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A QUESTION OF GROSS AND THE UNIQUENESS OF

ENTIRE FUNCTIONS

HONG-XUN YI

1. Introduction and main results

For any set 5 and any entire function / let

Ef(S) = U iz\f(z) - a = 0],
aeS

where each zero of / — a with multiplicity m is repeated m times in Ef(S) (cf.

[1]). It is assumed that the reader is familiar with the notations of the Nevanlinna

Theory (see, for example, [2]). It will be convenient to let E denote any set of finite

linear measure on 0 < r < °°, not necessarily the same at each occurrence. We

denote by S(rf f) any quantity satisfying S(ry f) = o(Γ(r, /)) (r —* °°, r £ E).

In 1976 Gross proved [3] that there exist three finite sets S;- (j = 1,2,3),

such that any two entire functions / and g satisfying Ef(Sj) = Eg(Sj) for

j — 1,2,3 must be identical. In the same paper Gross posed the following open

question (Question 6): can one find two (or possible even one) finite set

Sj (j — 1,2) such that any two entire functions / and g satisfying Ef(Sj) —

Eg(S,) (j = 1,2) must be identical ?

The present author [4] proved the following result which is partial answer of

the above question.

THEOREM A. Let Sι= {w\ (w — a)n — bn = 0}, S2 = {c}, where n> 4, a, b

and c are constants such that b Φ 0, c Φ a and (c — a) Φ b . Suppose that f and g

are nonconstant entire functions satisfying Ef(Sj) — Eg(Sj) for j — 1,2. Then f = g.

The set 5 such that for any two nonconstant entire funstions / and g the con-

dition Ef(S) = Eg(S) implies f=gis called a unique range set (URS in brief) of
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entire functions (cf. [5]). In 1982, F. Gross and C. C. Yang proved the following re-

sult.

THEOREM B [5J. The set S = iw \ ew + w = 0} is a URS of entire functions.

Note that the set S = {w \ ew + w = 0} contains infinite number of elements

and so Theorem B does not answer the question posed by Gross.

In this paper we give a positive answer to Gross's question. In fact, we prove

more generally the following theorem.

THEOREM 1. Let n and m be two positive integers such that n and m have no

common factor and n > 2m + 4. Let a and b be two nonzero constants such that the

algebraic equation wn + awn m + b = 0 has no multiple roots. Then the set S =

{w\wn + awn~m + b = 0} is a URS of entire functions.

EXAMPLE. The set S = {w | w + w + 1 = 0} is a URS of entire functions

with 7 elements.

Now it is natural to ask the following question:

Can one find a URS of entire functions with less than 7 elements ?

Now we introduce the following notations:

UE = {S I 5 is a URS of entire functions},

CE = min{w(S) I S e UE),

where n(S) denotes the cardinal number of the set 5.

The above example shows that CE < 7. In this paper we prove the following

result.

THEOREM 2. CE > 4.

2. Some lemmas

The following lemmas will be needed in the proof of Theorem 1.

LEMMA 1 (see [6]). Let f and g be two nonconstant meromorphic functions, and

let clf c2 and c3 be three nonzero constants. If

cj+c2g=c3,

then
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nr,f)<N[r,j) +7v(r, ̂ ) +N(r,f) +S(r,f).

LEMMA 2 (see [7]). Let fv f2, . . . , fn be linearly independent meromorphic func-

tions satisfying

Then for k — 1,2,.. ., n we have

T(r, fk) < Σ Mr, ~) + N(r, fk) + Mr, D) - Σ Mr, f)
ι x I)1 i=i

where D denotes the Wronskian of the functions fv f2, . . . , fn, and T(r) denotes the

maximum of T(r, fj), j — 1,2,. . . , n.

LEMMA 3 (see [8]). Let flf / 2 ( ^ 0) and f3 be three meromorphic functions satis-

fying fx + f2 + f3 = 1, and let gλ = ~ f3/f2, g2

 = 1 // 2 and g3 = — fλ/f2. If flf f2

and f3 are linearly independent, then glf g2 and g3 are linearly independent.

LEMMA 4 (see [9]). Let f be a nonconstant meromorphic function, and let P(f) be

a polynomial in f of the form

P(f) = a j n + ajn~ι +•••+ an_J + an,

where ao(Φ 0 ) , a v . . ., an are constants. Then

Πr,P(f)) =nT(r,f) +S(r,f).

3. Proof of Theorem 1

Let wv w2, . . . , wn be the roots of equation wn + awn m + b = 0. Suppose

that / and g are nonconstant entire functions satisfying Ef(S) = Eg(S). From

Nevanlinna's second fundamental theorem, we have

(1) in - 1) T(r, g)<Σ Mr, — ^ — ) + Sir, g)
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<nT(rJ) + S(rfg).

Thus

(2) T(r,g) =0(T(r,f)) (r<έE).

Again by Ef(S) — Eg(S), we obtain

W + a f + b = e\
gn + ag"-m + b

where h is an entire function. From Lemma 4, (1) and (3), we have

T(ry eh) < T{ry f
n + afn~m + b) + T(r, gn + agn~m + b) + 0(1)

= nT(r,f) +nΠr,g) + S(r,f)
n(2n - 1)

<

Thus

(4) T(r, eh) = 0 ( Γ ( r , / ) ) ( r ^ £ ) .

Let us put

(5) /!=-}/"""(/" + «),

(6) /2 = e",

(7) /3 = -^-^ (^ + α)^ ,

and T{r) denote the maximum of TO, / ; ) , = 1,2,3. From (3), (5), (β) and (7), we

obtain

(8) /l+/2+/s=l

From (2), (4), (5), (6) and (7), we have

(9) T(r) =0(T(r,f)) (r£E).

Suppose that fv f2 and f3 are linearly independent. Applying Lemma 2 to the

functions/; (j = 1,2,3), from (8) and (9) we have

(10) Tir.ft < Σ N(r, J) - N(r, ~) + o(T(r,f)) (r<έE),
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where

(11) D =

From (5), (6) and (7), we have

(12)

A h h
/; n fί
Λ" π fί

{n - m)N(r, j ) -

By looking at the zeros of/ and g, from (5), (6), (7) and (11) we see that

(13)

From Lemma 4, (5), (10), (12) and (13), we deduce

(14) nΠrJ)
f g -\-a

< 2T(r, f) + T(r, fm + a) + 2T(r, g) + T(r, gm + a)

= (2 + m)T(r,/) + (2 + rn)T(r,g) +o(T(r9f)) (r<έE).

Let gi = - / 3// 2 = ~ jgn'm(gm + a), g2 = 1 //2 = <Γ" and ft = ~ Λ//2 =

Λ p r o m ^gj w e

By Lemma 3 we know that gv g2 and £ 3 are linearly independent. In the same

manner as above, we have

(15) nΠr,g)<(2 + tn)nr,g) + (2 + m)nr,f)+o(Πr,f)) (r<έE).

Combining (14) and (15) we get

(16) (^-2m-4)(T(r,/) + T(r, g)) <o(T(r,f)) (r<έE).

Since n > 2m + 4, (16) is absurd. Hence fv f2 and /3 are linearly dependent.

Then, there exist three constants (q, c2, c3) Φ (0,0,0) such that

(17) cjx + cj2 + c3/3 = 0.
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If cγ = 0, from (17) we have c2 Φ 0, c3 Φ 0 and

Hence, from (6) and (7) we obtain

n 1 n—m i ,

g + ag = - bc2/c31

which is impossible. Thus cx Φ 0 and

(is) h=-cfh-τh-

Now combining (8) and (18) we get

(19)

We discuss the following three cases.

(a) Assume cλ Φ c2 and cλ Φ c3. From (6), (7) and (19) we haven-m, m(20) - -

By Lemma 1, Lemma 4 and (20) we obtain

nTir, 8) < N(r, ^ , J L

, | ) + N(r, -±-) + Sir, g)

< (1 + m)T(r,g) +S(r,g),

which is impossible.

(b) Assume c1 = c2. From (19) we have cλ Φ c3 and

( Z i ) h ~ r — r '

From (7) and (21) we get

(22) g (g +a) = J -g .

Let fllt a2,. . ., am be the roots of equation wm -\- a — 0. From (22) we know that

0, β1, a2,. .., am are Picard exceptional values of g", which is impossible.
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(c) Assume cx = c3. From (19) we have cx Φ c2 and

Λ =

 c _ c

that is

From (5), (7), (8) and (23) we get

, n Λ\ -*• rn—m/ r m , \ , ^ι n—m / m , \ ^2

( 2 4 ) -"&/ (^ + α) + κ C l - C2) ^
 (^ +a) = ^7=Tί-

If c2 ̂  0, by Lemma 1 and Lemma 4, we have from (24),

nT(r, f) < ft(r, l

m ) + fi(ry \ ) + S(r, f)

< (1 + m)T(r, /) + (1 + m)T(r, g) + Sir, f).

In the same manner as above, we have

nΠr, g) < (1 + m) T(r, g) + (1 + m) Γ(r, /) + S(r, /) .

Hence,

(n-2m-2)T(r,f) + (n - 2m - 2)T(r, g) < S(r,f),

which is impossible. Thus c2 — 0. From (24) we deduce

/ r . - , j n n / rn—m n—m\

(25) / - g = - a(f - g ).

If fn Φ gn

f from (25) we obtain

(26) 77 r g ,

' ( f ' )
u = exp( ) and v = exp ( — — — ) . From (26) we know that — is a

nonconstant meromorphic function. Since n and m have no common factors,

again from (26) we know that u (j — 1,2, . . . , n — 1) are Picard exceptional
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va lues of — which is imposs ib le . T h u s fn = gn and fnm = gn~m However, since

n and m have no common factors, we get / = g. T h i s completes the proof of

T h e o r e m 1.

4. Proof of Theorem 2

Let 5 = {aly a2, a3), where a} (j — 1,2,3) are any three finite distinct com-

plex numbers. If a2 + a3 — 2aι = 0, let

g(z) =2a1-f(z)f

where f(z) is a nonconstant entire function. If a2 + a3 — 2aγ Φ 0, let

g \z) =

a2 + a3- 2a,

2 α 3 - a?) + (α 2 - flx) (a3 - a^)

a2 + a3 —

where h(z) is a nonconstant entire function. It is easy to show that Ef(S) =

Eg(S), b u t / ^ g. Hence CE > 4, which proves Theorem 2.
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