CAUCHY TRANSFORMS ON POLYNOMIAL CURVES AND RELATED OPERATORS

HYEONBAE KANG and JIN KEUN SEO

1. Introduction and statement of results

Let Γ be a curve in \mathbf{R}^{2} defined by $y=A(x)$. The Cauchy transform \mathscr{C}_{A} on Γ is defined by the kernel

$$
K(x, y)=\frac{1+i A(y)}{(x-y)+i(A(x)-A(y))} .
$$

When A is a Lipschitz function, the L^{2} boundedness of \mathscr{C}_{A} is well understood and several proofs of it have been produced (cf. [C, CJS, CMM, DJ, M]). If A is a C^{1}-smooth function, then the local L^{2} boundedness of \mathscr{C}_{A} is also well understood (cf. [FJR]). However, if A is a smooth, not necessarily Lipschitz function, the question of global L^{2} boundedness of \mathscr{C}_{A} has not been settled. In [KS], we observe that \mathscr{C}_{A} is not, in general, bounded on L^{2} if A is a smooth non-Lipschitz function, and prove that \mathscr{C}_{A} is bounded on L^{2} if A is either a polynomial of odd degree or an even polynomial. The purpose of this paper is to give a new proof of it and to extend the result to arbitrary polynomials.

Theorem. If A is a polynomial, then the Cauchy transform on the curve $y=$ $A(x)$ is bounded on $L^{p}(\mathbf{R}), 1<p<\infty$.

In [KS], we used a continuously varying cut-off function to separate the sing. ularities of $K(x, y)$ at $x=y$ and at $x=-y$ and the T1-theorem of David and Journé. In this paper, instead of using a cut-off function, we use a direct decomposition of the Cauchy kernel. If A is a polynomial, then the Cauchy kernel $K(x, y)$ can be decomposed as

[^0]\[

$$
\begin{equation*}
K(x, y)=\frac{1+i A(y)}{(x-y)+i(A(x)-A(y))}=\frac{1}{x-y}+i \frac{P(x, y)}{1+i Q(x, y)} \tag{1.1}
\end{equation*}
$$

\]

where

$$
\begin{equation*}
Q(x, y)=\frac{A(x)-A(y)}{x-y} \text { and } P(x, y)=\frac{A^{\prime}(y)-Q(x, y)}{x-y} . \tag{1.2}
\end{equation*}
$$

Moreover, if A is an even polynomial, one can easily see that $Q(x, y)=$ $(x+y) R(x, y)$ for some polynomial R. Define an operator T_{A} by

$$
\begin{equation*}
T_{A} f(x)=\int_{-\infty}^{\infty} \frac{P(x, y)}{1+i Q(x, y)} f(y) d y \tag{1.3}
\end{equation*}
$$

Then, $\mathscr{C}_{A}=\mathscr{H}+i T_{A}$ where \mathscr{H} is the Hilbert transform. We prove that T_{A} is bounded on $L^{p}(\mathbf{R}), 1<p<\infty$. If A is a polynomial of odd degree, it is easy to prove the L^{2} boundedness of T_{A} since $Q(x, y)$ does not have any zero when $x^{2}+$ y^{2} is large. If A is an even polynomial, then we compare T_{A} with a linear combination of the Hilbert transform and various operators defined in Section 3. We show that these operators are bounded on $L^{p}(\mathbf{R})$ and that the difference of T_{A} and a linear combination of the Hilbert transform and these operators can be estimated by the Hardy Littlewood maximal operator which is well known to be bounded on L^{p} (cf. [S]). If A is a polynomial of even degree, then there exists a change of variables $\alpha(x)$ defined for large x such that $A(\alpha(x))$ becomes an even polynomial. By carefully studying the behavior of $\alpha(x)$ for large x, we are able to reduce matters to the case of even polynomials.

We organize this paper as follows; in Section 2, we prove some properties of $Q(x, y)$ which will be used in later sections. In Section 3, we introduce some related operators and prove that they are bounded on $L^{p}(\mathbf{R})$. In Section 4 , we prove that T_{A} is bounded on $L^{p}(\mathbf{R})$ if A is a polynomial of odd degree. In the final section, we prove that T_{A} is bounded on $L^{p}(\mathbf{R})$ if A is a polynomial of even degree.

We use a standard notation of $A \leq B$ to imply that $A \leq C B$ for some constant C. $A \approx B$ means that both $A \lesssim B$ and $A \gtrsim B$ hold.

2. Preliminary on polynomials

Let A be a polynomial and let

$$
Q(x, y)=\frac{A(x)-A(y)}{x-y}
$$

In this section, we collect some properties of Q which will be used in later sections.

Lemma 2.1.
(1) If $\operatorname{deg} A=2 n+1$, then there exists a positive constant r such that

$$
|Q(x, y)| \gtrsim x^{2 n}+y^{2 n}
$$

if $x^{2}+y^{2} \geq r$.
(2) If A is an even polynomial and $\operatorname{deg} A=2 n+2$, then there exist a positive constant r and a polynomial $R(x, y)$ such that

$$
Q(x, y)=(x+y) R(x, y)
$$

and

$$
|R(x, y)| \gtrsim x^{2 n}+y^{2 n}
$$

$$
\text { if } x^{2}+y^{2} \geq r
$$

Proof. For (1), note that

$$
\begin{aligned}
\frac{x^{2 n+1}-y^{2 n+1}}{x-y} & =\sum_{j=0}^{2 n} x^{2 n-j} y^{j} \\
& =\frac{1}{2}\left(x^{2 n}+y^{2 n}\right)+\frac{1}{2}(x+y)^{2} \sum_{j=1}^{n} x^{2(n-j)} y^{2(y-1)} \\
& \geq \frac{1}{2}\left(x^{2 n}+y^{2 n}\right) .
\end{aligned}
$$

Let $A(x)=\sum_{j=0}^{2 n+1} a_{j} x^{\prime}\left(a_{2 n+1} \neq 0\right)$. Then

$$
\begin{aligned}
\left|\frac{A(x)-A(y)}{x-y}\right| & \geq \frac{\left|a_{2 n+1}\right|}{2}\left(x^{2 n}+y^{2 n}\right)-\sum_{j=1}^{2 n-1} j\left|a_{j}\right|\left(|x|^{j}+|y|^{j}\right) \\
& \geq x^{2 n}+y^{2 n}
\end{aligned}
$$

if $x^{2}+y^{2}$ is large.
For (2), we note that

$$
\begin{aligned}
\left|x^{2 j}-y^{2 j}\right| & =|x-y||x+y|\left|x^{2 j-2}+x^{2 j-4} y^{2}+\cdots+x^{2} y^{2 j-4}+y^{2 j-2}\right| \\
& \approx|x-y||x+y|\left(|x|^{2 j-2}+|y|^{2 j-2}\right)
\end{aligned}
$$

Let $A(x)=\sum_{j=0}^{2 n+2} a, x^{2 j}\left(a_{2 n+1} \neq 0\right)$. Then

$$
\begin{aligned}
\mid A(x)- & A(y)\left|\geq\left|a_{2 n+1}\right|\right| x^{2 n+2}+y^{2 n+2}\left|-\sum_{j=1}^{2 n}\right| a_{j}| | x^{2 j}-y^{2 j} \mid \\
& \geq|x-y||x+y|\left[\left|a_{2 n+2}\right|\left(|x|^{2 n}+|y|^{2 n}\right)-C\left(|x|^{2 n-2}+|y|^{2 n-2}+1\right)\right] \\
& \geq|x-y||x+y|\left(|x|^{2 n}+|y|^{2 n}\right)
\end{aligned}
$$

for some constants C as long as $x^{2}+y^{2}$ is large. This completes the proof.

The next lemma and corollary show that a polynomial of even degree is essentially the same as an even polynomial for our purpose.

Lemma 2.2. Let A be a polynomial of even degree. Then, there exist $r>0$ and a smooth change of variable $\alpha(x)$ on $|x|>r$ such that
(1) $A(\alpha(x))$ is an even polynomial,
(2) $\alpha(x)=x+\beta(x)$ where $\beta(x)=O(1)$ and $\beta^{\prime}(x)=O(1 / x)$ as $x \rightarrow \infty$.

Proof. Let $A(x)=\sum_{j=0}^{2 n} a_{j} x^{\prime}$ and assume that $a_{2 n}=1$ without loss of generality. Choose $r>0$ so that A is monotone if $|x|>r$ and define α on $|x|>r$ by

$$
\begin{equation*}
A(\alpha(x))=\frac{A(x)+A(-x)}{2} \tag{2.1}
\end{equation*}
$$

Since $A(x) \approx x^{2 n}$ and $A^{\prime}(x) \approx x^{2 n-1}$ if $|x|>r$ by increasing r if necessary, one can easily see that $\alpha(x) \approx x$ and $\alpha^{\prime}(x) \approx 1$. From (2.1), we have

$$
\alpha(x)^{2 n}+\sum_{j=0}^{2 n-1} a_{j} \alpha(x)^{j}=x^{2 n}+\sum_{j=0}^{n-1} a_{2 j} x^{2 j}
$$

It then follows that

$$
\alpha(x)^{2 n}=x^{2 n}+O\left(x^{2 n-1}\right)
$$

and

$$
2 n \alpha(x)^{2 n-1} \alpha^{\prime}(x)=2 n x^{2 n-1}+O\left(x^{2 n-2}\right)
$$

It follows immediately from these relations that

$$
\alpha(x)=x+O(1) \quad \text { and } \quad \alpha^{\prime}(x)=1+O\left(\frac{1}{x}\right) \quad \text { as } \quad x \rightarrow \infty
$$

This completes the proof.

Corollary 2.3. Let β and r be as above. Then,

$$
\left|\frac{\beta(x)-\beta(y)}{x-y}\right| \leqslant \frac{1}{|x|+|y|}
$$

if $x^{2}+y^{2} \geq r$.

Proof. If $x y<0$, then there is nothing to prove. Suppose that $x y>0$ and that $y>x>0$ without loss of generality. If $y>2 x$, then since $\beta(x)=O(1)$ as x $\rightarrow \infty$, we have

$$
\left|\frac{\beta(x)-\beta(y)}{x-y}\right| \leq \frac{1}{y} \leq \frac{1}{|x|+|y|} .
$$

If $x<y<2 x$, then since $\beta^{\prime}(x)=O(1 / x)$ as $x \rightarrow \infty$, we have

$$
\left|\frac{\beta(x)-\beta(y)}{x-y}\right|=\left|\beta^{\prime}(\xi)\right| \lesssim \frac{1}{\xi} \leq \frac{1}{x} \lesssim \frac{1}{|x|+|y|}
$$

for some $x<\xi<y$. This completes the proof.

3. Related operators

In this section we introduce some related operators and show that they are bounded on $L^{p}(\mathbf{R})$ by comparing them with the Hardy Littlewood maximal operator and the Hilbert transform. Throughout this paper M denotes the Hardy Littlewood maximal operator.

Proposition 3.1. Let $P(x, y)$ and $R(x, y)$ be smooth functions such that there exists a positive constant r so that

$$
|P(x, y)| \leqslant|x|^{n}+|y|^{n} \text { and }|R(x, y)| \gtrsim|x|^{n}+|y|^{n} \quad \text { if } x^{2}+y^{2} \geq r .
$$

Suppose that $0 \leq \alpha$ and $0<\beta-\alpha \leq \gamma$. For $f \in C_{0}^{\infty}(\mathbf{R})$, define

$$
\begin{equation*}
U f(x)=\int_{-\infty}^{\infty} \frac{|x-y|^{\alpha}|P(x, y)|}{1+|x-y|^{\beta}|R(x, y)|^{\gamma}}|f(y)| d y \tag{3.1}
\end{equation*}
$$

If $\gamma \geq 1+1 / n$, then

$$
\begin{equation*}
|U f(x)| \gtrsim M f(x) \tag{3.2}
\end{equation*}
$$

for every x.

Proof. For simplicity, we assume that $r=1$. Write

$$
U f(x)=\int_{|x-y| \leq 1}+\int_{|x-y|>1}:=\mathrm{I}+\mathrm{II} .
$$

Since $0<\beta-\alpha$ and $\gamma \geq 1+1 / n$, we have

$$
\begin{aligned}
|\mathrm{II}| \leq & \int_{|x-y|>1} \frac{|x-y|^{\alpha}(|x|+|y|)^{n}}{1+|x-y|^{\beta}(|x|+|y|)^{\gamma n}}|f(y)| d y \\
\leq & \int_{1<|x-y| \leq 1+|x|} \frac{(1+|x|)^{n}}{1+|x|^{\gamma n}}|f(y)| d y \\
& \quad+\sum_{j=1}^{\infty} \int_{2^{-1}(1+|x|)<|x-y| \leq 2^{j}(1+|x|)} \frac{2^{n j}(1+|x|)^{n}}{2^{(\beta-\alpha+\gamma n))}(1+|x|)^{\beta-\alpha+\gamma n}}|f(y)| d y \\
\leq & \left(1+\sum_{j=1}^{\infty} 2^{(1+n-\beta+\alpha-\gamma n) j}(1+|x|)^{1+n-\beta+\alpha-\gamma n}\right) M f(x) \\
\leq & M f(x) .
\end{aligned}
$$

We now deal with I. If $|x| \leq 1$, then it is obvious that $|\mathrm{I}| \leq M f(x)$. Suppose that $|x| \geq 1$. Then

$$
\begin{aligned}
|\mathrm{I}| & \leq \sum_{j=1}^{\infty} \int_{2^{-j}<|x-y|<2^{-j+1}} \frac{2^{-\alpha j}\left(|x|+|y|^{n}\right)}{1+2^{-\beta j}\left(|x|^{\mid n}+|y|^{\mid n}\right)}|f(y)| d y \\
& \leq \sum_{j=1}^{\infty} \frac{|x|^{n} 2^{-(\alpha+1) j}}{1+2^{-\beta j}|x|^{\gamma^{n}}} M f(x) .
\end{aligned}
$$

Pick N so that $1 \leq|x|^{n} 2^{-N} \leq 10$. Then we obtain

$$
\sum_{j=N}^{\infty} \frac{|x|^{n} 2^{-(\alpha+1),}}{1+2^{-\beta j}|x|^{r n}} \leq|x|^{n} 2^{-N+1} \leq 20
$$

We also obtain

$$
\sum_{j=1}^{N} \frac{|x|^{n} 2^{-(\alpha+1) j}}{1+2^{-\beta j}|x|^{r n}} \leq \sum_{j=N}^{N} 2^{(\beta-\alpha-1) j}|x|^{(1-\gamma) n} \leq 2^{-(\gamma-1) N} \sum_{j=1}^{N} 2^{(\beta-\alpha-1) j} \leq C
$$

because $|x|^{(1-\gamma) n} \leq 2^{-(\gamma-1) N}$ and $\beta-\alpha \leq \gamma$. This completes the proof.
Remark 3.2. The condition on γ in Proposition 3.1 are sharp in the sense that if $\gamma<1+1 / n$, then (3.2) does not hold.

Proposition 3.3. Let $P(x, y)$ be a homogeneous polynomial of degree $2 n-1$. Let

$$
\begin{equation*}
V f(x)=\int_{-\infty}^{\infty} \frac{|P(x, y)|}{x^{2 n}+y^{2 n}}|f(y)| d y \tag{3.3}
\end{equation*}
$$

for $f \in C_{0}^{\infty}(\mathbf{R})$. Then, V extends to be an operator bounded on $L^{p}(\mathbf{R}), 1<p<\infty$.
Proof. Let $f \in C_{0}^{\infty}(\mathbf{R})$. Let

$$
V_{1} f(x)=\int_{-\infty}^{\infty} \frac{|x|^{2 n-1}}{x^{2 n}+y^{2 n}}|f(y)| d y
$$

We will show that

$$
\left|V_{1} f(x)\right| \leqslant M f(x) .
$$

Assume $x \neq 0$.

$$
\begin{aligned}
\left|V_{1} f(x)\right| & \leq|x|^{2 n-1}\left(\int_{|y| \leq 2|x|}+\sum_{j=1}^{\infty} \int_{2^{j-1}|x|<|x-y| \leq 2^{j}|x|} \frac{1}{x^{2 n}+y^{2 n}}|f(y)| d y\right) \\
& \leq|x|^{2 n-1}\left(\int_{|x-y| \leq 3|x|} x^{-2 n}|f(y)| d y+\sum_{j=1}^{\infty} \int_{|x-y| \leq 2^{\prime}|x|}\left(2^{j} x\right)^{-2 n}|f(y)| d y\right) \\
& \leq\left(1+\sum_{j=1}^{\infty} 2^{j(1-2 n)}\right) M f(x) \leq M f(x) .
\end{aligned}
$$

Hence V_{1} extends to be an operator bounded on $L^{p}(\mathbf{R}), 1<p<\infty$.
Since $|P(x, y)| \leqslant|x|^{2 n-1}+|y|^{2 n-1}$, we have

$$
|V f| \leqslant V_{1} f+V_{1}^{*} f
$$

where V_{1}^{*} is the adjoint of V_{1}. Hence Proposition 3.3 follows from L^{p}-boundedness of V_{1} and V_{1}^{*}. This completes the proof.

Corollary 3.4. Let $P(x, y)$ and $R(x, y)$ be homogeneous polynomials of degree 2n. Assume that

$$
|R(x, y)| \geq x^{2 n}+y^{2 n}
$$

For $f \in C_{0}^{\infty}(\mathbf{R})$, define

$$
W f(x)=\int_{-\infty}^{\infty} \frac{P(x, y)}{(x-y) R(x, y)} f(y) d y .
$$

Then, W extends to be an operator bounded on $L^{p}(\mathbf{R}), 1<p<\infty$.

Proof. Let $a=P(x, x) / R(x, x)$. Then, we have

$$
\frac{P(x, y)}{(x-y) R(x, y)}-\frac{a}{x-y}=\frac{P(x, y)-a R(x, y)}{x-y} \frac{1}{R(x, y)} .
$$

Note that $(P(x, y)-a R(x, y)) /(x-y)$ is a homogeneous polynomial of degree $2 n-1$. Hence Corollary 3.4 follows from the L^{p}-boundedness of the Hilbert transform and Proposition 3.3. This completes the proof.

4. Cauchy transform I

Recall that T_{A} is the operator defined by the kernel

$$
\frac{P(x, y)}{1+i Q(x, y)}
$$

where

$$
\begin{equation*}
Q(x, y)=\frac{A(x)-A(y)}{x-y} \quad \text { and } \quad P(x, y)=\frac{A^{\prime}(y)-Q(x, y)}{x-y} \tag{4.1}
\end{equation*}
$$

and that

$$
\mathscr{C}_{A}=\mathscr{H}+i T_{A}
$$

where \mathscr{H} is the Hilbert transform. We now prove that the operator T_{A} is bounded on $L^{p}(\mathbf{R})$. We first deal with the case when $\operatorname{deg} A$ is odd in this section.

Theorem 4.1. Let $P(x, y)$ and $Q(x, y)$ be polynomials of degree $2 n-1$ and $2 n$, respectively. Assume that there exists a constant r such that

$$
|Q(x, y)| \geq x^{2 n}+y^{2 n}
$$

if $x^{2}+y^{2} \geq r$. For $f \in C_{0}^{\infty}(\mathbf{R})$, define

$$
T f(x)=\int_{-\infty}^{\infty} \frac{P(x, y)}{1+i Q(x, y)} f(y) d y
$$

Then, T extends to be an operator bounded on $L^{p}(\mathbf{R}), 1<p<\infty$.
Proof. Let q be the conjugate of p, and let

$$
k(x, y)=\frac{P(x, y)}{1+i Q(x, y)} .
$$

Then

$$
\int|T f(x)|^{p} d x \leqslant \int_{|x| \leq r}|T f(x)|^{p} d x+\int_{|x|>r}|T f(x)|^{p} d x:=\mathrm{I}+\mathrm{II} .
$$

If $|x| \leq r$, then

$$
\int_{-\infty}^{\infty}|k(x, y)|^{q} d y \leq 1+\int_{|y|>r} \frac{y^{(2 n-1) q}}{1+y^{2 q n}} d y \leq C
$$

It then follows from the Hölder inequality that

$$
I \leq \int_{|x| \leq r}\left(\int|k(x, y)|^{q} d y\right)^{p / q} d x\|f\|_{p}^{p} \leq\|f\|_{p}^{p}
$$

For II, observe that if $|x|>r$, then

$$
|T f(x)| \leqslant \int_{-\infty}^{\infty} \frac{|x|^{2 n-1}+|y|^{2 n-1}}{x^{2 n}+y^{2 n}}|f(y)| d y
$$

Hence, it follows from the proof of Proposition 3.3 that

$$
\int_{|x|>r}|T f(x)|^{p} d x \leq\|f\|_{p}^{p} .
$$

This completes the proof.

Corollary 4.2. If A is a polynomial of odd degree, then the Cauchy transform \mathscr{C}_{A} is bounded on $L^{p}(\mathbf{R}), 1<p<\infty$.

Proof. It follows from Theorem 4.1 and Lemma 2.1.

5. Cauchy transform II

In this section we prove that if A is a polynomial of even degree, then the operator T_{A} is bounded on L^{p}. We first deal with the case when A is an even polynomial.

Theorem 5.1. Suppose that $P(x, y)=P_{0}(x, y)+P_{1}(x, y)$ and $R(x, y)=$ $R_{0}(x, y)+R_{1}(x, y)$ satisfy the following
(1) $P_{0}(x, y)$ and $R_{0}(x, y)$ are homogeneous polynomial of degree $2 n$,
(2) $\left|P_{1}(x, y)\right| \leq|x|^{2 n-1}+|y|^{2 n-1}$ and $\left|R_{1}(x, y)\right| \leq|x|^{2 n-1}+|y|^{2 n-1}$ if x^{2} $+y^{2}>r$ for some r,
(3) $|R(x, y)| \gtrsim|x|^{2 n}+|y|^{2 n}$ if $x^{2}+y^{2}>r$.

For $f \in C_{0}^{\infty}(\mathbf{R})$, define

$$
T f(x)=\int_{-\infty}^{\infty} \frac{P(x, y)}{1+i(x-y) R(x, y)} f(y) d y
$$

Then, T extends to be an operator bounded on $L^{p}(\mathbf{R}), 1<p<\infty$.

Proof. By a straightforward computation, we have

$$
\begin{aligned}
& \left|\frac{P(x, y)}{1+i(x-y) R(x, y)}-\frac{P_{0}(x, y)}{1+i(x-y) R_{0}(x, y)}\right| \\
& \quad \leq \frac{\left|P(x, y)-P_{0}(x, y)\right|}{1+|x-y|^{2}\left|R_{0}(x, y) R(x, y)\right|}+\frac{\left|R_{0}(x, y) P(x, y)-P_{0}(x, y) R(x, y)\right|}{1+|x-y|\left|R_{0}(x, y) R(x, y)\right|}
\end{aligned}
$$

Note that $\left|P(x, y)-P_{0}(x, y)\right| \leq|x|^{2 n}+|y|^{2 n},\left|R_{0}(x, y) P(x, y)-P_{0}(x, y) R(x, y)\right|$ $\leqslant|x|^{4 n-1}+|y|^{4 n-1}$, and $\left|R_{0}(x, y) R(x, y)\right| \gtrsim|x|^{4 n}+|y|^{4 n}$ if $|x|+|y|$ is large. It follows from Proposition 3.1 that

$$
\int_{-\infty}^{\infty}\left|\frac{P(x, y)}{1+i(x-y) R(x, y)}-\frac{P_{0}(x, y)}{1+i(x-y) R_{0}(x, y)}\right||f(y)| d y \leqslant M f(x) .
$$

Hence we may assume $P(x, y)$ and $R(x, y)$ are homogeneous polynomials of degree $2 n$. Note that

$$
\frac{P(x, y)}{1+i(x-y) R(x, y)}=\frac{P(x, y)}{1+(x-y)^{2} R(x, y)^{2}}+i \frac{(x-y) R(x, y) P(x, y)}{1+(x-y)^{2} R(x, y)^{2}} .
$$

The operator defined by the first kernel on the right hand side is proved to be bounded on $L^{p}(\mathbf{R})$ in Proposition 3.1. Let

$$
T_{1} f(x)=\int_{-\infty}^{\infty} \frac{(x-y) R(x, y) P(x, y)}{1+(x-y)^{2} R(x, y)^{2}} f(y) d y
$$

We compare T_{1} with the operator W defined in Corollary 3.4 with the same P and R. Let $T_{2} f(x)=T_{1} f(x)-W f(x)$. Then

$$
T_{2} f(x)=\int_{-\infty}^{\infty} \frac{P(x, y)}{(x-y) R(x, y)\left(1+(x-y)^{2} R(x, y)^{2}\right)} f(y) d y
$$

With $a=P(x, x) / R(x, x)$, define

$$
T_{3} f(x)=T_{2} f(x)-a \mathscr{H} f(x)
$$

where \mathscr{H} is the Hilbert transform. Then

$$
\begin{aligned}
& \frac{1}{x-y}\left(\frac{P(x, y)}{R(x, y)\left(1+(x-y)^{2} R(x, y)^{2}\right)}-a\right) \\
& =\frac{E(x, y)}{R(x, y)\left(1+(x-y)^{2} R(x, y)^{2}\right)}-a \frac{(x-y) R^{2}(x, y)}{1+(x-y)^{2} R^{2}(x, y)}
\end{aligned}
$$

where $E(x, y)=(P(x, y)-a R(x, y)) /(x-y)$ is a polynomial of degree $2 n-1$. Hence, by Proposition 3.3, it suffices to show L^{p}-boundedness of the operator T_{4} defined by

$$
T_{4} f(x)=\int_{-\infty}^{\infty} \frac{(x-y) R^{2}(x, y)}{1+(x-y)^{2} R^{2}(x, y)} f(y) d y
$$

Let $\varphi(x)=|x|^{-2 n}$ if $|x| \geq 1$ and $\varphi(x)=1$ if $|x|<1$. By similar estimates as above and Proposition 3.1, we obtain

$$
\left|T_{4} f(x)-\int_{|x-y| \geq \varphi(x)} \frac{f(y)}{x-y} d y\right| \leqslant M f(x) .
$$

Note that

$$
\left|\int_{|x-y| \geq \varphi(x)} \frac{f(y)}{x-y} d y\right| \leqslant \sup _{\varepsilon>0}\left|\int_{|x-y| \geq \varepsilon} \frac{f(y)}{x-y} d y\right| .
$$

Since the right hand side is bounded on L^{2} (cf. p. $42,[\mathrm{~S}]$), the proof is completed.

Corollary 5.2. If A is an even polynomial, then the Cauchy $\operatorname{transform} \mathscr{C}_{A}$ is bounded on $L^{p}(\mathbf{R}), 1<p<\infty$.

Proof. It follows from Theorem 5.1 and Lemma 2.1.

We now deal with the case when A is a polynomial of even degree.

Theorem 5.3. Let A be a polynomial of even degree. Then, the operator T_{A} is bounded on $L^{p}(\mathbf{R}), 1<p<\infty$.

Proof. Let $A(x)=\sum_{j=0}^{2 n+2} a_{j} x^{j}$ and let r be the number given in Lemma 2.2. It
suffices to prove

$$
\mathrm{I}:=\int_{|x|>r}\left|\int_{|y|>r} \frac{P(x, y)}{1+i Q(x, y)} f(y) d y\right|^{p} d x \leq\|f\|_{p}^{D} .
$$

In fact, the rest cases can be treated by the Hölder inequality since $|Q(x, y)| \approx$ $|x|^{2 n+1}+|y|^{2 n+1}$ if either $|x|<r$ and $|y|>2 r$, or $|x|>2 r$ and $|y|<r$. In order to estimate I, we make changes of variables $y=\alpha(s)$ and $x=\alpha(t)$ defined in Lemma 2.2. Then, since $\alpha^{\prime}(s) \approx 1$, we have

$$
\mathrm{I} \leqslant \int_{-\infty}^{\infty}\left|\int_{-\infty}^{\infty} \frac{P(\alpha t), \alpha(s))}{1+i Q(\alpha(t), \alpha(s))} F(s) d s\right|^{p} d t,
$$

where $F(s)=f(\alpha(s)) \alpha^{\prime}(s) \chi$ while χ is the characteristic function on $\{|\alpha(s)|>$ $r\}$. Let $B(t)=A(\alpha(t))$. Then, $B(t)$ is an even polynomial and

$$
Q(\alpha(t), \alpha(s))=\frac{B(t)-B(s)}{\alpha(t)-\alpha(s)}
$$

Since $\alpha(t)=t+O(1)$, we have

$$
P(\alpha(t), \alpha(s))=P_{0}(t, s)+E(t, s)
$$

where $P_{0}(t, s)$ is a homogeneous polynomial of degree $2 n$ and $E(t, s)=O\left(|t|^{2 n-1}\right.$ $\left.+|s|^{2 n-1}\right)$ if $|t|+|s|$ is large. Since

$$
|Q(\alpha(t), \alpha(s))|=\left|\frac{B(t)-B(s)}{\alpha(t)-\alpha(s)}\right| \approx|t+s|\left(|t|^{2 n}+\mid s^{2 n}\right)
$$

for $|t|+|s|$ large, it is already proved in Proposition 3.1 that the operator defined by the kernel $E(t, s) /[1+i Q(\alpha(t), \alpha(s))]$ is bounded on L^{p}. For convenience, put

$$
k_{0}(t, s)=\frac{P_{0}(t, s)}{1+i Q(\alpha(t), \alpha(s))} \quad \text { and } \quad k(t, s)=\frac{P_{0}(t, s)}{1+i \frac{B(t)-B(s)}{t-s}}
$$

Then, $k(t, s)$ defines an operator bounded on L^{p} by Theorem 4.1. A straightforward computation gives

$$
k_{0}(t, s)-k(t, s)=\frac{i P_{0}(t, s) Q(\alpha(t), \alpha(s)) \frac{\beta(t)-\beta(s)}{t-s}}{[1+i Q(\alpha(t), \alpha(s))]\left[1+i \frac{B(t)-B(s)}{t-s}\right]}
$$

where $\alpha(t)=t+\beta(t)$ as defined in Lemma 2.1. It then follows from Corollary 2.3 that

$$
\begin{aligned}
\left|k_{0}(t, s)-k(t, s)\right| & \leq \frac{\left(|t|^{2 n}+|s|^{2 n}\right)\left(|t|^{2 n}+|s|^{2 n}\right)|t+s| \frac{1}{|t|+|s|}}{1+|t+s|^{2}\left(|t|^{2 n}+|s|^{2 n}\right)^{2}} \\
& \leq \frac{|t+s|\left(|t|^{4 n-1}+|s|^{4 n-1}\right)}{1+|t+s|^{2}\left(|t|^{2 n}+|s|^{2 n}\right)^{2}}
\end{aligned}
$$

Hence, $\left|k_{0}(t, s)-k(t, s)\right|$ defines an operator bounded on L^{p} by Proposition 3.1. This completes the proof.

Finally, we have the main theorem of this paper.
Theorem. If A is a polynomial, then the Cauchy transform on the curve $y=$ $A(x)$ is bounded on $L^{p}(\mathbf{R}), 1<p<\infty$.

REFERENCES

[C] A. P. Calderón, Cauchy integrals on Lipschitz curves and related operators, Proc. Nat. Acad. Sci. USA, 74 (1977), 1324-1327.
[CJS] R. R. Coifman, P. Jones, and S. Semmes, Two elementary proofs of the L^{2} boundedness of Cauchy integrals on Lipschitz curves, J. Amer. Math. Soc., 2 (1989), 553-564.
[CMM] R. R. Coifman, A. McIntosh, Y. Meyer, L'intégrale de Cauchy definit un opérateur bornée sur L^{2} pour courbes lipschiziennes, Annals of Math., 116 (1982), 361-387.
[DJ] G. David and J.-L. Journé, A boundedness criterion for generalized CalderónZygmund operators, Annals of Math., 120 (1984), 371-397.
[FJR] E. B. Fabes, M. Jodeit Jr., and N. M. Riviére, Potential techniques for boundary value problems on C^{1}-domains, Acta Math., 141 (1978), $165-186$.
[KS] H. Kang and J. K. Seo, L^{2}-boundedness of the Cauchy transform on smooth non-Lipschitz curves, Nagoya Math. J., 130 (1993), 123-147.
[M] T. Murai, A real variable method for the Cauchy transform, and analytic capacity, Lecture Note in Math., 1307, Springer-Verlag, New York, 1988.
[S] E. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press Princeton, 1970.

Hyeonbae Kang
Department of Mathematics
Korea University
Seoul 136-701, Korea
e-mail:kang@kuccnx.korea.ac.kr

Jin Keun Seo
Department of Mathematics
POSTECH
P. O. Box 125, Pohang 790-600, Korea
e-mail:seoj@posmath.postech.ac.kr
Current address of J. K. Seo
Department of Mathematics
Yonsei University
Seovl 120-749, Korea
e-mail:seoj@bubble.yonsei.ac.kr

[^0]: Received March 28, 1994.
 This work was supported in part by GARC-KOSEF and NON-DIRECTED RESEARCH FUND, Korea Research Foundation, 1993.

