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INTEGRAL GEOMETRY UNDER CUT LOCI

IN COMPACT SYMMETRIC SPACES

HIROYUKI TASAKI

Dedicated to Professor Masaru Takeuchi on his sixtieth birthday

Introduction

The theory of integral geometry has mainly treated identities between integral

invariants of submanifolds in Riemannian homogeneous spaces like as / I(M Π gN)
JG

dμG(g), where M and N are submanifolds in a Riemannian homogeneous spaces of

a Lie group G and I(M Π gN) is an integral invariant of M Π gN. For example

Poincare's formula is one of typical identities in integral geometry, which is as fol-

lows. We denote by M(R ) the identity component of the group of isometries of

the plane R with a suitable invariant measure μM(R2}. The Poincare's formula for

two curves cx and c2 in R is given by

J # (c, Π gc2)dμm^) = 2L(c1)L(c2),
JM(R2)

where # (X) denotes the number of the points of X and L(c) denotes the length of

c. See 1.7.2 Poincare's formula in [15] for more information about it. Chern [3],

Kurίta [9], Brothers [2] and Howard [7] extended this formula to the case of

Riemann homogeneous spaces. We use the notation in Howard [7]. Let M and N be

submanifolds of finite volume in a Riemannian homogeneous space G/K of a Lie

group G which satisfy dim(G/K) < dim M + dim N. Then

ΓvoKM Π gN)dμG(g) = f σκ{T,M, Ty

λN)dμMxN(x, y).
JG JMXN

σκ is an integral invariant, which is defined in Section 1. In the case of G/K —

R , σκ is constant and the above formula implies the Poincare's one. More generally
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in the case that G/K is of constant sectional curvature oκ is constant and we can

get a similar formula as the Poincare's one. But in general oκ is complicated and it

is difficult to understand its geometric meanings.

In this paper we shall estimate σκ from above instead of exloring its geomet-

ric meanings in detail and the volumes of submanifolds from below by the integral

of their intersection numbers with the cut loci in a compact simply connected irre-

ducible symmetric space. We shall show the following theorem in Section 3.

THEOREM 3.1. Let M — G/K be a compact simply connected irreducible symmet-

ric space, p be the dimension of a Helgason sphere in M and N be a p-dimensional

submanifold of finite volume in M. If the condition (1) is satisfied, then we obtain

f #(NΠ gC0(M))dμG(g) < C vol(JV)vol(C0(Λί)).

The above equality holds if for each point x in N there is a Helgason sphere tangent to

N at x. If the conditions (l)-(3) are satisfied, then

v o l ( S ) - Cvol(C0(AO) X * iN Π 8Co<M)dμG(g) < volOV)

for a Helgason sphere S in M and N whose inclusion map is not null homo topic. In par-

ticular, a Helgason sphere is volume minimizing in the class of submanifolds of dimen-

sion p whose inclusion maps are not null homo topic.

After Theorem 3.1 we shall apply it to compact symmetric spaces of rank one

in Theorem 3.2, compact Hermitian symmetric spaces in Theorem 3.4 and quater-

nionic Grassmann manifolds in Theorem 5.1. Le [10] has also applied the method

of integral geometry to some estimates of the volume of submanifolds and explicit

estimates mainly in Grassmann manifolds.

Concerning Helgason spheres Helgason [5] established these spheres in com-

pact irreducible symmetric spaces. Ohnita [12] proved that Helgason spheres in

compact simply connected irreducible symmetric spaces are stable as minimal sub-

manifolds. Le has proved the volume minimizing property of the Helgason spheres

in all compact simply connected irreducible symmetric spaces by a different

method, that is, geodesic defect in [11].

I would like to thank Professor Yoshihiro Ohnita for directing my attention to

integral geometry and fruitful discussion on the subjects treated in this paper.
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1. Integral geometry in homogeneous spaces

In this section we shall mention some definitions and fundamental properties

of integral geometry in homogeneous spaces.

Before we mention integral geometry in homogeneous spaces, we give some

definitions according to Howard [7]. Let E be a finite-dimensional real vector

space with an inner product < , ). This inner product naturally induces an inner

product on the exterior algebra Λ E of degree k and its norm on Λ E is denoted

by I |. If elf..., en is an orthonormal basis of E, then

eh A Λ eik (1 < ί\ < < ik < n)

is an orthonormal basis of Λ E. For vector subspaces V and W with orthonormal

bases vl9...,vp and wι,...,wq respectively, we define σ(V, W) by

σ ( V , W) = \ v Y A - - - A v p A w ι A - " A w q \ .

This is independent of the choice of orthonormal bases.

LEMMA 1.1. Let V and W be vector subspaces of a real vector space E with an in-

ner product such that dim E = dim V + dim W. Then we obtain

σ(V, W) = σ(V\ W1).

Proof. Let < , > be the inner product and p = dim V, q — dim W. At first we

consider the case V Π W Φ {0}. In this case σ(V, W) = 0. Since (V + W)1 Φ

{0} and ( 7 + W)L c V1 Π W\ we obtain σ(V\ W1) = 0, thus

σ(V, W) = σ(V\ W1).

Next we consider the case V Π W — {0}. In this case there is a linear map ψ

from W1 to PFsuch that

V= {χ

Then we obtain

VL — {w — *(p(w) I w ^ W).

Define a symmetric bilinear form B on W by

B(x, y) = (φ(x), φ(z/)> for x, y e W1.

We choose an orthonormal basis xlt. . ., xp of W1 which diagonalizes B. By this
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choice

xx + φ(xλ) xp + φ(xp)

1 + φ(xλ) I v 1 + I φ(xp) I

is an orthonormal basis of V and we obtain

σ(V, W) = Π , 1 j .
t=ι v l + I φC^ ) |2

Here

1 + I ψKXi) I = \{lw± T- φφ)κXi), a y ,

and

Π (1 + I φ(x f)
1 = 1

Therefore we obtain

σ(y, HO =

Similarly

Some calculations on linear algebra imply the identity

detdpp-i "h φψ) — d e t ( l ^ + φ φ)

and we obtain

σ(V, W) = σ(V\ W1).

Let G be a Lie group and K be a closed subgroup of G. We assume that the

image under the linear isotropy representation of K at the origin o of the

homogeneous space G/K is compact. Then G has a left invariant Riemannian met-

ric < , > which is also invariant under the right multiplication by all elements

of K. Fix such a Riemannian metric < , ) on G. It induces a Riemannian metric on

G/K which is invariant under the left action of G on G/K. Let X be a Rieman-

nian manifold. We denote by μx the Riemannian measure induced by the Rieman-

nian metric of X. We regard K as a Riemannian manifold with the induced

Riemannian metric. For g, h in G, a vector subspace V of Tg0(G/K) and a vector

subspace Wof Th0(G/K), we define σ^CV, WO by
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(1.1) σκ(V, W) = f σidg 'V, dk~ιdh~o

ιW)dμκ{k).

This is independent of the choice of g and h. The following theorem is a special

case of Poincare's formula (3.4) in [7].

THEOREM 1.2. Let M and N be submanifolds of finite volume in G/K. Assume

that dim M + dim N = dim(G/ZO and that G is unimodular. Then

/ # (M Π gN)dμG(g) = f σκ(TxM, T^N)dμMyίN{χt y),
JG JMxN

where the symbol # S means the number of all elements of a set S.

In Section 3 we shall use this formula when G/K is a compact symmetric

space and N is the cut locus at the origin of G/K.

2. Cut loci and Helgason spheres

We shall review the notion of the cut locus of a point in a compact connected

Riemannian manifold and some results on the structure of cut loci in a compact

symmetric spaces. Using these we shall consider a relation between cut loci and

Helgason spheres in a compact symmetric space.

Let M be a compact connected Riemannian manifold and Exp^ denote the ex-

ponential map at x. For a unit vector X in T^M, γx(f) = Expx(tX) (t E R) is a

geodesic parameterized by arc length starting from x with the initial direction X.

If t is small, γx is a minimizing geodesic joining x and yx(f). If γx |[o,ίo(^)] is mini-

mizing and if γx \[0J] is not minimizing for t > to(X), then to(X)X is called a tan-

gent cut point of x along γx and Έxp(to(X)X) is called a cut point of x along γx.

The tangent cut locus CX(M) of x is defined by

CX{M) = U t0OOX,
X<=TXM

1^1=1

which is homeomorphic to a hypersphere in TXM. See Kobayashi [8]. The cut locus

CX(M) of x is defined by

Put

CX(M) =

BX(M) = U {tX\0<t<tQ(X)}>
X<=TXM

1X1 1
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which is homeomorphic to an open ball in TJΛ and

BX{M) = M- CX(M).

Then Exp^ induces a diffeomorphism from BX(M) onto BX(M). Therefore

BX(M) is homeomorphic to an open ball in TX(M). Thus we obtain a decomposi-

tion of M to a disjoint union of an open cell BX(M) and a compact subset CX(M).

By this decomposition we obtain the following lemma.

LEMMA 2.1. Lei M be a compact connected Riemannian manifold and S be a sub-

set of M whose inclusion map is not null homotopic. Then N Π CX(M) is not empty for

any x in M.

We shall review the notion of compact symmetric spaces and some results on

the structure of their cut loci obtained by Sakai [14] and Takeuchi [16]. Let G be

a compact connected Lie group and θ be an involutive automorphism of G. Put

G,= {g^G\θ(g) = g).

For a closed subgroup K of G which lies between Gθ and the identify component

of Gθ, (G, K) is a compact symmetric pair. Since G is compact, there is a

bi-invariant Riemannian metric (,) on G and it induces a G-invariant Riemannian

metric on the homogeneous space M = G/K, which is also denoted by (,). Conse-

quently M is a compact symmetric space. Conversely any compact symmetric

space is constructed in such a way.

We shall describe the cut locus C0(M) of the origin o in a compact symmetric

space M — G/K by a Lie-group theoretical method. Let g and f be the Lie algeb-

ras of G and K respectively, θ induces an involutive automorphism of g, which is

also denoted by θ. Then we obtain

1 = l Y € = g | 0 G » =X}.

Denote

p= U e g | Θ(X) = -X}.

We have a direct sum decomposition

of g. Take a maximal Abelian subspace ap in p and a maximal Abelian subalgebra

t in g including αp. The complexification f) — t of t is a Cartan subalgebra of the
c ^

complexification g of g. For each element a in the dual space ί) of f), put
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Qa= tfe g | [H,X\ = a(H)X for all ^ e i)}.

An element ami) is called a rooί of g wigh respect to i) iί Qa Φ {0}. Let A de-

note the set of all nonzero zoots of g . Then we obtain the root space decomposi-

tion of g :

gC = ί) + Σ Qa.

Let Δ(p) denote the set of nonzero roots which do not vanish identically on αp.

Since G is compact, α(t) c ^/— 1 R for each root a in Δ, so α is real valued on

y/— 11. We can choose compatible lexicographic orderings on the dual spaces of

\J— I t and y/— lα p , which means that a real valued form on y/— I t whose restric-

tion to /— 1 α̂  is positive is positive. Denote by the restriction of forms on t

to ap and

Σ = {ά\a^Δ} - {0},

which is called the root system of the symmetric space M with respect to ap. Now

we assume that M is irreducible and simply connected. Then Σ is an irreducible

root system. Let γ0 be the highest root in Σ and {γlf. . ., γr} be the fundamental

root system of Σ , where r is the rank of the symmetric space M. Set

γo(H) = π, Ti{H) > 0 for 1 < i < r),

γo(H) = π, r^W > 0 for 1 < i < r).

LEMMA 2.2. Let M — G/K be a compact simply connected irreducible symmetric

space. Then the cut locus C0(M) of the origin o in M is described as follows :

C0(M) = U

The subset Co (M) — U k^κ k Expo(α s) is a submanifold of M and its complement in

C0(M) is stratified by finitely many submanifolds whose dimensions are less than

dim C°0(M).

For the proof of this lemma, see Section 3 of Chapter VII in [6], Theorem 5.3

in [14] or Corollary 3 of Theorem 1.1 in [16]. We can regard the Riemannian me-

asure on C0(M) of the induced Riemannian metric as a measure on C0(M) with

respect to which the measure of C0(M) — C0(M) is zero.

In order to describe the tangent spaces to Co (M) we shall define root spaces

of the root system Σ . For each y in Σ , put
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gr = {X e g | [H, X] = γ(H)X for all H e ac

p}.

Then we obtain

9r = Σ g a.

α=r

Denote by Σ the set of all positive roots in Σ . For each γ in Σ , put

pr = p Π (gr + g_ r).

We get an orthogonal direct sum decomposition of p :

p = α + Σ p r

We have the following lemma from the proof of Theorem 3 in [18].

LEMMA 2.3. For k in K and Ho in as, kExp0H0 is contained in Co (M) and

TkExPoHo(C°0(M)) = d(kexp H0)o ({H e % \ Ϊ0(H) = 0} + Σ p r ) .

We shall define a Helgason sphere and mention some fundamental properties

of it. Helgason proved the following theorem in [5].

THEOREM 2.4. Let M be a compact irreducible symmetric space except a real pro-

jective space and K be the maximum of the sectional curvatures of M. Then there exists

a totally geodesic sphere of constant sectional curvature tc. Any two such sphere of the

same dimension are conjugate under the identity component of the group of all

isometries of M.

DEFINITION 2.5. We call a maximal dimensional sphere mentioned in Theorem

2.4 a Helgason sphere in M.

Since the symmetric space M is irreducible, g is semisimple, so the Killing

form ( , ) of g is nondegenerate. For each γ in Σ , Ar denotes the element in ap

satisfying

(H,Ar> = γ(H) for all H ^ ac

p.

We can choose such an Ar because ( , ) is nondegenerate on ap. γ is real valued

on \/— lα p , so y7— \AV is contained in αp. We denote
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Then 5 is a Helgason sphere in M and

(2.1) τo(S) = iV^TA o + pro.

By Lemma 2.3 and (2.1) we obtain an orthogonal direct sum decomposition of

T0(M:

(2.2) T0(M) = T0(S) + d(kexpH)'o
ι T tExpH(C0°(M)),

where k e K and i/ ^ αs. In particular,

dim M = dim S + dim C0°(M).

3. Integral geometry under cut loci

We shall show an inequality which estimates the volumes of submanifolds of

the same dimension as that of a Helgason sphere from below in a compact simply

connected irreducible symmetric space which satisfies certain conditions. Integral

geometry under cut loci plays an important role in this estimate.

Let M— G/K be a compact simply connected irreducible symmetric space

and p be the dimension of a Helgason sphere in M. We use the notation in Section

2. We set

8 = R / ^ Λ o + Pro

and denote by Ps the orthogonal projection from p to 8.

Now we consider the following four conditions concerning the cut locus and

Helgason sphere in M.

(0) There exists a positive constant C such that

Γ I Ps(Ad(k)v) \Pdμκ{k) = C \ v Γ for all υ e p.
Jκ

(1) There exists a positive constant C such that

f I Ps(Ad(k)v) \ P d μ κ ( k ) <C\υ\p for al l v ^ p .

The equality folds for y e § ,

(2) For any k in K, the map

PsAά(k) : 3 - > S

is conformal, that is, there is a nonnegative constant Ck which satisfies
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(Ps(Ad(k)u, PsAd(k)v) = Ck(u, υ) for all u, v e g.

(3) For a Helgason sphere S in M,

# (S Π £ C0(ΛO) = 1 for almost all g €= G.

We note that the condition (0) implies (1).

THEOREM 3.1. Let M — G/K be a compact simply connected irreducible symmet-

ric space, p be the dimension of a Helgason sphere in M and N be a p-dimensional

subnianifold of finite volume in M. If the condition (1) is satisfied, then we obtain

f # (N Π gC0(M))dμG(g) < C vol(Λ0vol(Co(M)).
JG

The above equality holds if for each point x in N there is a Helgason sphere tangent to

N at x. If the conditions (l)-(3) are satisfied, then

v o l ( 5 ) - Cvol(C0(Mj)fG

 # ( N C ] sC0{M))dμG{g) < voKΛO

for a Helgason sphere S in M and N whose inclusion map is not null homo topic. In par-

ticular, a Helgason sphere is volume minimizing in the class of submanifolds of

dimension p whose inclusion maps are not null homotopic.

Proof. For simplicity we denote Co instead of C0(M) in this proof. Applying

Theorem 1.2 to N and Co, we obtain

/ # (N Π gC0)dμG(g) = f σ x σ;αV), Tυ

L(C0))dμNxC{x, y).
JG JNxC0

We shall investigate σκ(T^(N), Ty

λ(C0)) in detail. By the definition (1.1) of σκ it

is sufficient to consider σκ at the origin. For a suitable g in G, we obtain

dg0 Ty (Co) — $ by the orthogonal direct sum decomposition (2.2). Let V be a

/>-dimensional vector subspace of p. By Lemma 1.1 σ(V , §>) — o(V, §> ), so
σκ(yλy 3) ~ σκ(y* ^X) We shall estimate the value σκ(V, 3 1). Take an ortho-

normal basis vv...,vp of V. For any k in K

σ(Ad(k)V, $λ) = iPsAάitiv, Λ Λ

so we obtain

υx Λ Λ PsAά(k)vp dμκ(k)
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< ΓI PsAd(k)v11 I PsAά(k)vp \ dμκ(k)

< Π / \PsAά{k)vι\
p dμκ(k))

1 = 1 \JK '

by Holder's inequality. If the condition (1) is satisfied, then the last term is less

than or equal to the constant C. Therefore

f #(NΠ gC0)dμG(g) < C vol(Λ0vol(Co).
JG

From now on we suppose that the conditions (l)-(3) are satisfied. In the case that

V = 8, we obtain

ϋi Λ Λ PsAά(k)υp | = | P5Ad(/c)t^ | | PsAά(k)υp \

for any k in K by (2). Moreover all of the functions | PsAd(A:)f^ | coincide, so

f I PsAdOdv! I I P sAd(/c)^ I dμκ(k) = C.

If 5 is a Helgason sphere in M, then we obtain

f # (S Π gC0)dμG(g) = C vol(5)vol(Q.

•'G

It is equal to vol(G) by (3), thus

vol(G)
vol(S) =

Cvol(Co)

Now we assume that the inclusion map of N to M is not null homotopic. It follows

from Lemma 2.1 that ./Vhas an intersection with gC0 for any g in G and

vol(G) < f #(NngC0)dμG(g).

Therefore we obtain

vol(S) < C v o | ( C o ) jΓ # (N Π gC0)dμG(g) < voKΛO.

Since the inclusion map of S is not null homotopic by [11], S is volume minimizing

in the class of submanifolds of dimension p whose inclusion maps are not null

homotopic.
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THEOREM 3.2. Let M be one of the complex and quaternionic projective spaces and

the Cayley projective plane, p be the dimension of a Helgason sphere in M and N be a

p-dimensional submanifold of finite volume in M. Then we obtain

f # (N Π gC0(M))dμG(g) < Cvol(Λ0vol(Co(M)).

The above equality holds if for each point x in N there is a Helgason sphere tangent to

N at x. Moreover

v o l ( 5 ) - CvoΠCo(M)) X #{Nf] sCΰ(M))dμGig) < volUV)

holds for a Helgason sphere S in M and N whose inclusion map is not null homotopic.

Remark. The estimate in Theorem 3.2 for the case of the complex projective

spaces is obtained by Le in Proposition 2.11 of [10]. She also obtained an estimate

of the volume of submanifolds of even dimensions in the complex projective spaces

in Proposition 3.10 of [10].

Proof It is known that M is a compact simply connected symmetric space of

rank one. A Helgason sphere in M is a projective line in each case. Since the

linear isotropy action of K on the unit sphere in p is transitive, (0) is satisfied. If

M is a complex (quaternionic) projective space, the map P sAd(k) : § —• 8 is a

complex (quaternionic) linear map for any k in K, so it satisfies (2). In the case

that M is the Cayley projective plane, (2) is proved in the proof of Theoreme 6.6

in [1]. The condition (3) follows from projective geometry. A cell decomposition of

M implies that the homology class represented by a projective line generates

Hp(M Z), so the inclusion map of a projective line is not null homotopic. Thus

we have proved the theorem by Theorem 3.1.

LEMMA 3.3. Let M be a compact simply connected irreducible symmetric space

whose Helgason sphere is of demension 2. Then (0) is satisfied.

Proof We define a symmetric bilinear form B on p by

B(uy υ) = f (PsAd(/c)w, PsAd(k)v)dμκ(k) for u, v tΞ p.

The linear isotropy representation of K on p is irreducible and B is invariant

under this representation. By Schur's lemma there is a positive constant C such
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that

B(u, v) — C(u, υ) for u, v & p.

Therefore

Γ I PsAά(k)υ \2dμκ(k) = C \ υ | 2 for υ e p.

which is the condition (0).

THEOREM 3.4. Let M be a compact irreducible Hermitian symmetric space and N

be a 2-dimensional submanifold of finite volume in M. Then we obtain

f # (N Π gC0{M))dμG{g) < C vol(Λ0vol(Co(M)).

The above equality holds if for each point p in N there is a Helgason sphere tangent to

N at p. Moreover

v o l ( 5 ) - CvoKC.Otf)) X * {N Π SC0{M))dμG{g) <: volOV)

/IOWS /or a Helgason sphere S in M and N whose inclusion map is not null homotopic.

Remark. The estimate in Theorem 3.4 is a generalization of that in Theorem

3.2 for the case of the complex projective spaces.

Proof It is known that M is simply connected, so we can apply the results

obtained above to M. By Example 5.11 in [17] a Helgason sphere S in M is a com-

plex submanifold and isometric to a complex projective line. Thus we can apply

Lemma 3.3 to M and (0) is satisfied. The map P5Ad(A;) : &—> § is a complex linear

map for any k in K, so (2) is satisfied.

A certain irreducible unitary representation of G with representation space V

induces a canonical imbedding M into the complex projective space P(V), which

consists of all complex lines through 0 in V. According to Example 5.11 in [17]

the image of 5 under this imbedding is a complex projective line in P(V), that is,

P{W) for a 2-dimensional complex vector subspace W in V. By Corollary 8 in

[19] CX(M) = M Π CX(P(V)) for x in M, so # (S Π CX{M)) = 1 for x in M Π

PiW1). Therefore

# (S Π CX(M)) = 1 for almost all x e M,
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and (3) is satisfied. Thus we have proved the theorem by Theorem 3.1.

4. Cut loci in Grassmann manifolds

We shall show that the condition (3) mentioned in Section 3 holds for the

real, complex and quaternionic Grassmann manifolds in this section.

Let K be one of the fields of complex and quaternionic numbers. The

K-Grassmann manifolds Grw(Km n) consists of all subspaces of K-dimension m

in K . A s is well known, Grw(K ) has a Riemannian metric with respect to

which it is a compact symmetric space. It is simply connected.

PROPOSITION 4.1. The condition (3) is satisfied for the K-Grassmann manifold

Gr^CK""").

Proof Take and fix an orthonormal basis ev . . . , em+n of K

= {W<ΞGrm(K ) {ex,...,em_^ c W c <el9... ,em+ι»

is a Helgason sphere of Grm(Kw n). The cut locus of F i n Grw(Km n) is given by

Cv = {W <Ξ M\ dim(W f) V1) > 1}.

See [20] and [21], or [13]. Since

d i m < ^ , . . . , em+]) = m + 1, dim V1 — n,

the following inequality holds:

...,*„+,> n v1) > l .

We shall investigate the number of the points of Cv Π S separating the cases de-

pendently on d i m ( < ^ , . . . , ep_x) Π V1).

We first assume

dim<*!,..., e,+1> Π V1) = 0.

We denote by p the orthogonal projection to (em, em+ί} whose domain is restricted

to<eu...,em+1> Π V\

2 > dim (Imp)

= dim(<e l f..., eM+1> Π Vλ) — dim(<e1,..., em+1) Π Vλ)

= άim«eu...,em+ι> Π V1)

holds by our assumption, so
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1 5̂  diiτi(\0 c / ΓΊ V ) ^ 2

If d i m ( < ^ , . . . , em+1> Π V1) = 1 holds, then

cv n s = { < * ! , . . . , em_^> + <e19..., ^m + 1> n vλ}

and thus # iCv Π S) = 1. If dim(<^,. . ., ^m+1> Π V 1 ) = 2 holds, then for any

W in S the dimension of

wn «elf...,em+1> n vL) = w n F 1

is greater than 0, so W belongs to Cv. Thus we get 5 c: Cv.

We next assume

ϋm«el9...9eM,1> Π K1) > 1.

For any Win S, dim(W Π 7 1 ) > 1 and Wbelongs to C v. Thus we get S c Cκ.

By the above argument we get the following equality between two subsets of

Gr^OK1"4*) :

W\ #(CV Π S) = 1}

= iV\ d im«e l f . . . , em+ι) Π Vx) = 0, dim((.ev..., em+1) Π V x) = 1},

which is open and dense in Gr m (K m + " ) . Therefore the condition (3) is satisfied.

5. Quaternionic Grassmann manifolds

We shall show that Theorem 3.1 holds for the quaternionic Grassmann man-

ifolds M — Sp(m + n)/Sp(m) X Spin) in this section. We assume that m < n. A

4-dimensional sphere S = Spi2)/Spil) X Spil) naturally embedded in M is a

Helgason sphere. We set G = Spim + n), K— Spim) X S/>(») in this section.

THEOREM 5.1. Let M be a quaternionic Grassmann manifold and N be a

A-dimensional submanifold of finite volume in M. Then we obtain

f #(NΠ gC0(M))dμG(g) < C vol(ΛOvol(Cβ(Λί)).

The above equality holds if and only if N is a union of some pieces of Helgason spheres

in M. Moreover

v o l ( 5 ) - CvoKCo(M)) I #{NΓί sC0{M))dμG{g) < vol(JV)
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holds for a Helgason sphere S in M and N whose inclusion map is not null homotopic

Proof. We have already proved the condition (3) in the Section 4. So we shall

show the conditions (1) and (2) for the quaternionic symmetric space M.

We set

ί —

B
A e Spim), B e Spin)},

0 X
X e M(m, n H) .

Then g = ϊ + p is a canonical direct sum decomposition for the symmetric space

M. Since p is isomorphic to M(m, n H), we identify them. The action of K on p

through this identification is

A d 0

The tangent space 8 of the Helgason sphere S is

We identify 8 to the quaternionic numbers H. For A ε Spim), B ε Spin) we

obtain

Therefore the maps P5Ad(/c) : 8-* 3 for A e if are the actions of Spil) X

S£(l) on H multiplied by real numbers and conformal. Thus we have proved the

condition (2). Moreover the determinant of the map PsAd(λ;) :§—*8 is nonnega-

tive, which will be used in the proof of Corollary 5.2.

Now we consider the condition (1). Let

0 '
•

0 .
t, e R

Then αrt is a maximal Abelian subspace in p. Since I | PsAdik)v \*dμκik) isv Jκ

invariant under the action of K on p, it is sufficient to consider its value on ap.
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We take

v —
L 0

X Γ-A 0 1
i PsAd(k)v\*dμκ(k). Set k = _ _ . Since

we get

P s ( A d ( λ : ) ί > ) = P S \ A

L 0
'B ) = Σ autfiu,

l

= Σ ^ M ^ I A A A A A A / A
i j k l

and

Ps(Ad(k)v) \4dμκ(k) = Σ tttjtktι j aububυaυaubublkalkdμκ(k).
K ι,i,kΛ JK

This polynomial of /,- is invariant under the action of the Weyl group of the sym-

metric space M, it is a linear combination of Σ , t{ and Σ l < ; tttj. Its coefficient of

tι is

Γ | α n | 4 | bn\"dμκ(k).Jκ

an |21 bn |21 a121
21 bl2 Γ + 2?ίi((anbnbuά12)

2)f

2 2

The integrand of its coefficient of tλt2 is

4 I a n | 1 b n | 1 a 1 2 1 1 bl2

where 9Ϊ2 is the real part of z. The equation 9tU ) = 2(9ϊz) — | z \ holds for z

H, the above integrand is

6 I I α 1

We have 9t(β 1 1ft 1 16 1 2β 1 2) = 9ΐ((^12^11^11^12) - W e c a n change the variables to

(5.1)
an a12

021 #22

1 0

0 i
«11 0121

a21 a22i

because the measure we use is invariant. We can also do that for j , k and get
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f 4(m((anbnbί2ά12))2dμκJκ
(k)

= f (m«ά12anbnb12)Ϋ + (ma- ϊ)al2anbnbl2))Jκ

= Γ I auanbnb12 \2dμκ(k)Jκ

= / I « i2 I2 I 0 n I2 I δ n Γ I dμκ(k).

Therefore the coefficient of t1t2 is

X I i 9 ι 19 i 9 l *? / ί i \ί? *? i

0 i i 0 i ? \ \ b u bλ2 daΛk) — 3 I \ a u \ aλ2 j
1 1 1 ' I 1.Δ ' I 1 1 ' JLΔ I J\ I 1 1 ' LΔ I

JSp(m) JSp(n)

\2 \ U I2

We change the variables to

Γ« n al2\ Γl/V2 l/v/2
L02i 0 2 2 J Ll/\/2 — l/\/2

and get

/ I 011 I I 012 I = T 1 (I 01
JSp(m) ** JSp(m)

+ 1̂

+ 2
JSpi

Thus we obtain

JΓ 2 I |2 1 Γ A 4 I 1 4 . /rγ> / - \ \ 2 \

011 I 012 I ~ ~O I (I 011 + 012 I — 4 ( 9 u 0 n 0 1 2 ) ) ) .
S/»(w) ^ JSp(m)

Using (5.1) and get

f 4(3Utf n α 1 2 ) ) 2 = Γ
JSp(m) JSpimSpim)

and

~\SftιJSp(m)

By the change of the variables:

*• Γ /I

= -o / (I 011
° ^Sp(m)

4 , 1 |4\

+ I 012 1 )

0ii 0i2 I I 0 1 I _ I al2 an
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we get

Sp{m) Sp(m)
ιl2

and thus

Similarly

Γ 2 1 ,2 2 Γ , |4

I an \al21 - o- I I # n I •

X I L |2 I , |2 _ 2 Γ

Thus we have got that the coefficient of txt2 is

4 Γ I 4 L 4 Λ //Λ
"o" / #π ^n dμΛk).
3 Λ n n κ

By the coefficients obtained above we get

/ I Ps(Ad(k)v) \4dμκ(k) = I \ an |41 bn \*dμκ(

Set

Then we get

= ί I flu Γ I ftn \4dμκ(k) I t;

C = ΓI «n Γ I bn\*dμκ(k).

f I Ps(Ad(k)v) \4dμκ(k) < C\v\\

i Σ ίfί

The above equality holds if and only if all t{ except one are 0, which means that υ

belong to Ad(/c)£ for some k in K. Thus we have proved the condition (1).

In the estimate of / | PsAd(k)vι Λ Λ PsAd(k)vp | dμκ(k) mentioned in
Jκ

the proof of Theorem 3.1 for p — 4, if all of υ{ do not belong to a same Ad (A:) 3 for

some k in K, the inequality
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f I iyUK/c)^ Λ Λ PsAd(k)vp \ dμκ(k) < C

holds. Therefore the equality

f #(Nf) gC0)dμG(g) = C voKΛOvoKC)
JG

holds if and only if for each point x in N there is a Helgason sphere tangent to N

at x. By Proposition 5.1 in Ohnita [12] the above equality holds if and only if N is

a union of some pieces of Helgason spheres in M.

COROLLARY 5.2. We choose and fix an orientation of the Helgason sphere S in the

quaternionic Grassmann manifold M. We denote by 8 the wedge product of a positively

ordered orthonormal basis of $ and define a 4-form ω on p by

ω(Xv X2J X3, X4) = -^ Γ <Ad(Λ) C^ Λ Z 2 Λ I 3 Λ X4), hdμκ(k)
u j κ

for Xi ^ p. Then ω can be extended to a parallel A-form on M, denoted the same sym-

bol ω, and a) is a calibration, ω calibrates the Helgason sphere and * co calibrates the

cut locus in M. Both of the Helgason sphere and the cut locus are volume minimizing

in their homology classes of real coefficient.

Proof. By the definition of ω, it is invariant under the action of K. So we can

extend ω to a parallel form on M, because M i s a symmetric space. In particular

the extended ω is closed. Let Xl9 X2, X3, X4 be orthonormal vectors in p.

ω(Xlf X2, X3, X4) < 4 I Γ <Ad(/c) (X, Λ X2 A X3 Λ Z4), hdμκ(k)
O I JR I

< -^ Γ I <Ad(/c) (X, Λ X2 A X3 A XA), i> | dμκ(k)
u Jκ

A l 2 Λ ί 3 Λ XA) I dμκ(k),

which is already estimated in the proof of Theorem 5.1. Combining this with the

fact that the determinant of the map PsAά(k) : 3—• 8 is nonnegative, which is also

mentioned in the proof of Theorem 5.1, we can see that ω is a calibration and cali-

brates the Helgason sphere S. By (2.2) * ω calibrates the cut locus in M. The

volume minimizing property of the Helgason sphere and the cut locus is a consequ-

ence of a general theory of calibrations. See Harvey-Laswon [4].
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