LEMMA (2.7). Let **R** be a ring and **M** an **R**-molule. Then in $C(\mathcal{U}, \mathbf{M})$, for each $\frac{m}{(a_1,\ldots,a_n)}+\operatorname{Im} e^{n-1}\in H^n_U(\mathbf{M})$, there are $(b_1,\ldots,b_{n+1})\in \mathbf{U}_{n+1}$ and $\mathbf{H}\in \mathbf{D}_n(\mathbf{R})$ such that $\mathbf{H}[a_1 \dots a_n]^T = [b_1 \dots b_n]^T$ and

$$(b_1,\ldots,b_{n+1})\mathbf{R} \subset \Big(\operatorname{Im} e^{n-1}:\frac{m}{(a_1,\ldots,a_n)}\Big).$$

Proof. Since $\frac{m}{(a_1,\ldots,a_n)} \in \operatorname{Ker} e^n$, we have $\frac{m}{(a_1,\ldots,a_n,1)} = 0$ in $\operatorname{U}_{n+1}^{-n-1} \mathbf{M}$. Hence by Lemma (1.8) there are $(b_1,\ldots,b_{n+1})\in \mathbf{U}_{n+1}$ and $\mathbf{H}\in \mathbf{D}_n(\mathbf{R})$ such that $\mathbf{H}[a_1 \dots a_n]^T = [b_1 \dots b_n]^T$ and $b_{n+1} \mid \mathbf{H} \mid m \in (b_1, \dots, b_n) \mathbf{M}$. Therefore we have

$$(b_1,\ldots,b_{n+1})\mathbf{R} \subset \left(\operatorname{Im} e^{n-1}: \frac{\mid \mathbf{H} \mid m}{(b_1,\ldots,b_n)}\right) = \left(\operatorname{Im} e^{n-1}: \frac{m}{(a_1,\ldots,a_n)}\right).$$

LEMMA (2.8). Let **R** be a ring and **M** an **R**-module. Let $\mathcal{U} = (\mathbf{U}_i)_{i \geq 1}$ be a chain of triangular subsets on **R**. Then in C(U, M), for a fixed non-negative integer n, we have the following.

- (1) Ass $(\mathbf{U}_{n+1}^{-n-1}\mathbf{M}) \cap \operatorname{Supp}(\mathbf{U}_{n+2+i}^{-n-2-i}\mathbf{M}) = \emptyset$ for all $i \geq 0$. (2) Ass $(\mathbf{U}_{n+1}^{-n-1}\mathbf{M}) \cap \operatorname{Supp}(\mathbf{U}_{n+1+i}[1]^{-n-2-i}\mathbf{M}) = \emptyset$ for all $i \geq 0$. (3) Ass $(\mathbf{U}_{n+1}^{-n-1}\mathbf{M}) = \operatorname{Ass}(\operatorname{Im} e^n) = \operatorname{Ass}(\operatorname{Ker} e^{n+1})$. (4) Ass $(\mathbf{U}_{n+1}^{-n-1}\mathbf{M}) \cap \operatorname{Supp}(H_U^{n+i}(\mathbf{M})) = \emptyset$ for all $i \geq 0$. (5) Ass $(H_U^n(\mathbf{M})) \subset \operatorname{Ass}(\mathbf{U}_n[1]^{-n-1}\mathbf{M}) \subset \operatorname{Ass}(H_U^n(\mathbf{M})) \cup \operatorname{Ass}(\mathbf{U}_{n+1}^{-n-1}\mathbf{M})$.
- (6) If \mathbf{R} is Noetherian, then $\partial \mathbf{F}_n \, \cap \, \mathrm{Ass}(\mathbf{U}_n[1]^{-n-1} \, \mathbf{M}) \, = \, (\partial \mathbf{F}_n \, \cap \, \mathrm{Ass}(H_U^n(\mathbf{M}))) \, \cup \, (\partial \mathbf{F}_n \, \cap \, \mathrm{Ass}(\mathbf{U}_{n+1}^{-n-1} \, \mathbf{M})).$
- (7) $\operatorname{Ass}(\mathbf{U}_n[1]^{-n-1}\mathbf{M}) \cap \operatorname{Ass}(\mathbf{U}_{n+1}[1]^{-n-2}\mathbf{M}) \subset \operatorname{Ass}(H_U^n(\mathbf{M})).$

Proof. (1) and (2) follow from Lemma (2.1) and Lemma (1.6)(2).

- (3) Since $\operatorname{Im} e^n \subset \operatorname{Ker} e^{n+1} \subset \operatorname{U}_{n+1}^{-n-1} \mathbf{M}$, this follows from Lemma (1.6)(3).
- (4) This follows from Lemma (2.1), Lemma (2.7) and Lemma (1.6)(2).
- (5) The following short exact sequence and (3) complete the proof.

$$0 \to \operatorname{Ker} e^n / \operatorname{Im} e^{n-1} \to \operatorname{U}_n^{-n} \operatorname{M} / \operatorname{Im} e^{n-1} \to \operatorname{U}_n^{-n} \operatorname{M} / \operatorname{Ker} e^n \to 0.$$

$$\parallel \qquad \qquad \parallel \qquad \qquad \parallel$$

$$H_U^n(\operatorname{M}) \qquad \operatorname{U}_n[1]^{-n-1} \operatorname{M} \qquad \operatorname{Im} e^n$$

(6) By Lemma (2.4), we have

$$\partial \mathbf{F}_n \, \cap \, \operatorname{Supp}(\mathbf{U}_{n+1}^{-n-1} \, \mathbf{M}) = \partial \mathbf{F}_n \, \cap \, \operatorname{Ass}(\mathbf{U}_{n+1}^{-n-1} \, \mathbf{M}) \subset \partial \mathbf{F}_n \, \cap \, \operatorname{Ass}(\mathbf{U}_n[1]^{-n-1} \, \mathbf{M}).$$

Hence the assertion follows from (5).

(7) This follows from (1), (4) and (5).

Remark (2.9). If we also change associated prime to weakly associated in the sense of ([B], p. 289 ex. 17), then we can omit the Noetherian condition of Proposition (2.8)(6).

Proposition (2.10). Let **R** and **M** be as above. Assume that $\mathfrak{p} \in \operatorname{Spec}(\mathbf{R})$. In $C(\mathcal{U}, \mathbf{M})$, consider the following statements:

- For all $(a_1, ..., a_{n+1}) \in \mathbf{U}_{n+1}, (a_1, ..., a_{n+1}) \mathbf{R} \not\subset \mathfrak{p}$;
- (ii) $(\mathbf{U}_{n+1}^{-n-1} \mathbf{M})_{\mathfrak{p}} \cong (\mathbf{U}_{n}[1]^{-n-1} \mathbf{M})_{\mathfrak{p}};$ (ii') $(H_{U}^{n}(\mathbf{M}))_{\mathfrak{p}} = 0 \text{ and } (\mathbf{U}_{n+1}[1]^{-n-2} \mathbf{M})_{\mathfrak{p}} = 0;$
- (iii) $(\mathbf{U}_{n+1}^{-n-1} \mathbf{M})_{\mathfrak{p}} \cong (\operatorname{Im} e^{n})_{\mathfrak{p}};$ (iii') $(\mathbf{U}_{n+1}[1]^{-n-2} \mathbf{M})_{\mathfrak{p}} = 0;$
- (iii") $(H_U^{n+1}(\mathbf{M}))_{\mathfrak{p}} = 0$ and $(\mathbf{U}_{n+2}^{-n-2}\mathbf{M})_{\mathfrak{p}} = 0$;
- (iv) $(\text{Ker } e^{n+1})_{\mathfrak{p}} \cong (\text{Im } e^{n})_{\mathfrak{p}};$ (iv') $(\mathbf{U}_{n+1}[1]^{-n-2} \mathbf{M})_{\mathfrak{p}} \cong (\text{Im } e^{n+1})_{\mathfrak{p}}.$

Then we have the following.

- (1) $(ii) \Leftrightarrow (ii')$.
- (2) $(iii) \Leftrightarrow (iii') \Leftrightarrow (iii'')$.
- (3) (iv) \Leftrightarrow (iv').
- (4) (i) \Rightarrow (ii) \Rightarrow (iii) \Rightarrow (iv). That is, if (i) holds, then

$$(\mathbf{U}_{n+1}^{-n-1}\mathbf{M})_{n} \cong (\mathbf{U}_{n}[1]^{-n-1}\mathbf{M})_{n} \cong (\operatorname{Im} e^{n})_{n} \cong (\operatorname{Ker} e^{n+1})_{n}.$$

- (5) If $\mathfrak{p} \in \mathrm{Ass}(\mathbf{U}_{n+1}^{-n-1}\mathbf{M})$, then the above four modules are isomorphic. (6) If $\mathfrak{p} \notin \mathrm{Supp}(\mathbf{U}_{n+2}^{-n-2}\mathbf{M})$, then (iv) \Rightarrow (iii).

Proof. (1) Using the short exact sequence (*), we prove as follows. (\Rightarrow) Assume that $(\mathbf{U}_{n+1}^{-n-1}\mathbf{M})_{\mathfrak{p}}\cong (\mathbf{U}_{n}[1]^{-n-1}\mathbf{M})_{\mathfrak{p}}$. Then, from the following short exact sequence

$$0 \to \operatorname{Im} e^{n-1} \to \operatorname{U}_{n}^{-n} \mathbf{M} \to \operatorname{U}_{n}^{-n} \mathbf{M} / \operatorname{Im} e^{n-1} \to 0,$$

$$\parallel$$

$$\operatorname{U}_{n}[1]^{-n-1} \mathbf{M}$$

we have a commutative diagram with exact rows.

$$0 \to (\operatorname{Im} e^{n-1})_{\mathfrak{p}} \to (\operatorname{U}_{n}^{-n} \mathbf{M})_{\mathfrak{p}} \to (\operatorname{U}_{n}[1]^{-n-1} \mathbf{M})_{\mathfrak{p}} \to 0$$

$$\parallel \qquad \qquad \parallel \qquad \qquad \parallel$$

$$0 \to (\operatorname{Im} e^{n-1})_{\mathfrak{p}} \to (\operatorname{U}_{n}^{-n} \mathbf{M})_{\mathfrak{p}} \xrightarrow{e^{n}_{\mathfrak{p}}} (\operatorname{U}_{n+1}^{-n-1} \mathbf{M})_{\mathfrak{p}} \to 0.$$

Therefore we get

$$(\operatorname{Ker} e^{n})_{\mathfrak{p}} = (\operatorname{Im} e^{n-1})_{\mathfrak{p}}.$$

Hence, from the following short exact sequence

$$0 \longrightarrow \left(H_{U}^{n}\left(\mathbf{M}\right)\right)_{\mathfrak{p}} \longrightarrow \left(\mathbf{U}_{n}[1]^{-n-1}\,\mathbf{M}\right)_{\mathfrak{p}} \longrightarrow \left(\operatorname{Im}\,e^{n}\right)_{\mathfrak{p}} \longrightarrow 0$$

$$\parallel \qquad \qquad \parallel$$

$$0 \qquad \left(\mathbf{U}_{n+1}^{-n-1}\,\mathbf{M}\right)_{\mathfrak{p}}$$

induced from the short exact sequence (*), we have

$$(\mathbf{U}_{n+1}^{-n-1}\mathbf{M})_{\mathfrak{p}} \cong (\mathbf{U}_{n}[1]^{-n-1}\mathbf{M})_{\mathfrak{p}} \cong (\operatorname{Im} e^{n})_{\mathfrak{p}}.$$

Therefore from the following short exact sequence

$$(**) 0 \rightarrow \operatorname{Im} e^{n} \rightarrow \operatorname{U}_{n+1}^{-n-1} \mathbf{M} \rightarrow \operatorname{U}_{n+1}[1]^{-n-2} \mathbf{M} \rightarrow 0$$

we have

$$(\mathbf{U}_{n+1}[1]^{-n-2}\mathbf{M})_{n}=0.$$

 (\Leftarrow) By the assumption and the short exact sequences (*) (**), we have

$$(\mathbf{U}_n[1]^{-n-1}\mathbf{M})_{\mathbf{n}} \cong (\operatorname{Im} e^n)_{\mathbf{n}} \cong (\mathbf{U}_{n+1}^{-n-1}\mathbf{M})_{\mathbf{n}}.$$

(2) The first equivalence follows immediately from the above short exact sequence (**). For the second half, this follows from

$$\operatorname{Supp}(\mathbf{U}_{n+1}[1]^{-n-2}\mathbf{M}) = \operatorname{Supp}(\mathbf{H}_{U}^{n+1}(\mathbf{M})) \cup \operatorname{Supp}(\mathbf{U}_{n+2}^{-n-2}\mathbf{M})$$

induced by the short exact sequence (*) with n+1 instead of n and Lemma (2.8) (3).

- (3) This follows similarly from the short exact sequence (*) with n replaced by n+1.
- (4) Suppose that (i) holds. By the hypothesis and Lemma (1.6)(2) we have $(\mathbf{U}_{n+1}[1]^{-n-2}\mathbf{M})_{p} = 0$. On the other hand, from the assumption and Lemma (2.7), we have $(H_U^n(\mathbf{M}))_n = 0$.

The other assertions are obvious.

- (5) This follows from the hypothesis, Lemma (2.1) and (4).
- (6) This follows easily from (2), since $(H_{U}^{n+1}(\mathbf{M}))_{n} = 0$.

Example (2.11). (1) In Proposition (2.10), (ii) dose not imply (i). Let $\mathbf{R} =$ k[[X, Y]]. Let **M** be the quotient field of **R**. Let $\mathbf{U}_1 = \mathbf{R} \setminus (X)$ and $\mathfrak{p} = (X, Y)$. Then $(\mathbf{U}_1^{-1}\mathbf{M})_{\mathbf{p}} = \mathbf{M} = (\mathbf{U}_0[1]^{-1}\mathbf{M})_{\mathbf{p}} = (\operatorname{Im} e^0)_{\mathbf{p}} \operatorname{but} \mathbf{U}_1 \cap \mathbf{p} \neq \emptyset$.

- (2) ((iii) \Rightarrow (ii)) is not the case. See Example (2.3) and note that $(\mathbf{U}_f)_{d+1}[1]^{-d-2}\mathbf{M}$
- = 0. When $\mathfrak{p} \in \operatorname{Supp}(\mathbf{U}_{n+1}^{-n-1}\mathbf{M})$, we don't know whether this holds or not. (3) If $\mathfrak{p} \in \operatorname{Supp}(\mathbf{U}_{n+2}^{-n-2}\mathbf{M})$, then ((iv) \Rightarrow (iii)) does not hold. Let $(\mathbf{R},\mathfrak{m})$ be a Buchsbaum ring of dimension $d \geq 3$ such that $\mathbf{H}_{\mathrm{m}}^{1}(\mathbf{R}) \neq 0$ and $\mathbf{H}_{\mathrm{m}}^{n}(\mathbf{R}) = 0$ for $n \neq 1$, d. Let $\mathcal{U}_f = ((\mathbf{U}_f)_i)_{i \geq 1}$ be the chain of triangular subsets on **R** in the following Proposition (2.15) (when $\mathbf{M} = \mathbf{R}$). Then by Proposition (2.15) we have $\operatorname{Ker} f^{1}/\operatorname{Im} f^{0} = \mathbf{H}_{\mathfrak{m}}^{1}(\mathbf{R}) \neq 0$ and $\operatorname{Ker} f^{n}/\operatorname{Im} f^{n-1} = \mathbf{H}_{\mathfrak{m}}^{n}(\mathbf{R}) = 0$ for $n \neq 1$, d. Hence by the short exact sequence (*) we have

$$(\mathbf{U}_f)_{n+1}[1]^{-n-2}\mathbf{R} \cong \operatorname{Im} f^{n+1}$$

for $n \neq 0$, d-1. Let $\mathfrak{p} \in \operatorname{Spec}(\mathbf{R})$ such that $\operatorname{ht} \mathfrak{p} = n+1$ for $n=1,\ldots,d-2$. Then $(\operatorname{Im} f^{n+1})_{\mathfrak{p}} \neq 0$ since $\operatorname{Supp}(\operatorname{Im} f^{n+1}) = \operatorname{Supp}((\mathbf{U}_f)_{n+2}^{-n-2} \mathbf{R}) = \mathbf{F}_{\mathbf{R}^{(n+1)}}$ by Lemma (2.8)(3) and ([C], 2.15). Therefore $\mathfrak{p} \in \text{Supp}((\mathbf{U}_{f})_{n+1}[1]^{-n-2}\mathbf{R})$.

(4) In general, the converse of Proposition (2.10)(5) is not true. Let $\mathbf{R} =$ $k[[X, Y, Z]]/(X) \cap (Y, Z) = k[[x, y, z]].$ Then $Ass(\mathbf{R}) = \{(x), (y, z)\}.$ Put $\mathfrak{p}=(x,y,z)$ and $\mathbf{U}_1=\mathbf{R}\setminus\mathfrak{p}$. Hence $\mathrm{Ass}(\mathbf{R}_\mathfrak{p})=\{(x),(y,z)\}$. Let $\mathfrak{q}=(x,y)$. Then $(\mathbf{U}_1^{-1}\mathbf{R})_{\mathfrak{q}} = (\mathbf{R}_{\mathfrak{p}})_{\mathfrak{q}} = \mathbf{R}_{\mathfrak{q}} = (\mathbf{U}_0[1]^{-1}\mathbf{R})_{\mathfrak{q}} = (\operatorname{Im} e^0)_{\mathfrak{q}} \neq 0 \text{ and } \mathbf{U}_1 \cap \mathfrak{q} = \emptyset$. But $q \notin Ass(\mathbf{R}_n)$.

COROLLARY (2.12). Let \mathbf{R} be a Noetherian ring and \mathbf{M} an \mathbf{R} -module. Then we have the following.

- (1) $\operatorname{Ass}(\mathbf{U}_{n+1}^{-n-1}\mathbf{M}) \subset \operatorname{Ass}(\mathbf{U}_{n}[1]^{-n-1}\mathbf{M}).$
- (2) $\operatorname{Ass}(\mathbf{U}_n[1]^{-n-1}\mathbf{M}) = \operatorname{Ass}(H_U^n(\mathbf{M})) \cup \operatorname{Ass}(\mathbf{U}_{n+1}^{-n-1}\mathbf{M}).$

 $\textit{Proof.} \quad (1) \text{ Let } \mathfrak{p} \in \operatorname{Ass}_{\mathbf{R}}(\mathbf{U}_{n+1}^{-n-1}\,\mathbf{M}). \text{ Then } \mathfrak{p}\mathbf{R}_{\mathfrak{p}} \in \operatorname{Ass}_{\mathbf{R}_{\mathfrak{p}}}(\mathbf{U}_{n+1}^{-n-1}\,\mathbf{M})_{\mathfrak{p}} \text{ by } ([\mathbf{M}], \mathbf{M})_{\mathfrak{p}}, \mathbf{M}_{\mathfrak{p}})$ p. 38 Corollary). Hence $\mathfrak{p}\mathbf{R}_{\mathfrak{p}} \in \mathrm{Ass}_{\mathbf{R}_{\mathfrak{p}}} \left(\mathbf{U}_{n}[1]^{-n-1} \mathbf{M} \right)_{\mathfrak{p}}$ by Proposition (2.10)(5). Therefore $\mathfrak{p} \in \mathrm{Ass}_{\mathbf{R}}(\mathbf{U}_n[1]^{-n-1}\mathbf{M})$ again by ([M], p. 38 Corollary).

(2) This follows from (1) and Lemma (2.8)(5).

PROPOSITION (2.13). Let \mathbf{R} be a ring and \mathbf{M} an \mathbf{R} -module. Fix a non-negative integer t. Then in $\mathbf{C}(\mathcal{U}, \mathbf{M})$, the following four conditions are equivalent.

- (1) $H_{II}^{n}(\mathbf{M}) = 0$ for all n = 0, ..., t.
- (2) $\mathbf{U}_n[1]^{-n-1}\mathbf{M} \cong \operatorname{Im} e^n$ for all $n = 0, \ldots, t$.
- (3) For all n = 0, ..., t, for each $\frac{m}{(a_1, ..., a_{n+1})} \in \mathbf{U}_{n+1}^{-n-1} \mathbf{M}$,

$$\left(0:\frac{m}{(a_1,\ldots,a_{n+1})}\right) = \left(0:\frac{m}{(a_1,\ldots,a_n,1)}\right) \text{ where } \frac{m}{(a_1,\ldots,a_n,1)} \in \mathbf{U}_n[1]^{-n-1}\,\mathbf{M}.$$

(4) For all n = 0, ..., t, each element of \mathbf{U}_{n+1} forms a poor \mathbf{M} -sequence.

In particular, let \mathbf{R} be a Noetherian local ring and let \mathbf{M} be a finitely generated \mathbf{R} -module of dimension d. Assume that the above conditions hold for t=d-1 and $\mathbf{U}_d[1]^{-d-1}\mathbf{M} \neq 0$. Then \mathbf{M} is a Cohen-Macaulay module.

Proof. (1) \Leftrightarrow (2) From the short exact sequence (*) this is clear.

- $(2) \Rightarrow (3)$ By Lemma (1.6)(3) this is obvious.
- $(3) \Rightarrow (4)$ We proceed by induction on n. In the case n = 0, assume that $a_1 m = 0$ for some $0 \neq m \in \mathbf{M}$ and $(a_1) \in \mathbf{U}_1$. Then we have $a_1 \in (0:m) = \left(0:\frac{m}{(b_1)}\right)$ for some $\frac{m}{(b_1)} \in \mathbf{U}_1^{-1} \mathbf{M}$ by the hypothesis. This contradicts Lemma (2.1).

Now suppose that each element of \mathbf{U}_n is a poor \mathbf{M} -sequence. Assume that $a_{n+1}m \in (a_1,\ldots,a_n)\mathbf{M}$ for some $(a_1,\ldots,a_{n+1}) \in \mathbf{U}_{n+1}$ and $m \in \mathbf{M}$. Then by Lemma (1.6)(2) we have $\frac{a_{n+1}m}{(a_1,\ldots,a_{n+1})} = 0$. That is, by ([SZ3], 2.1), we have

$$\frac{m}{(a_1,\ldots,a_{n+1})} = 0 \text{ in } \mathbf{U}_{n+1}^{-n-1} \mathbf{M}.$$

Hence by the hypothesis we have

$$\frac{m}{(a_1,\ldots,a_n,1)}=0 \text{ in } \mathbf{U}_n[1]^{-n-1}\mathbf{M}.$$

Then, by the definition of module of generalized fractions, there are $(b_1, \ldots, b_n, 1) \in \mathbf{U}_n[1]$ and $\mathbf{H} \in \mathbf{D}_{n+1}(\mathbf{R})$ such that $\mathbf{H}[a_1 \ldots a_n \ 1]^T = [b_1 \ldots b_n \ 1]^T$ and $|\mathbf{H}| m \in (b_1, \ldots, b_n) \mathbf{M}$.

On the other hand, since $h_{n+1,n+1} = 1 - (h_{n+1,1}a_1 + \cdots + h_{n+1,n}a_n)$, by ([SZ1], 2.2) we have

$$h_{11}\cdots h_{nn}m\in (b_1,\ldots,b_n)\mathbf{M}.$$

Note that by the inductive hypothesis b_1, \ldots, b_n is a poor **M**-sequence and $\mathbf{H}'[a_1]$ $\ldots a_n$]^T = $[b_1 \ldots b_n]$ ^T where **H**' is the top left $n \times n$ submatrix of **H**. Hence by ([O], 3.2) we get

$$m \in (a_1,\ldots,a_n)\mathbf{M}.$$

$$(4) \Rightarrow (1) \text{ Let } \frac{m}{(a_1, \dots, a_n)} \in \text{Ker } e^n \text{ with } \frac{m}{(a_0)} = m. \text{ Then } \frac{m}{(a_1, \dots, a_n, 1)} = m$$

0 in $\mathbf{U}_{n+1}^{-n-1}\mathbf{M}$. Hence by Lemma (1.6)(2), we have

$$m \in (a_1,\ldots,a_n)\mathbf{M}.$$

Therefore we have $\frac{m}{(a_1, \ldots, a_n)} \in \operatorname{Im} e^{n-1}$.

For the last assertion, since $\mathbf{U}_d[1]^{-d-1}\mathbf{M}\neq 0$, there is $(a_1,\ldots,a_d)\in \mathbf{U}_d$ such that a_1, \ldots, a_d is an **M**-sequence.

Remark (2.14). In Proposition (2.13), if **R** is Noetherian, then we can change the condition (3) for Ass $(\mathbf{U}_{n+1}^{-n-1}\mathbf{M}) = \mathrm{Ass}(\mathbf{U}_n[1]^{-n-1}\mathbf{M})$ for all $n = 0, \ldots, t$.

Let $(\mathbf{R}, \mathfrak{m})$ be a Noetherian local ring and let \mathbf{M} be a finitely generated **R**-module of dimension d. Let $\mathcal{U}_f = ((\mathbf{U}_f)_i)_{i \geq 1}$ be the chain of the expansions of triangular subsets (Example (1.3)(5)) on **R**. Then we have the following complex

$$0 \to \mathbf{M} \xrightarrow{f^0} (\mathbf{U}_f)_1^{-1} \mathbf{M} \xrightarrow{f^1} (\mathbf{U}_f)_2^{-2} \mathbf{M} \to \cdots \to (\mathbf{U}_f)_{d-1}^{-d+1} \mathbf{M} \xrightarrow{f^{d-1}} (\mathbf{U}_f)_d^{-d} \mathbf{M} \xrightarrow{f^d} 0,$$

since $(\mathbf{U}_i)_{d+i}^{-d-i}\mathbf{M} = 0$ for all $i \ge 1$ by ([C], 2.3).

Proposition (2.15). Let **R**, **M** and \mathbf{U}_t be as above. Then the following four conditions are equivalent.

- (1) **M** is an f-module (see [SZ4], 1.8 (ii)).
- (2) Ker $f^n/\text{Im } f^{n-1} \cong \mathbf{H}_{\mathfrak{m}}^n(\mathbf{M})$ for all $n = 0, \ldots, d$. (3) Ass $((\mathbf{U}_f)_n[1]^{-n-1}\mathbf{M}) \subset \{\mathfrak{m}\} \cup \text{Ass}((\mathbf{U}_f)_{n+1}^{-n-1}\mathbf{M})$ for all $n = 0, \ldots, d$. (4) Supp(Ker $f^n/\text{Im } f^{n-1}) \subset \{\mathfrak{m}\}$ for all $n = 0, \ldots, d$.
- In particular, if \mathbf{M} is a Cohen-Macauly module, then

$$\begin{cases} \operatorname{Ass}((\mathbf{U}_f)_n[1]^{-n-1}\mathbf{M}) = \operatorname{Ass}((\mathbf{U}_f)_{n+1}^{-n-1}\mathbf{M}) = \mathbf{F}_{Mn} & \text{for all } n < d, \\ \operatorname{Ass}((\mathbf{U}_f)_d[1]^{-d-1}\mathbf{M}) = \{\mathfrak{m}\}. \end{cases}$$

Proof. (1) \Rightarrow (2) In the case $n = 0, \ldots, d - 1$, this follows from ([SZ4], 2.4), since $(\mathbf{U}_f)_n = (\mathbf{U}_s)_n$. In the case n = d, we have

$$\operatorname{Ker} f^{d} / \operatorname{Im} f^{d-1} \cong \operatorname{\mathbf{U}}_{d}^{-d} \operatorname{\mathbf{M}} / \operatorname{Im} f^{d-1} \cong \operatorname{\mathbf{U}}_{d} [1]^{-d-1} \operatorname{\mathbf{M}} \cong (\operatorname{\mathbf{U}}_{s})_{d+1}^{-d-1} \operatorname{\mathbf{M}} \cong \operatorname{\mathbf{H}}_{\mathfrak{m}}^{d} \operatorname{\mathbf{M}}$$

by Lemma (1.9) and Lemma (1.7).

- $(2) \Rightarrow (3) \Leftrightarrow (4)$ These follow from Corollary (2.12)(2) and Lemma (2.8)(4).
- $(4) \Rightarrow (1)$ This follows from ([SZ4], 2.3).

The last assertion follows from (2), Corollary (2.12)(2) and ([C], 2.15).

3. Modules of generalized fractions and complexes of Cousin type

In this section, suppose that \mathbf{R} is a Noetherian ring.

THEOREM (3.1). Let \mathbf{R} be a Noetherian ring and \mathbf{M} an \mathbf{R} -module. Let $\mathcal{U} = (\mathbf{U}_i)_{i \geq 1}$ be a chain of triangular subsets on \mathbf{R} . Let $\mathcal{F} = (\mathbf{F}_i)_{i \geq 0}$ be a filtration of $\operatorname{Spec}(\mathbf{R})$ which admits \mathbf{M} . Then

the complex C(U, M) is of Cousin type for M with respect to \mathcal{F}

Ass
$$(\mathbf{U}_n[1]^{-n-1}\mathbf{M}) \cap \partial \mathbf{F}_n = \mathrm{Ass}(\mathbf{U}_{n+1}^{-n-1}\mathbf{M}) \quad \text{for all } n \geq 0 \text{ and}$$

$$\mathbf{U}_{n+1}^{-n-1}\mathbf{M} \cong \bigoplus_{\mathfrak{p} \in \partial \mathbf{F}_n} (\mathbf{U}_{n+1}^{-n-1}\mathbf{M})_{\mathfrak{p}} \text{ for all } n \geq 0.$$

- *Proof.* (\uparrow) We must verify the properties (i)-(iii) of the definition of Cousin type (see (1.4)).
- (i) and (ii) By Remark (2.5) these always hold for arbitrary complexes $\mathbf{C}(\mathcal{U}, \mathbf{M})$.
- (iii) We must show that $\operatorname{Supp}(H_U^n(\mathbf{M})) \subset \mathbf{F}_{n+1}$. Note that $\operatorname{Ass}(\mathbf{U}_{n+1}^{-n-1}\mathbf{M}) = \operatorname{Ass}\left(\bigoplus_{\mathfrak{p}\in\partial\mathbf{F}_n}(\mathbf{U}_{n+1}^{-n-1}\mathbf{M})_{\mathfrak{p}}\right) \subset \partial\mathbf{F}_n$ by Lemma (2.4). By Lemma (2.8)(5) and Lemma (2.4), we have $\operatorname{Supp}(H_U^n(\mathbf{M})) \subset \operatorname{Supp}(\mathbf{U}_n[1]^{-n-1}\mathbf{M}) \subset \mathbf{F}_n$. But it follows from the hypothesis and Lemma (2.8)(4)(6) that $\partial\mathbf{F}_n \cap \operatorname{Supp}(H_U^n(\mathbf{M})) = \emptyset$.
- (\downarrow) It is enough to show that the first condition of Theorem holds. By the third and the fourth conditions of the definition of Cousin type, we have $\partial \mathbf{F}_n \cap \operatorname{Supp}(H_U^n(\mathbf{M})) = \emptyset$ and $\operatorname{Ass}(\mathbf{U}_{n+1}^{-n-1}\mathbf{M}) \subseteq \partial \mathbf{F}_n$. Hence Lemma (2.8)(6) completes the proof of Theorem.

COROLLARY (3.2). With the same notation and assumption as in Theorem (3.1), we have the following.

(1) Suppose that $\partial \mathbf{F}_{Mn} \cap \partial \mathbf{F}_n = \mathrm{Ass}(\mathbf{U}_{n+1}^{-n-1} \mathbf{M})$ for all $n \geq 0$ and

$$\mathbf{U}_{n+1}^{-n-1}\mathbf{M}\cong\bigoplus_{\mathfrak{p}\in\partial\mathbf{F}_n}\left(\mathbf{U}_{n+1}^{-n-1}\mathbf{M}\right)_{\mathfrak{p}}$$
 for all $n\geq0$.

Then the complex $C(\mathcal{U}, \mathbf{M})$ is of Cousin type for \mathbf{M} with respect to \mathcal{F} .

- (2) In particular, assume that $\partial \mathbf{F}_{\mathbf{M}n} \cap \partial \mathbf{F}_n \subseteq \operatorname{Supp}(\mathbf{U}_n[1]^{-n-1}\mathbf{M})$ for all $n \geq 0$. Then the converse of (1) is true.
- *Proof.* (1) This follows from Theorem (3.1), since $\operatorname{Ass}(\mathbf{U}_{n+1}^{-n-1}\mathbf{M}) \subset \operatorname{Ass}(\mathbf{U}_n[1]^{-n-1}\mathbf{M}) \cap \partial \mathbf{F}_n \subset \partial \mathbf{F}_{\mathbf{M}n} \cap \partial \mathbf{F}_n$ by Corollary (2.12)(1) and Lemma (2.6)(2).
- (2) It is sufficient to show that $\partial \mathbf{F}_{Mn} \cap \partial \mathbf{F}_n = \mathrm{Ass}(\mathbf{U}_{n+1}^{-n-1}\mathbf{M})$, since the second isomorphisms hold by the definition of Cousin type.
- (\supset) Since $\operatorname{Ass}(\mathbf{U}_{n+1}^{-n-1}\mathbf{M}) \subset \partial \mathbf{F}_n$, it follows from Lemma (2.6)(2) that $\operatorname{Ass}(\mathbf{U}_{n+1}^{-n-1}\mathbf{M}) \subset \partial \mathbf{F}_{\mathrm{M}n} \cap \partial \mathbf{F}_n$.
- (\subset) We proceed by induction on n. In the case n=0, let $\mathfrak{p}\in\partial\mathbf{F}_{M0}\cap\partial\mathbf{F}_{0}$. Consider the following complex

$$0 \to \mathbf{M} \stackrel{e^0}{\to} \mathbf{U}_1^{-1} \mathbf{M} \stackrel{e^1}{\to} \mathbf{U}_2^{-2} \mathbf{M} \to \cdots$$

Then by the definition of Cousin type, we have the following exact sequence

$$0 \to \mathbf{M}_{\mathfrak{p}} \stackrel{\cong}{\to} (\mathbf{U}_{1}^{-1} \, \mathbf{M})_{\mathfrak{p}} \to 0.$$

Since $\mathfrak{p} \in \mathrm{Ass}(\mathbf{M})$, we have $\mathfrak{p} \in \mathrm{Ass}(\mathbf{U}_1^{-1}\mathbf{M})$ by ([M], p. 38 Corollary).

Suppose that $n \geq 1$. Let $\mathfrak{p} \in \partial \mathbf{F}_{Mn} \cap \partial \mathbf{F}_{n}$. Consider the following complex

$$\cdots \to \mathbf{U}_{n-1}^{-n+1} \stackrel{e^{n-1}}{\to} \mathbf{U}_n^{-n} \mathbf{M} \stackrel{e^n}{\to} \mathbf{U}_{n+1}^{-n-1} \mathbf{M} \to \cdots$$

It follows from the definition of Cousin type that we have the following exact sequence

$$0 \to (\operatorname{Im} e^{n-1})_{\mathfrak{p}} \to (\operatorname{U}_{n}^{-n} \mathbf{M})_{\mathfrak{p}} \to (\operatorname{U}_{n+1}^{-n-1} \mathbf{M})_{\mathfrak{p}} \to 0,$$

since $(\operatorname{Ker} e^n)_{\mathfrak{p}} \cong (\operatorname{Im} e^{n-1})_{\mathfrak{p}}$. Hence by the inductive hypothesis and Lemma (2.6) (3), we have $(\mathbf{U}_n^{-n} \mathbf{M})_{\mathfrak{p}} \neq 0$. On the other hand, by Proposition (2.10)(2) and the assumption $\partial \mathbf{F}_{Mn} \cap \partial \mathbf{F}_n \subset \operatorname{Supp}(\mathbf{U}_n[1]^{-n-1} \mathbf{M})$, we get

$$(\operatorname{Im} e^{n-1})_{\mathfrak{p}} \ncong (\mathbf{U}_{n}^{-n} \mathbf{M})_{\mathfrak{p}}.$$

That is $(\mathbf{U}_{n+1}^{-n-1}\mathbf{M})_{\mathfrak{p}} \neq 0$. Hence we conclude that $\mathfrak{p} \in \mathrm{Ass}(\mathbf{U}_{n+1}^{-n-1}\mathbf{M})$ by Lemma (2.4).

Remark (3.3). Using Lemma (2.6)(2), Lemma (2.8)(6), the third and the fourth conditions of the definition of Cousin type, we have another proof of Corollary (3.2)(2) as follows:

$$\begin{array}{l} \partial \mathbf{F}_{\mathtt{M}n} \cap \partial \mathbf{F}_{n} = \partial \mathbf{F}_{n} \cap \operatorname{Supp}(\mathbf{U}_{n}[1]^{-n-1} \, \mathbf{M}) = \partial \mathbf{F}_{n} \cap \operatorname{Ass}(\mathbf{U}_{n}[1]^{-n-1} \, \mathbf{M}) \\ = (\partial \mathbf{F}_{n} \cap (H_{U}^{n}(\mathbf{M}))) \cup (\partial \mathbf{F}_{n} \cap \operatorname{Ass}(\mathbf{U}_{n+1}^{-n-1} \, \mathbf{M})) \\ = \partial \mathbf{F}_{n} \cap \operatorname{Ass}(\mathbf{U}_{n+1}^{-n-1} \, \mathbf{M}) = \operatorname{Ass}(\mathbf{U}_{n+1}^{-n-1} \, \mathbf{M}). \end{array}$$

Remark (3.4). If **M** is a finitely generated **R**-module and a complex $\mathbf{C}(\mathcal{U}, \mathbf{M})$ is of Cousin type for **M** with respect to $\mathscr{F}_{\mathbf{M}}$, then $\mathrm{Ass}(\mathbf{U}_{n+1}^{-n-1}\mathbf{M})=\{\mathfrak{p}\in\mathrm{Supp}(\mathbf{M}):\mathrm{ht}_{\mathbf{M}}\mathfrak{p}=n\}$ by ([RSZ], 3.3), ([C], 2.11) and the following Corollary (3.5) (1).

COROLLARY (3.5). Let \mathbf{M} be a finitely generated \mathbf{R} -module of dimension d. Let $\mathcal{F} = (\mathbf{F}_i)_{i \geq 0}$ be a filtration of $\operatorname{Spec}(\mathbf{R})$ which admits \mathbf{M} . Let $\mathcal{F}_{\mathbf{M}} = (\mathbf{F}_{\mathbf{M}i})_{i \geq 0}$ be the \mathbf{M} -height filtration.

- (1) (cf. [SY], 3.9) $\mathbf{C}(\mathcal{U}_h, \mathbf{M})$ is of Cousin type for \mathbf{M} w. r. t. $\mathcal{F}_{\mathbf{M}}$, where $\mathcal{U}_h = ((\mathbf{U}_h)_i)_{i \geq 0}$.
- (2) ([RSZ], 3.4) $\mathbf{C}(\mathcal{U}_{\bar{h}}, \mathbf{M})$ is of Cousin type for \mathbf{M} w. r. t. \mathcal{F} , where $\mathcal{U}_{\bar{h}} = ((\mathbf{U}_{\bar{h}})_i)_{i\geq 0}$.
- (3) ([GO], 3.6) Let U = (U_i)_{i≥0} be a chain of saturated triangular subsets on R. Put G₀ = Supp(M) and for i ∈ N, define G_i = {p ∈ Supp(M): there exists (a₁,...,a_i) ∈ U_i with (a₁,...,a_i)R ⊂ p}. Assume that G = (G_i)_{i≥0}, induced by U and M, is a filtration of Spec(R) which admits M. Then C(U, M) is of Cousin type for M w. r. t. G.
- (4) If dim $\mathbf{M} = \operatorname{ht}_{\mathbf{M}} \mathfrak{q} + \operatorname{dim} \mathbf{M} / \mathfrak{q} \mathbf{M}$ for all $\mathfrak{q} \in \operatorname{Supp}(\mathbf{M})$, then $\mathbf{C}(\mathcal{U}_s, \mathbf{M})$ is of Cousin type for \mathbf{M} w. r. t. $\mathcal{F}_{\mathbf{M}}$, where $\mathcal{U}_s = ((\mathbf{U}_s)_i)_{i \geq 0}$.
- (5) Let $\mathcal{U}_r = ((\mathbf{U}_r)_i)_{i\geq 0}$. Then we have the following equivalent conditions.

$$\mathbf{M}$$
 is a Cohen-Macaulay module
 $\Leftrightarrow \mathbf{C}(\mathcal{U}_r, \mathbf{M})$ is of Cousin type for \mathbf{M} w. r. t. $\mathcal{F}_{\mathbf{M}}$
 $\Leftrightarrow (\mathbf{U}_r)_{n+1}^{-n-1} \mathbf{M} \cong \bigoplus_{\substack{\mathbf{ht}_{\mathbf{M}}\mathbf{p}=n}} ((\mathbf{U}_r)_{n+1}^{-n-1} \mathbf{M})_{\mathfrak{p}}$ for all $n \geq 0$.

(6) Let \mathbf{R} be a Noetherian local ring. Then

$$\mathbf{M}$$
 is a Gorenstein module

$$\Leftrightarrow \begin{cases} \mathbf{C}(\mathcal{U}_r, \mathbf{M}) \text{ is of Cousin type for } \mathbf{M} \text{ w. r. t. } \mathcal{F}_{\mathbf{M}} \text{ and} \\ (\mathbf{U}_r)_{d+1}^{-d-1} \mathbf{M} \text{ is an injective } \mathbf{R}\text{-module} \end{cases}$$

$$\Leftrightarrow \begin{cases} (\mathbf{U}_r)_{n+1}^{-n-1} \, \mathbf{M} \cong \bigoplus_{\substack{\mathbf{ht}_{\mathbf{M}}\mathbf{p} = n \\ (\mathbf{U}_r)_{d+1}^{-d-1} \, \mathbf{M}}} ((\mathbf{U}_r)_{n+1}^{-n-1} \, \mathbf{M})_{\mathfrak{p}} \text{ for all } n \geq 0, \text{ and } \end{cases}$$

Proof. (1) This follows from ([C], 2.11 and 3.3(2)) and Corollary (3.2).

(2) By ([RSZ], 2.6 or [C], 3.3(1)), we have for all $n \in \mathbb{N} \cup \{0\}$

$$(\mathbf{U}_{\overline{h}})_{n+1}^{-n-1}\mathbf{M}\cong\bigoplus_{\mathfrak{p}\in\partial\mathbf{F}_n}((\mathbf{U}_{\overline{h}})_{n+1}^{-n-1}\mathbf{M})_{\mathfrak{p}}.$$

Hence by Lemma (2.4) we get

$$\begin{split} \operatorname{Ass}((\mathbf{U}_{\overline{h}})_{n+1}^{-n-1}\mathbf{M}) &= \operatorname{Ass}\Big(\bigoplus_{\mathfrak{p} \in \partial \mathbf{F}_n} ((\mathbf{U}_{\overline{h}})_{n+1}^{-n-1}\mathbf{M})_{\mathfrak{p}} \Big) \\ &= \bigcup_{\mathfrak{p} \in \partial \mathbf{F}_n} \operatorname{Ass}\Big(((\mathbf{U}_{\overline{h}})_{n+1}^{-n-1}\mathbf{M})_{\mathfrak{p}} \Big) \subset \partial \mathbf{F}_n. \end{split}$$

By Lemma (2.7) and the definition of $(\mathbf{U}_{\overline{h}})_{n+1}$, we have, for all $\mathfrak{p} \in \partial \mathbf{F}_n \cap \operatorname{Supp}(\mathbf{M})$,

$$(H_U^n(\mathbf{M}))_n = 0.$$

Therefore we have $\partial \mathbf{F}_n \cap \mathrm{Ass}(H_U^n(\mathbf{M})) = \emptyset$, since $\mathrm{Ass}(H_U^n(\mathbf{M})) \subseteq \mathrm{Supp}(\mathbf{M})$. Hence we obtain

$$\partial \mathbf{F}_n \cap \operatorname{Ass}((\mathbf{U}_{\overline{h}})_n[1]^{-n-1}\mathbf{M}) = \partial \mathbf{F}_n \cap \operatorname{Ass}((\mathbf{U}_{\overline{h}})_{n+1}^{-n-1}\mathbf{M}) = \operatorname{Ass}((\mathbf{U}_{\overline{h}})_{n+1}^{-n-1}\mathbf{M}),$$

by Lemma (2.8) (6). Then Theorem (3.1) completes the proof.

(3) By ([GO], 3.6), we have for all $n \in \mathbb{N} \cup \{0\}$

$$\mathbf{U}_{n+1}^{-n-1}\mathbf{M}\cong\bigoplus_{\mathfrak{p}\in\partial\mathbf{G}}\left(\mathbf{U}_{n+1}^{-n-1}\mathbf{M}\right)_{\mathfrak{p}}.$$

Hence we get Ass $(\mathbf{U}_{n+1}^{-n-1}\mathbf{M}) \subset \partial \mathbf{G}_n$.

Next for all $\mathfrak{p} \in \partial \mathbf{G}_n$ we have

$$(H_{\scriptscriptstyle U}^n(\mathbf{M}))_{\scriptscriptstyle \mathfrak{p}}=0.$$

In fact, if $(H_U^n(\mathbf{M}))_{\mathfrak{p}} \neq 0$, then there is $x \in H_U^n(\mathbf{M})$ such that $(0:x) \subset \mathfrak{p}$. But by Lemma (2.7), we have $(a_1, \ldots, a_{n+1}) \mathbf{R} \subset (0:x) \subset \mathfrak{p}$ for some $(a_1, \ldots, a_{n+1}) \in \mathbf{U}_{n+1}$. Hence from the definition of \mathbf{G}_{n+1} we have $\mathfrak{p} \in \mathbf{G}_{n+1}$. This contradicts $\mathfrak{p} \in \partial \mathbf{G}_n$.

Therefore we have $\partial G_n \cap \operatorname{Ass}(H_U^n(\mathbf{M})) = \emptyset$.

Then by Lemma (2.8)(6) we get

$$\partial \mathbf{G}_n \cap \operatorname{Ass}(\mathbf{U}_n[1]^{-n-1}\mathbf{M}) = (\partial \mathbf{G}_n \cap \operatorname{Ass}(H_U^n(\mathbf{M}))) \cup (\partial \mathbf{G}_n \cap \operatorname{Ass}(\mathbf{U}_{n+1}^{-n-1}\mathbf{M}))$$
$$= \operatorname{Ass}(\mathbf{U}_{n+1}^{-n-1}\mathbf{M}).$$

The result follows from Theorem (3.1).

- (4) This follows from ([C], 2.12 and 3.3(3)) and Corollary (3.2).
- (5) Since $\mathbf{C}(\mathcal{U}_r, \mathbf{M})$ is an exact sequence by Proposition (2.13), the first equivalence follows from ([S2], 2.4). From Proposition (2.13)(3) and Theorem (3.1), we have the second equivalence.
 - (6) This follows from (5) and ([S2], 3.11).

Remark (3.6). Let $(\mathbf{R}, \mathfrak{m})$ be a Noetherian ring and let \mathbf{M} be a finitely generated f-module of dimension d. Then $\mathbf{C}(\mathcal{U}_s, \mathbf{M})$ is of Cousin type for \mathbf{M} with respect to $\mathcal{F}_{\mathbf{M}}$ (Corollary (3.5)(4)) but $\mathbf{C}(\mathcal{U}_f, \mathbf{M})$ is not, even though $(\mathbf{U}_f)_{n+1}^{-n-1} \mathbf{M} \cong \bigoplus_{\mathbf{ht}_{\mathbf{M}} \mathbf{p} = \mathbf{n}} ((\mathbf{U}_f)_{n+1}^{-n-1} \mathbf{M})_{\mathfrak{p}}$ for all $n \geq 0$ ([C], 3.3(5)). For, by ([C], 2.15), we have $\mathrm{Ass}((\mathbf{U}_f)_{d+1}^{-d-1} \mathbf{M}) = \emptyset$ but $\mathrm{Ass}((\mathbf{U}_f)_d [1]^{-d-1} \mathbf{M}) \cap \partial \mathbf{F}_{\mathbf{M}d} = \mathrm{Ass}((\mathbf{U}_s)_{d+1}^{-d-1} \mathbf{M}) \cap \partial \mathbf{F}_{\mathbf{M}d} = \{\mathbf{m}\}$. Hence we have

$$\operatorname{Ass}((\mathbf{U}_f)_d[1]^{-d-1}\mathbf{M}) \, \cap \, \partial \mathbf{F}_{\mathrm{M}d} \neq \operatorname{Ass}((\mathbf{U}_f)_{d+1}^{-d-1}\mathbf{M}).$$

Therefore the result follows from Theorem (3.1).

EXAMPLE (3.7). Let $\mathbf{R} = k[[x, y, z]]$. Let $\mathbf{U}_1 = \{(tx^{\alpha}) \in \mathbf{R}^1 : 0 \neq t \in k \text{ and } \alpha \in \mathbf{N} \cup \{0\}\}$. Let $\mathbf{U}_i = \mathbf{U}_{i-1}[1]$ for $i = 2, 3, \ldots$. Then $\mathcal{U} = (\mathbf{U}_i)_{i \geq 1}$ is a chain of saturated triangular subsets on \mathbf{R} . Put $\mathbf{G}_0 = \operatorname{Spec}(\mathbf{R})$, $\mathbf{G}_1 = \{\mathfrak{p} \in \operatorname{Spec}(\mathbf{R}) : x \in \mathfrak{p}\}$ and $\mathbf{G}_i = \emptyset$ for $i \geq 2$. Then $\mathcal{G} = (\mathbf{G}_i)_{i \geq 0}$ is induced by \mathcal{U} and \mathbf{M} as in (3) of Corollary (3.5), but is not a filtration of $\operatorname{Spec}(\mathbf{R})$. For, $\partial \mathbf{G}_0 = \mathbf{G}_0 \setminus \mathbf{G}_1 \supset \{(y), (y, z)\}$.

EXAMPLE (3.8). Let $\mathbf{R} = k[[X,Y,Z]]/(X) \cap (Y,Z) = k[[x,y,z]]$. Then \mathbf{R} is not equidimensional and $\{(x),(y,z)\} = \partial \mathbf{F}_{\mathbf{R}^0} \cap \operatorname{Spec}((\mathbf{U}_s)_0[1]^{-1}\mathbf{R}) \not\subset \operatorname{Ass}((\mathbf{U}_s)_1^{-1}\mathbf{R}) = \{(x)\}$. Hence $\mathbf{C}(\mathcal{U}_s,\mathbf{R})$ is not of Cousin type for \mathbf{R} w. r. t. $\mathcal{F}_{\mathbf{R}}$. In fact, $k(y,z) \times k(x) \cong (\mathbf{U}_h)_1^{-1}\mathbf{R} \not\cong (\mathbf{U}_s)_1^{-1}\mathbf{R} \cong k(y,z)$ (cf. Corollary (3.5)(1) (4)).

EXAMPLE (3.9). Let $\mathbf{R} = k[[x, y]]$. Let $\mathbf{U}_1 = \{(x^{\alpha}) \in \mathbf{R}^1 : \alpha \in \mathbf{N} \cup \{0\}\}$ and $\mathbf{U}_n = \{(x^{\alpha}, 1, \dots, 1) \in \mathbf{R}^n : \alpha \in \mathbf{N} \cup \{0\}\}$ for $n \geq 2$. Then we have $\mathrm{Ass}(\mathbf{U}_1^{-1}\mathbf{R}) = \{(0)\} = \partial \mathbf{F}_{\mathbf{R}^0} \cap \mathrm{Supp}(\mathbf{U}_0[1]^{-1}\mathbf{R})$, $\mathrm{Ass}(\mathbf{U}_2^{-2}\mathbf{R}) = \{(x)\} = \partial \mathbf{F}_{\mathbf{R}^1} \cap \mathrm{Supp}(\mathbf{U}_2^{-2}\mathbf{R}) = \partial \mathbf{F}_{\mathbf{R}^1} \cap \mathrm{Ass}(\mathbf{U}_1[1]^{-2}\mathbf{R})$ and $\mathbf{U}_i^{-i}\mathbf{R} = 0$ for all $i \geq 3$. But $\mathbf{U}_2^{-2}\mathbf{R} \ncong (\mathbf{U}_2^{-2}\mathbf{R})_{(x)}$.

EXAMPLE (3.10). Let $\mathbf{R} = k[[X, Y, Z]]$ and $\mathbf{M} = k[[X, Y, Z]] / (X) \cap (X^2, Y)$ = k[[x, y, z]]. Let $\mathbf{U}_1 = \{(Y^n) \in \mathbf{R}^1 : n \ge 0\}$. Let $\mathbf{F}_i = \{\mathfrak{p} \in \operatorname{Spec}(\mathbf{R}) : \operatorname{ht} \mathfrak{p} \ge 0\}$ i+1} for $i \geq 0$. Then $\mathrm{Ass}(\mathbf{U}_1^{-1}\mathbf{M}) = \{(X)\} = \partial \mathbf{F}_0 \cap \mathrm{Ass}(\mathbf{M}) = \partial \mathbf{F}_0 \cap \mathrm{Ass}(\mathbf{M}) = \partial \mathbf{F}_0 \cap \mathrm{Ass}(\mathbf{U}_0[1]^{-1}\mathbf{M})$ but $\mathbf{M}_Y \cong \mathbf{U}_1^{-1}\mathbf{M} \ncong (\mathbf{U}_1^{-1}\mathbf{M})_{(X)} \cong \mathbf{M}_{(X)}$.

REFERENCES

- [B] N. Bourbaki, "Commutative algebra," Addison-Wesley publishing company, 1972.
- [C] S. C. Chung, Associated prime ideals and isomorphisms of modules of generalized fractions, to appear in Math. J. Toyama Univ., 17 (1994).
- [GO] G. J. Gibson and L. O'carroll, Direct limit systems, generalized fractions and complexes of Cousin type, J. Pure Appl. Algebra, **54** (1988), 249–259.
- [HS] M. A. Hamieh and R. Y. Sharp, Krull dimension and generalized fractions, Proc. Edinburgh Math. Soc., 28 (1985), 349-353.
- [M] H. Matsumuta, "Commutative ring theory," Cambridge University Press, 1986.
- [O] L. O'carroll, On the generalized fractions of Sharp and Zakeri, J. London Math. Soc., (2) 28 (1983), 417-427.
- [RSZ] A. M. Riley, R. Y. Sharp and H. Zakeri, Cousin complexes and generalized fractions, Glasgow Math. J., 26 (1985), 51-67.
- [S1] R. Y. Sharp, The Cousin complex for a module over a commutative Noetherian ring, Math. Z., 112 (1969), 340-356.
- [S2] —, Gorenstein modules, Math. Z., 115 (1970), 117–139.
- [S3] —, On the structure of certain exact Cousin complexes, LN in Pure Appl. Math., 84 (1981), 275-290.
- [S4] —, A Cousin complex characterization of balanced big Cohen-Macaulay modules, Quart. J. Math. Oxford Ser., (2) **33** (1982), 471–485.
- [ST] R. Y. Sharp and Z. Tang, On the structure of Cousin complexes, J. Math. Kyoto Univ., **33-1** (1993), 285-297.
- [SY] R. Y. Sharp and M. Yassi, Generalized fractions and Hughes' grade-theoretic analogue of the Cousin complex, Glasgow Math. J., **32** (1990), 173-188.
- [SZ1] R. Y. Sharp and H. Zakeri, Modules of generalized fractions, Mathematika, 29 (1982), 32-41.
- [SZ2] —, Modules of generalized fractions and balanced big Cohen-Macaulay modules, Commutative Algebra: Durham 1981, London Mathematical Society Lecture Notes, 72 (Cambridge University Press, 1982), 61–82.
- [SZ3] —, Local cohomology and modules of generalized fractions, Mathematika, 29 (1982), 296-306.
- [SZ4] —, Generalized fractions, Buchsbaum modules and generalized Cohen-Macaulay modules, Math. Proc. Camb. Phil. Soc., 98 (1985), 429-436.
- [SV] J. Stückrad and W. Vogel, "Buchsbaum rings and applications," Springer-Verlag, 1986.

Department of Mathematics School of Science Nagoya University Nagoya, 464-01, Japan Current address:
Department of Mathematics
Chungnam National University
Taejon 305-764, Korea