CLASS-NUMBER PROBLEMS FOR CUBIC NUMBER FIELDS

STÉPHANE LOUBOUTIN

1. Introduction

Let \mathbf{M} be any number field. We let $D_{\mathrm{M}}, d_{\mathrm{M}}, h_{\mathrm{M}}, \zeta_{\mathrm{M}}, \mathbf{A}_{\mathrm{M}}$ and $\mathrm{Reg}_{\mathrm{M}}$ be the discriminant, the absolute value of the discriminant, the class-number, the Dedekind zeta-function, the ring of algebraic integers and the regulator of \mathbf{M}, respectively. We set $c=\frac{3+2 \sqrt{2}}{2}$. If q is any odd prime we let (\cdot / q) denote the Legendre's symbol. We let D_{P} and d_{P} be the discriminant and the absolute value of the discriminant of a polynomial P.

Lemma A (See [Sta, Lemma 3] and [Hof, Lemma 2]). Let \mathbf{M} be any number field. Then, ζ_{M} has at most one real zero in

$$
\left[1-\frac{1}{c \log d_{\mathrm{M}}}, 1[;\right.
$$

if such a zero exists, it is simple and is called a Siegel zero.

Lemma B (See [Lou 2]). Let \mathbf{M} be a number field of degree $n=r_{1}+2 r_{2}$ where \mathbf{M} has r_{1} real conjugate fields and $2 r_{2}$ complex conjugate fields. Let $s_{0} \in[(1 / 2), 1[$ be such that $\zeta_{\mathrm{M}}\left(s_{0}\right) \leq 0$. Then,

$$
\operatorname{Res}_{s=1}\left(\zeta_{\mathrm{M}}\right) \geq\left(1-s_{0}\right) d_{\mathrm{M}}^{\left(s_{0}-1\right) / 2}\left(1-\frac{2 r_{1}}{d_{\mathrm{M}}^{s_{0} / 2 n}}-\frac{2 \pi r_{2}}{d_{\mathrm{M}}^{s_{0} / n}}\right) .
$$

2. Lower bounds for class-numbers of cubic number fields

Let \mathbf{K} be a cubic number field. If \mathbf{K} / \mathbf{Q} is normal then \mathbf{K} is a cyclic cubic number field. Let $f_{\mathbf{K}}$ be its conductor. Then $d_{\mathbf{K}}=f_{\mathbf{K}}^{2}$ and $\zeta_{\mathbf{K}}(s)=\zeta(s) L(s, \chi)$ $L(s, \bar{\chi})$ where χ is a primitive cubic Dirichlet character modulo $f_{\mathbf{K}}$. Hence, we get

Received March 22, 1994.
$\zeta_{\mathbf{K}}(s) \leq 0, s \in\left[0,1\left[\right.\right.$. With $s_{0}=1-\left(2 / \log d_{\mathbf{K}}\right)$ Lemma B provides the following lower bound which improves the one given in [Let]

$$
\operatorname{Res}_{s=1}\left(\zeta_{\mathbf{K}}\right) \geq \frac{1}{3 \log \left(f_{\mathbf{K}}\right)}, f_{\mathbf{K}} \geq 10^{6}
$$

Lettl used his lower bound to determine all the simplest cubic number fields with small class-numbers. Here, the simplest cubic number fields are real cubic cyclic numbers fields defined as being the splitting fields of the polynomials $P(X)=X^{3}$ $-a X^{2}-(a+3) X-1(a \geq 0)$ whose discriminants $d_{P}=\left(a^{2}+3 a+9\right)^{2}$ are square of a prime $p=a^{2}+3 a+9$, which implies $\mathbf{A}_{\mathbf{K}}=\mathbf{Z}[\varepsilon]$ where $\varepsilon>1$ is the only real root of $P(X)$ greater than one (we have $\varepsilon \in] a+1, a+2[$). He found that there are 7 simplest cubic fields with class-number one, and none with class-number two or three.

In the same spirit, Lazarus determined all the simplest quartic fields with class-number 1 or 2 . Here, the simplest quartic number fields are real quartic cyclic number fields defined as being the splitting fields of the polynomials $P(X)=X^{4}-2 a X^{3}-6 X^{2}+2 a X+1(a \geqslant 0)$ whose discriminants $d_{P}=256 d_{a}^{3}$ are such that $d_{a}=a^{2}+4$ is odd-square-free. He found that there are 6 simplest quartic fields with class-number one, and 3 with class-number two.

From now on, we assume that \mathbf{K} is not normal. Thus, the normal closure \mathbf{N} of \mathbf{K} is a sextic number field with Galois group the symmetric group $\&_{3}$.

Lemma C. Let \mathbf{K} / \mathbf{Q} be a non-normal cubic extension with normal closure $\mathbf{N}=\mathbf{K} \mathbf{L}$ where $\mathbf{L}=\mathbf{Q}\left(\sqrt{D_{\mathbf{K}}}\right)$ is quadratic. It holds $\zeta_{\mathbf{N}} \zeta^{2}=\zeta_{\mathbf{K}}^{2} \zeta_{\mathbf{L}}$. Hence, $d_{\mathbf{N}}=$ $d_{\mathbf{K}}^{2} d_{\mathbf{L}}$, and $d_{\mathbf{N}}$ divides $d_{\mathbf{K}}^{3}$. Finally, $\zeta_{\mathbf{K}}$ does not have any real zero in the range $\left[1-\left(1 /\left(3 c \log d_{\mathbf{K}}\right)\right), 1[\right.$.

Proof. The first point is proved page 227 of [Cas-Fro] using Artin L-series formalism. The second point follows from the first one using the functional equations satisfied by these zeta-functions (see (Lou 1]). According to the first point, any real zero in $] 0,1\left[\right.$ of $\zeta_{\mathbf{K}}$ is a multiple zero of $\zeta_{\mathbf{N}}$. Hence, the fourth point follows from Lemma A. It remains to prove the third point. According to Stickelberger's theorem, we have $D_{\mathbf{K}} \equiv 0,1(\bmod 4)$. Hence, $D_{\mathbf{L}}$ divides $D_{\mathbf{K}}$, and we may define $f \geq 1$ by means of $D_{\mathbf{K}}=f^{2} D_{L}$.

According to Lemmata A, B and C , we get:

Theorem 1. Let \mathbf{K} be a non-normal cubic number field. It holds

$$
h_{\mathbf{K}} \operatorname{Reg}_{\mathbf{K}} \geq \frac{1}{55} \frac{\sqrt{d_{\mathbf{K}}}}{\log d_{\mathbf{K}}}, d_{\mathbf{K}} \geq 4 \cdot 10^{5} .
$$

3. Computation of the class-number of a non-abelian cubic number field \mathbf{K} with negative discriminant

We make use of the results of [Bar-Lox-Wil] and [Bar-Wil-Ban]. Set $\Phi(s)=$ $\left(\zeta_{\mathbf{K}} / \zeta\right)(s)=\sum_{, \geq 1} \alpha(j) j^{-s}$. Then,

$$
h_{\mathbf{K}} \operatorname{Reg}_{\mathbf{K}}=\frac{\Phi(1)}{C}=\sum_{j \geq 1} \frac{\alpha(j)}{j C} e^{-j C}+\sum_{j \geq 1} \alpha(j) E(j C)
$$

where

$$
E(y)=\int_{y}^{\infty} \frac{e^{-x}}{x} d x=-\log x-\gamma-\sum_{j \geq 1} \frac{(-1)^{\prime}}{j(j!)} x^{j}
$$

where $\gamma=0.577215664901 \ldots$ is the Euler's constant, and where $C=2 \pi / \sqrt{d_{\mathbf{K}}}$.
Now, $j \mapsto \alpha(j)$ is a multiplicative function such that $\alpha\left(p^{n}\right)=F\left(p^{n}\right)-$ $F\left(p^{n-1}\right)$ where $F(k)$ is the number of distinct ideals of \mathbf{K} with norm $k \geq 1$. Moreover, if p does not divide $d_{\mathbf{K}}$, then

$$
(p)= \begin{cases}(p) & \text { which implies }\left(D_{\mathbf{K}} / p\right)=+1 \text { (Type I) } \\ \mathscr{P}_{1} \mathscr{P}_{2} & \text { if and only if }\left(D_{\mathbf{K}} / p\right)=-1 \text { (Type II), } \\ \mathscr{P}_{1} \mathscr{P}_{2} \mathscr{P}_{3} & \text { which implies }\left(D_{\mathbf{K}} / p\right)=+1 \text { (Type III). }\end{cases}
$$

If p divides $d_{\mathbf{K}}$, then with f as in the proof of Lemma C we have

$$
(p)= \begin{cases}\mathscr{P}_{1}^{2} \mathscr{P}_{2} & \text { if } p \text { does not divide } f \text { (Type IV), } \\ \mathscr{P}^{3} & \text { if } p \text { divides } f \text { (Type } \mathrm{V}) .\end{cases}
$$

If the ring of algebraic integers of \mathbf{K} is generated by an algebraic integer $x_{\mathbf{K}}$ and if $P_{\mathbf{K}}(X)$ is the minimum polynomial over \mathbf{Q} of $x_{\mathbf{K}}$, then we are in the Type I or Type III cases according as $P_{\mathbf{K}}(X)$ does not have or has at least one root modulo p, and we are in the Type IV or Type V cases according as $P_{\mathbf{K}}(X)$ has a double or a triple root modulo p.

4. Explicit class-number problem for non-normal cubic number fields

First example. In the same way we got Theorem 1, we get

Theorem 2. (a) (See [Fro-Tay, Chapter 5]) Let $l \geq 1$ be an integer. Set $P_{l}(X)=X^{3}+l X-1$. Then $P_{l}(X)$ is irreducible in $\mathbf{Q}[X]$, has negative discriminant $D_{l}=-d_{l}=-\left(4 l^{3}+27\right)$, and has exactly one real root x_{l}. Set $\varepsilon_{l}=1 / x_{l}$. Then, $l<\varepsilon_{l}<l+1$. Set $\mathbf{K}_{l}=\mathbf{Q}\left(x_{l}\right)=\mathbf{Q}\left(\varepsilon_{l}\right)$. Then \mathbf{K}_{l} is a real cubic number field with negative discriminant and ε_{l} is the fundamental unit greater than one of the cubic order $\mathbf{Z}\left[x_{l}\right]=\mathbf{Z}\left[\varepsilon_{l}\right]$.
(b) Assume that the ring of algebraic integers \mathbf{A}_{l} of \mathbf{K}_{l} is equal to $\mathbf{Z}\left[\varepsilon_{l}\right]$. Then,

$$
h_{l} \geq \frac{\sqrt{d_{l}}}{20 \log ^{2}\left(d_{l}\right)} \text { when } d_{l} \geq 2 \cdot 10^{5} \text {, and } h_{l}>3 \text { when } l>400
$$

(here h_{l} is the class-number of \mathbf{K}_{l}). Hence, there are 5 such \mathbf{K}_{l} with class-number one, namely $\mathbf{K}_{1}, \mathbf{K}_{2}, \mathbf{K}_{3}, \mathbf{K}_{5}$ and \mathbf{K}_{11}; there are 2 such \mathbf{K}_{l} with class-number two, namely \mathbf{K}_{4} and \mathbf{K}_{7}; there are 3 such \mathbf{K}_{l} with class-number three, namely $\mathbf{K}_{6}, \mathbf{K}_{15}$ and \mathbf{K}_{17}.

Lemma D. (a) The ring of algebraic integers of \mathbf{K}_{l} is equal to $\mathbf{Z}\left[\varepsilon_{l}\right]$ if and only if 3^{2} does not divide l, and p^{2} does not divide $d_{l}=4 l^{3}+27$ for any prime $p \geq 5$.
(b) Under this assumption, we have:
(i) For any prime $p \neq 3$ that divides d_{l} we have $F\left(p^{n}\right)=n+1$ and $\alpha\left(p^{n}\right)=1, n \geq 1$.
(ii) If $p=3$ divides d_{l}, then $F\left(3^{n}\right)=1$ and $\alpha\left(3^{n}\right)=0, n \geq 1$.
(iii) If p does not divide d_{l} and $\left(-d_{l} / p\right)=-1$, then $\alpha\left(p^{n}\right)=\left(1+(-1)^{n}\right) / 2$.
(iv) If p does not divide d_{l} and $\left(-d_{l} / p\right)=+1$, then

Proof. Point (b) follows from Section 3 (see [Bar-Lox-Wil, Table 2]).
Now, we proceed with the proof of point (a). We note that the integral bases of all cubic fields are determined in [Alb]. Though, we give a simple proof for this special case. Let t be an integer and set

$$
y_{p, l}(t)=\frac{x_{l}^{2}+t x_{l}+t^{2}+l}{p}
$$

Then $y_{p, l}(t)$ is a root of the following polynomial

$$
Y^{3}-\frac{P_{l}^{\prime}(t)}{p} Y^{2}+\frac{3 t P_{l}(t)}{p^{2}} Y-\frac{P_{l}(t)^{2}}{p^{3}}
$$

(being the characteristic polynomial of the linear map $z \mapsto y_{p, l}(t) z$ of the three \mathbf{Q}-dimensional vector space \mathbf{K}_{l}, then $y_{p, l}(t)$ is indeed a root of this polynomial). Hence, $y_{p, l}(t)$ is an algebraic integer provided that $P_{l}(t) \equiv 0\left(\bmod p^{2}\right)$ and $P_{l}^{\prime}(t) \equiv 0(\bmod p)$.

Now, assume that $\mathbf{Z}\left[x_{l}\right]$ is the ring of algebraic integers of \mathbf{K}_{l} and let p be any prime which divides $d_{l}=4 l^{3}+27$. Hence p is odd.
First, assume that $p \neq 3$. Then p does not divide l and we take $t=t_{l, p}$ such that $2 l t_{l, p} \equiv 3(\bmod p)$ and where we hence write $2 l t_{l, p}=3+a p$. Then,

$$
\begin{aligned}
& 4 l^{2} P_{l}^{\prime}\left(t_{p, l}\right)=3(3+a p)^{2}+4 l^{3} \equiv d_{l} \equiv 0(\bmod p) \\
& 8 l^{3} P_{l}\left(t_{p, l}\right)=(3+a p)^{2}+4 l^{3}(3+a p)-8 l^{3} \equiv d_{l}+a p d_{l} \equiv d_{l}\left(\bmod p^{2}\right)
\end{aligned}
$$

Hence, if p^{2} would divide d_{l} then $y_{p, l}\left(t_{p, l}\right)$ would be an algebraic integer of \mathbf{K}_{l} and p would divide the index of $\mathbf{Z}\left[x_{l}\right]$ in \mathbf{A}_{l}. Contradiction.
Second, assume that $p=3$. If 3^{2} would divide l, then $y_{3, l}(1)$ would be an algebraic integer. Hence, 3 would divide the index of $\mathbf{Z}\left[x_{l}\right]$ in \mathbf{A}_{l}. Contradiction.

Conversely, first assume that if $p \neq 3$ divides d_{l} then p^{2} does not divides d_{l}. Since $d_{l}=\left(\mathbf{A}_{l}: \mathbf{Z}\left[x_{l}\right]\right)^{2} d_{\mathbf{K}_{l}}$, then p does not divides this index $\left(\mathbf{A}_{l}: \mathbf{Z}\left[x_{l}\right]\right)$ which is thus a 3 -power. Note that if 3 divides this index, then 3 divides d_{l}, i.e., 3 divides l.
Second, it is known that if x is an algebraic integer whose minimum polynomial is p-Eisenstein for a prime p, then p does not divides the index of $\mathbf{Z}[x]$ in the ring of algebraic integers of the number field $\mathbf{Q}(x)$ (see [Nar, Lemma 2.2, page 60]). Hence, if we can find an integer a such that $P_{l}(a) \equiv P_{l}^{\prime}(a) \equiv 0(\bmod 3)$ and $P_{l}(a) \not \equiv 0\left(\bmod 3^{2}\right)$, then the minimum polynomial $Q_{a}(Y)=P_{l}(Y+a)=Y^{3}+$ $3 a Y^{2}+P_{l}^{\prime}(a) Y+P_{l}(a)$ of $y_{l}(a)=x_{l}-a$ is then 3 -Eisenstein. Hence, 3 does not divide the index $\left(\mathbf{A}_{l}: \mathbf{Z}\left[x_{l}\right]\right)$, which implies the desired result. Now, assume that 3 divides l but that 3^{2} does not divide l. Then, $Q_{1}(Y)$ being 3 -Eisenstein we get the desired result.

The computational method of the third section and Lemma D provide the following table of class-numbers h_{l} of these number fields \mathbf{K}_{l} for the first values of $l \geq 1$ such that $\mathbf{Z}\left[\varepsilon_{l}\right]$ is the ring of algebraic integers of \mathbf{K}_{l}. According to the more extensive class-number computation of h_{l} for $l \leq 400$, we easily get Theorem 2(b).

l	d_{l}	h_{l}									
1	31	1	13	8815	5	24	55323	18	37	202639	8
2	59	1	14	11003	8	25	62527	6	38	219515	23
3	135	1	15	13527	3	26	70331	8	39	237303	15
4	283	2	16	16411	8	28	87835	32	40	256027	28
5	527	1	17	19679	3	29	97583	6	41	275711	6
6	891	3	19	27463	7	30	108027	15	42	296379	39
7	1399	2	20	32027	10	31	119191	12	43	318055	16
10	4027	6	21	37071	6	32	131099	10	44	340763	18
11	5351	1	22	42619	12	34	157243	28	46	389371	27
12	6939	6	23	48695	4	35	171527	12	47	415319	8

Second example. Let $\mathbf{K}=\mathbf{Q}(\sqrt[3]{d}), d \geq 2$, be a real pure cubic number field. Assume that d is cube-free and define a and b by means of $(a, b)=1$ and $d=$ $a b^{2}$. Then, $D_{\mathbf{K}}=-3(a b)^{2}$ or $D_{\mathbf{K}}=-27(a b)^{2}$ according as $d \equiv \pm 1(\bmod 9)$ or not. Now, $\mathbf{L}=\mathbf{Q}(\sqrt{-3})$ and $\zeta_{\mathbf{L}}$ does not have any real zero in $] 0,1[$. Hence, we get $\left.\zeta_{\mathbf{N}}(s) \leq 0, s \in\right] 0,1\left[\right.$. According to Lemma C, we have $\operatorname{Res}_{s=1}\left(\zeta_{\mathbf{N}}\right)=$ $\left(\operatorname{Res}_{s=1}\left(\zeta_{\mathbf{K}}\right)\right)^{2} \operatorname{Res}_{s=1}\left(\zeta_{\mathbf{L}}\right)$ and we may apply Lemma B with $s_{0}=1$ $\left(2 / \log d_{\mathbf{N}}\right)$, which provides an optimal lower bound on $\operatorname{Res}_{s=1}\left(\zeta_{\mathbf{N}}\right)$. Since $\operatorname{Res}_{s=1}\left(\zeta_{\mathbf{L}}\right)=\pi / 3 \sqrt{3}$, we get the following lower bound that improves the one given in Theorem 1 :

Theorem 3 (See [Bar-Lou]). Let \mathbf{K} be a real pure cubic number field. Then,

$$
h_{\mathbf{K}} \operatorname{Reg}_{\mathbf{K}} \geq \frac{1}{9} \sqrt{\frac{d_{\mathbf{K}}}{\log d_{\mathbf{K}}}}, d_{\mathbf{K}} \geq 3 \cdot 10^{4}
$$

THEOREM 4. When $m \geq 1$ is such that $m^{3} \pm 1$ is cube-free, we set $\mathbf{K}_{ \pm m}$ $\stackrel{\text { def }}{=} \mathbf{Q}\left(\sqrt[3]{m^{3} \pm 1}\right)$ which is a pure cubic real number field. There are 2 such $\mathbf{K}_{ \pm m}$ with class-number one, namely \mathbf{K}_{+1} and \mathbf{K}_{+2}; there does not exist any such $\mathbf{K}_{ \pm m}$ with class-number two; and there are 3 such $\mathbf{K}_{ \pm m}$ with class-number three, namely \mathbf{K}_{-2}, \mathbf{K}_{-3} and \mathbf{K}_{+3}.

Proof. Set $d_{ \pm m}=m^{3} \pm 1$ and $\omega_{ \pm m}=\sqrt[3]{d_{ \pm m}}$. Then, $\varepsilon_{ \pm m}= \pm /\left(\omega_{ \pm m}-m\right)=$ $\omega_{ \pm m}^{2}+m \omega_{ \pm m}+m^{2}$ is a unit of $\mathbf{A}_{\mathbf{K}_{ \pm m}}$, and we have $1<\varepsilon_{ \pm m} \leq 4 \omega_{ \pm m}^{2}=\left(8 d_{ \pm m}\right)^{2 / 3}$. Hence,

$$
\operatorname{Reg}_{\mathbf{K}_{ \pm m}} \leq \log \varepsilon_{ \pm m} \leq \frac{2}{3} \log \left(8 d_{ \pm m}\right) \leq \frac{2}{3} \log \left(3 d_{\mathbf{K}_{ \pm m}}\right)
$$

and according to Theorem 3 we get

$$
h_{\mathbf{K}_{ \pm m}} \geq \frac{1}{6} \sqrt{\frac{d_{\mathbf{K}_{ \pm m}}}{\log ^{3}\left(3 d_{\left.\mathbf{K}_{ \pm m}\right)}\right.},}, d_{\mathbf{K}_{ \pm m}} \geq 3 \cdot 10^{4} .
$$

which implies $h_{\mathbf{K}_{ \pm m}}>3$ for $d_{\mathbf{K}_{ \pm m}}>1.1 \cdot 10^{6}$. Note that $m>72$ implies $d_{\mathbf{K}_{ \pm m}} \geq$ $3 d_{m}>1.1 \cdot 10^{6}$. Now, the computation of a and b for $d_{ \pm m}=m^{3} \pm 1$ and $1 \leq m$ ≤ 72 yields $d_{\mathbf{K}_{ \pm m}} \leq 1.1 \cdot 10^{6}$ if and only if $1 \leq m \leq 6$ when $d_{ \pm m}=m^{3}+1$, and $2 \leq m \leq 7$ when $d_{ \pm m}=m^{3}-1$ (note that $d_{ \pm m}$ must be cube-free). The class-numbers of these number fields may be found in [Hos-Wad], and they provide the desired result.

5. Another class-number problem

Let \mathbf{K} be a real quadratic number field of discriminant $D>0$. The ring of algebraic integers $\mathbf{A}_{\mathbf{K}}=\mathbf{Z}\left[\frac{D+\sqrt{D}}{2}\right]$ of \mathbf{K} writes $\mathbf{A}_{\mathbf{K}}=\mathbf{Z}[\varepsilon]$ where $\varepsilon=$ $\frac{u+v \sqrt{D}}{2}>1$ is a unit of $\mathbf{A}_{\mathbf{K}}$ if and only if $v=1$, hence if and only if $D=m^{2} \pm 4$, $m \geq 1$. In that case, $\varepsilon_{D} \leq \varepsilon=\frac{m+\sqrt{D}}{2} \leq \sqrt{D+4}$ where ε_{D} is the fundamental unit of \mathbf{K}. According to the Brauer-Siegel theorem, there are only finitely many real quadratic number fields with discriminants $D=m^{2} \pm 4$ of given class-number. Up to now, no one knows how to make the Brauer-Siegel effective in the real quadratic case, without assuming a suitable generalized Riemann hypothesis (see [Mol-Wil]. In contrast to the real quadratic case, let \mathbf{K} be a cubic number field with negative discriminant whose ring of algebraic integers $\mathbf{A}_{\mathbf{K}}$ is generated by a unit ε, i.e. such that $\mathbf{A}_{\mathbf{K}}=\mathbf{Z}[\varepsilon]$. This clearly amounts to saying that $\mathbf{A}_{\mathbf{K}}=\boldsymbol{Z}\left[\varepsilon_{\mathbf{K}}\right]$, where $\varepsilon_{\mathbf{K}}>1$ is the fundamental unit of \mathbf{K}. According to Theorem 1 and the following Proposition 5, we get the effective Corollary 6 that would enable one to explicitly determine all the cubic number fields of negative discriminants whose have small class-numbers and whose rings of algebraic integers are generated by units.

Proposition 5. A polynomial $P(X)$ is said of type (T) if it is a monic irreducible cubic polynomial with integral coefficients (say of the form $P(X)=X^{3}-a X^{2}+b X$ -1) with exactly one real root ε_{P} (i.e. $D_{P}<0$) which satisfies $\varepsilon_{P}>1$ (i.e. we have
$b \leq a-1)$, Then, there exists an effective constant $c_{1}>0$ such that for any polynomial of type (T) we have $d_{P}=\left|D_{P}\right| \geq c_{1} \varepsilon_{P}^{3 / 2}$.

Corollary 6. Let h be a positive integer. Then, there are only finitely many cubic number fields \mathbf{K} of negative discriminants $D_{\mathbf{K}}$ which have class-number h and whose rings of algebraic integers write $\mathbf{A}_{\mathbf{K}}=\mathbf{Z}\left[\varepsilon_{\mathbf{K}}\right]$, where $\varepsilon_{\mathbf{K}}>1$ is the fundamental unit of \mathbf{K}. Moreover, there exists $c_{2}>0$ effective such that $\left|D_{\mathbf{K}}\right| \leq c_{2} h^{2} \log ^{4} h$ for these number fields.

Proo of Proposition 5. Set $\varepsilon=\varepsilon_{P}, x_{1}=\varepsilon$, and let $x_{2}=\alpha+i \beta$ and $x_{3}=\alpha-$ $i \beta$ be the two complex conjugate roots of this polynomial. Then,

$$
\begin{aligned}
& 1=x_{1} x_{2} x_{3}=\varepsilon\left(\alpha^{2}+\beta^{2}\right), \\
& b=x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}=2 \varepsilon \alpha+\left(\alpha^{2}+\beta^{2}\right)=2 \varepsilon \alpha+(1 / \varepsilon), \\
& a=x_{1}+x_{2}+x_{3}=\varepsilon+2 \alpha .
\end{aligned}
$$

Hence, we have $|\alpha| \leq 1 / \sqrt{\varepsilon}<1$ and $\varepsilon<\alpha+2$, which implies $a \geq 0$. Moreover, we have $|b| \leq 2 \sqrt{\varepsilon}+1 \leq 2 \sqrt{a+2}+1$, which implies that there are only finitely many polynomials of type (T) with $0 \leq a \leq 17$. Hence, we may assume $a \geq 18$.

We have $-D_{P}=4\left(a^{3}+b^{3}\right)-a^{2} b^{2}-18 a b+27$.
First, we assume $\alpha \geq 0$. Since $0<2 \varepsilon \alpha+(1 / \varepsilon)<2 \sqrt{\varepsilon+2 \alpha}$ (since $0 \leq \alpha$ $\leq 1 / \sqrt{\varepsilon}$ and $\varepsilon>1$), we get $1 \leq b<2 \sqrt{a}$. Now $b \mapsto f(b)=-D_{P}=4 b^{3}-a^{2} b^{2}$ $-18 a b+4 a^{3}+27$ is decreasing in the range $[1,2 \sqrt{a}]$ (since $a \geq 9$). So, we write $4 a=m^{2}+r$, with $m \geq 0$ and $0 \leq r \leq 2 m$, which provides $16 d_{p} \geq$ $16 f(m)$ if $r \geq 1$, and $16 d_{P} \geq 16 f(m-1)$ if $r=0$. Noticing that $16 f(b)=$ $(4 a)^{2}\left(4 a-b^{2}\right)-72 b\left(4 a-b^{2}\right)-8 b^{3}+432$, we thus get
$16 d_{P} \geq \begin{cases}r\left(m^{2}+r\right)^{2}-72 m m-8 m^{3}+432 \geq m^{4}-8 m^{3}+2 m^{2}-72 m+433 & \text { if } r \geq 1, \\ 2 m^{5}-m^{4}-8 m^{3}-120 m^{2}+192 m+368 & \text { if } r=0 .\end{cases}$
Since $4 a \leq m^{2}$ and $\varepsilon<a+2$, we get the desired result.
Second, we assume $\alpha \leq 0$. Then, $b=2 \varepsilon \alpha+(1 / \varepsilon) \leq 1 / \varepsilon<1$, i.e. $b \leq 0$. We set $B=-b$. Now $g(B)=-D_{P}=-4 B^{3}-a^{2} B^{2}+18 a B+4 a^{3}+27$ is decreasing on $[1,+\infty[$ (since $a \geq 9$), and $g(\sqrt{4 a+1})<0$ (since $a \geq 16$). Hence, we get $B<\sqrt{4 a+1}$. So, we write $4 a+1=m^{2}+r$, with $m \geq 0$ and $0 \leq r \leq 2 m$. Since $g(0) \geq g(1)$ (since $a \geq 18$), we have $16 d_{P} \geq 16 g(m)$ if $r \geq 1$, and $16 d_{P} \geq 16 g(m-1)$ if $r=0$. We thus get
$16 d_{P} \geq \begin{cases}(r-1)\left(m^{2}+r-1\right)^{2}+72 m(r-1)+8 m^{3}+432 \geq 8 m^{3}+432 & \text { if } r \geq 1, \\ 2 m^{5}-2 m^{4}+4 m^{3}+124 m^{2}-262 m+566 & \text { if } r=0 .\end{cases}$
As in the first case, we get the desired result.
Let us note that when $P(X)=X^{3}-M^{2} X^{2}-2 M X-1$ we have $d_{P}=4 M^{3}$ +27 and $M^{2}<\varepsilon_{P}<M^{2}+1(M \geq 2)$ which implies $d_{P} \approx 4 \varepsilon_{P}^{3 / 2}$.

6. Conclusion

Let h and n be two given positive integers. Are there only finitely many number fields \mathbf{K} of degree n with class-number h such that their rings of algebraic integers are generated by units? More precisely, let $n \geq 1$ be a given positive integer and let $\mathbf{K}=\mathbf{Q}(x)$ be a number field of degree n where x is an algebraic unit which is a root of any irreducible monic polynomial of the form $P(X)=X^{n}+$ $a_{n-1} X^{n-1}+\cdots+a_{1} X \pm 1$. If we assume that the ring of algebraic integers of \mathbf{K} is equal to $\mathbf{Z}[x]$ and that \mathbf{K} has a unit group of rank 1 , is that true that the class-number of \mathbf{K} tends to infinity with $d_{\mathrm{K}}=d_{P}$?

REFERENCES

[Alb] A. A. Albert, A determination of the integers of all cubic fields, Ann. of Math., 31 (1930), 550-566.
[Bar-Lou] P. Barrucand and S. Louboutin, Majoration et minoration du nombre de classes d'idéaux des corps réels purs de degré premier, Bull. London Math. Soc., 25 (1993), 533-540.
[Bar-Lox-Wil] P. Barrucand, J. Loxton and H. C. Williams, Some explicit upper bounds on the class number and regulator of a cubic field with negative discriminant, Pacific J. of Math., 128 (1987), 209-222.
[Bar-Wil-Ban] P. Barrucand, H. C. Williams and L. Baniuk, A computational technique for determining the class number of a pure cubic field, Math. Comp., $\mathbf{3 0}$ (1976), 312-323.
[Cas-Fro] J. W. S. Cassels and A. Fröhlich, Algebraic Number Theory, Chapter VIII Zeta-functions and L-functions, Academic Press, London, 1967.
[Fro-Tay] A. Fröhlich and M. J. Taylor, Algebraic number theory, Cambridge Studies in Advanced Mathematics 27, Cambridge University Press 1991.
[Hos-Wad] J. Hosaya and H. Wada, Tables of ideal class groups of purely cubic fields, Proc. Japan Acad., 68 (1992), 111-114.
[Hof] J. Hoffstein, On the siegel-Tatuzawa theorem, Acta Arith., 38 (1980), 167-174.
[Laz] A. J. Lazarus, On the class number and unit index of simplest quartic fields, Nagoya Math. J., 121 (1991), 1-13.
[Let] G. Lettl, A lower bound for the class number of certain cubic number fields, Math. Comp., 46 (1986), 659-666.
[Lou 1] S. Louboutin, On the class number one problem for non-normal quartic CM-fields, Tohôku Math. J., 46 (1994), 1-12.
[Lou 2] S. Louboutin, Zéros réels des fonctions zéta et minorations de nombres de classes. Application à la majoration des discriminants de certains types de corps de nombres, Séminaire de Théorie des Nombres, Paris, 1991-92, Progress in Math. Vol. 116, 135-152, 1992 Birkhäuser.
[Mol-Wil] R. A. Mollin and H. C. Williams, A conjecture of S. Chowla via the generalized Riemann hypothesis, Proc. Amer. Math. Soc., 102 (1988), 794-796.
[Nar] W. Narkiewicz, Elementary and Analytic Theory of Algebraic Numbers, Second Edition, Springer-Verlag, Berlin 1990.
[Sta] H. M. Stark, Some effective cases of the Brauer-Siegel theorem, Invent. Math., 23 (1974), 135-152.

Universite de Caen, U.F. R. Sciences
Département de Mathématiques
Esplanade de la Paix
14032 Caen Cedex, FRANCE
email: loubouti@math.unicaen.fr

