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Introduction and results
Let P be a pseudodifferential operator of the form
(1) P=D,+it'(D, +fW®z/| D) inR,x R,

where s, b = 0 are even integers and f(f) € C” is odd function with f’ (&) > 0
(t # 0). Here | D, > = Z:‘=1 Dj’. We shall call P an operator of Egorov type be-
cause P with f() = t*, (kodd) is an important model of subelliptic operators
studied by Egorov [1] and Hérmander [3], [4, Chapter 27]. Roughly speaking, any
subelliptic operator can be reduced to this operator or Mizohata one after several
steps of microlocalization arguments. In this paper we shall study the hypoelliptic-
ity of P and the local solvability of adjoint operator P* in the case where
f () vanishes infinitely at the origin and moreover consider the case where #* and
xf are replaced by functions with zero of infinite order. Our result is not general
theory (see Theorems below), but there seems few literature that treats operators
of Egorov type with infinite degeneracy. In the preceding paper [11], the hypoellip-
ticity of P in case of either s = 0 or b = 0 was studied in a little more general
situation. It seems hard to consider the general situation corresponding to the case
of both s, b > 0. Lerner [7] recently has proved that L-a priori estimate can not
hold for some infinitely degenerate version of operator of Egorov type though it
satisfies (¥) condition given by Nirenberg-Treves [13]. We remark that P satis-
fies (¥) from the assumptions of s, b and f(£). It is known by Moyer [12] (in two
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dimension case) and Hormander [4, Theorem 26.4.7] (in general case) that
Nirenberg-Treves (¥) condition is necessary for pseudodifferential operators of
principal type to be locally solvable. On the other hand, Lerner’s example says
(@) is not sufficient for L? local solvability. We hope the research in the present
paper might contribute to understanding the local solvability for operators of prin-
cipal type. About further historical remarks of operators of principal type and
subelliptic operators we refer to Hormander [4, Chapter 26, 27).
Let us state results, precisely.

THEOREM 1. Let P be the above operator of the form (1) with
t
(2) @ = f exp(— | a|™do, «£>0.
0

Then for any € > 0 and any compact set K C R,n: ' there exists a constant C = C.x

such that

(3) | Gog " ul + || Gog H™"**x (tUog A'™Yul + || Du|
SCUPul+1Nuld for ue C; (K,

where A =2+ | D, |” and x () € C* satisfies x() =0 for t <2 and x(t) =1

for t = 3. Therefore, adjoint operator P * s locally solvable. Furthermore, if K < s + 1
then P is hypoelliptic.

A simple modification of the proof of Theorem 1 gives a slight generalization
of Theorem 1 as follows:

Tueorem 2. Let g, () = | ™" for v > 0. Let P be the operator of the form
(1) with t' and x, replaced by g, (t) (0 < v' < 1) and g,.(x,) (V" > 0), that is,

(4) P=D,+ig,®D, +fW®g,(x) D inR, X R

Let f(8) be C” — odd function and satisfy for some v, > 0

1*o

) " exp(— ™) < £ < |7 exp(— | £, £ >0

in a neighborhood of the origin. Assume that f'(£) is monotone in each half axis. Then

we have the estimate (3) whth | D || in the left hand side replaced by | D,x (| D, |/ Du|,

that 1s,

3y | dog Al + || Gog A" x (tog A)Yu| + | Dx (| D, |/ Du|
SCPull+uld for ue K.
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Hence adjoint operator P * s locally solvable and moreover P is hypoelliptic.

The proof of Theorem 2 admits to treat the operator of principal type whose
imaginary part vanishes on the interval.

COROLLARY. Let P be the same operator as in Theorem 2 with g, () replaced by
H® g, (1), where H® is Heaviside function. Then P™ is locally solvable.

By arranging proofs of Theorems 1 and 2 we obtain a further generalization
concerning the local solvability: Let Pbea pseudodifferential operator of the form

(6) P=D,+ia)(D, +fWgx) | D, in R, xR},

where f(0) =0, and a(f), g(® and f’(H) are even C”-functions, monotone in
each half axis, and they satisfy a(0) = g(0) = f’(0) = 0 and a(®, g, f'¢) >
0 for ¢t # 0. Setting @(f) = log f'(#) we assume that if > 0 small

(7) Cto®d =|o®|® for 36,>0, 3C, >0,
8) oW =0, |OI>2|0@W||oW|"for0< 36, <8,
and moreover

’ 0,
9) i((tt)) <, (log] @t(zﬂ D* for 0< 36,<1 and 3C,>0,
(10) Caglta(®) | &) |7%) exp(| @) I > 72| @) |

for 0< 36,<6,—6, and 3IC,>0.

THEOREM 3. Let P be the above operator of the form (6) satisfying conditions
(7)-(10). Then adjoint operator P* s locally solvable.

It should be noted that the condition (7) forces f’(f) vanish infinitely at the
origin. If f(f) is of Theorem 1 and a(f) = g, (), g(z) = g,.(x) for those of
Theorem 2, then all assumptions (7)-(10) of Theorem 3 are satisfied. Though
assumptions (7)-(10) are rather complicated, they are fulfilled by other many func-
tions with zero of infinite order at the origin, for example,

f() =exp(—(exp|t|™), al®) =exp(—|t|™),

(11) —
g(x) =exp(— |z, [ if kg, >k, >0 and £,>0,

where we can take 6, = 1, 0, arbitrarily close to 1, 8, > &,/k, and 0, < 6,/k,.
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1. Proof of Theorem 1

Let p(t, x, 7, &) denote the symbol of P and let Char P= {(¢, x, 7, &) €
T*(R™\0; p= 0}. The local solvability of P* and the hypoellipticity of P are
obvious in the region {f # 0}. In fact, the Poisson bracket {Re p, Im p} does not
vanish on Char P if x; # 0 and ¢ # 0. When x, = 0, H,’:;;, Re p # 0 on Char P
N {¢t# 0}, where H, denotes the Hamilton vector field of g. By means of
Egorov-Hoérmander theorem we have subelliptic estimate there. Furthermore, sub-
elliptic estimate holds microlocally at the point ((0, x,), (7, &, &)) €
T*(R"™)\0 with (z,, &) # (0, 0) since Hy,,Imp # 0 if &, # 0 and t=0.
Consequently, it suffices to prove the theorem microlocally at p, = ((0, x,), (0,
&) € T*(R"™™M\ 0 with & = (0, &), | €| = 1. In order to get a microlocal ver-
sion of the estimate (3) at p,, we define a microlocalized operator of P at g, as fol-
lows: Let 2(x) be a C; (R™) function such that 0 < & <1, h(x) =1 for | x| <
1/5 and h(x) =0 for |x| =7/24. For a 6 > 0 we set hy(x) = h(x/0d) and
H;(z, &; ) = hy(x — 2)h; (A& — &), where 0 < A <1 is a parameter. For a
sufficiently small §; > 0 and a parameter 0 < A < 1 we set

P,= D, + ih, (x — z)t'(D, + f(z) | D,|)h, (AD, — &)

(1.1) s
=D, + it B¢, x, D).

PROPOSITION 1.1.  Let P, be the above operator with f () given in (2). If §; > 0 is
small enough then for any 0 < 0 < 0,/100 and any € > O there exists a constant
C = C,; such that forany 0 < A <1

I11og A" u | + 1 log A [ *x @t log A ") u |’ + | Du !
(1.2) SCUPulf + 271 (0 = Hy)ulf + 1 ul)
for u€ Cy([— 0, 8,]; S(RY)).

Admitting this proposition for a while, we shall prove Theorem 1. Let u €
C, with supp # C {| t| £ 8.} and substitute z,(AD, — &) h,(x — x,)u into (1.2).
Since 27" is equivalent to | &| on supp #(1& — &,) we have

I h;(AD, — &) (log A)*hy(x — z)ul’

+ | h,(AD, — &) (og )™ x (tog A) Y hy(x — z)u |’
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+ | hy(AD, — E)Dhy(x — x)u |’
< Clhy(AD, — &) Pull + | hyy D, — EQulf + Al ulP).

Integrate A from O to 1 after dividing both sides by A. Then by means of [9, Prop-
osition 1.7] we have

| ¢5(D,) (log A *h,(x — x)ul +
(1.3) || ,(D,) log D)™** 5 (tog A" hy(x — z)ulf +
I 5 (DD s (x — zDul? < CUPul + 1 ul?),

where ¢,(&) is a suitable symbol in Sfyo such that ¢; = 1 in a small conic neigh-
borhood of &, (see [9; Definition 1.6]). By using the usual partition of unity in the
cotangent space, we obtain the estimate (3) because microlocal subelliptic estimates
hold in the region except for o, = ((0, z,), (0,0, &) € T*(R"™)\ 0. The local
solvability of P* is a direct consequence of (3). In fact, noting the Poincaré ine-
quality

(1.4) lull <6l Dul if diam (supp ) < 6,

we have || < C| Pull if supp u is sufficiently small. For the proof of hypoellip-
ticity of P in the case of 0 < g < s + 1, it suffices to show the microhypoelliptic-
ity of P at p,, that is,

(1.5) 0, € WF (Pu) implies o, € WF (u) for Yu € @' (R™).

Since (1 + 2¢)k < s + 1 for sufficiently small ¢ > 0 it follows from (1:2) that if
0<1<1

[log A [** I ul + [1og A [*** || £*u |
(1.6) <CUPulf + 2721 — Hyulf + 2lulP),
for u€ Co([— 8, 8,]; S(RD).

By means of this estimate we can easily see (1.5) if we employ [11, Theorem 1] as
in the proof of {11, Theorem 2]. Indeed, we may assume x, = O by the translation
after the estimate (1.6) was obtained. If we set I'= Char P N {f = 0} then the
hypotheses of [11, Theorem 1] are fulfilled for ¢(z, § = (1 — hg(x)) + (1 —
hy; (A€ — &) and a(t, x, &) = . The detail is left to the reader.

We shall prove Proposition 1.1. It suffices to show (1.2) for a sufficiently
small 2> 0. If t, = | log 2| then f/(¢)A™" = 1. For a fixed , there exists a
constant C > 0 such that
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(1.7) hy (@ —z)t2) | fO 127 <C if |t] <t
If supp # < {| ¢| < ¢t,} then we have
ClPul’+ R) =D, +it'D,)ull,

where R, = 272 1 — Hyp)u |’ + |« |’. Here and in what follows we denote
different positive constants independent of A by the same notation C. Since we
have the maximal hypoelliptic estimate

. 2 2
(1.8) cl @, + D )ulf 2| Dul’ + D ulf,
it follows from the Poincaré inequality that

(19 CUPul?+R) =|log Al |ul? + |Dulf if suppuc {|t]<t}.

Note that
1.10) | Pl = Du | *; I £Byu |
+ 2Re(st* By, u) + 2Re(V,H, 2| D, | u, ),
where
(1.11) V,=V(t, ) =tz f (A"

Since A| €| =1/2 on supp H; (x, §;2) it follows from the Garding inequality that
(1.12) 2Re(V,A| D, | Hy (z, D,; Du, w) = (V,u, w) — CR,.

If suppu < {| t| = ¢,/2} then we have

S— 1 S X
(1.13) | (st 'Bu, w) | < Z" t'Baul®+ Cllog 21" | u .
1t follows from (1.10), (1.12) and (1.13) that

1 x
(114) 1Pl =25 ADulf + 1£Bulf + (Viu, w) — Cllog 2 P*Nulf + R)
. if suppuC {|t|>1¢/2}.

If | ¢| < 8, for &, small enough then it follows from the implicit function theorem
that there exist real symbols 0 # e(¢, x, &) € S(I),o and 7(t, x, &) € Sio in a
small conic neighborhood I, of (x,, &) such that

g+ Wz &l =elt,x, ®E +rt,z, &) in {t| <6} X,

Choosing a sufficiently small d, > 0 again, we have for constants ¢, > 0 and
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C > 0 independent of A

|Bul = ¢, |l (D, + #¢, z, D,)ulf — CR,

(1.15) . .
for u€ C, ([— d,, 6,]1; S(R})),

where 7 = 7h; (x — Z)h, (A& — &) and h(z’) € CJ(RZ™) is a similar function
as h(x).

1Pul = ¢, Dul’ + | £(D,, + #t, 2, DD ul’ + (Viu, u)
(1.16) — C(llog AP | ulf + R)
if suppuC {5, =|¢t|=1t/2}.

Here and in what follows we denote different small positive constants independent
of A by the same notation c,.

In order to get (1.2) we shall see together (1.9) and (1.16) as gaining the posi-
tivity from the first three terms of the right hand side of (1.16). To this end we
have to consider the behavior of the potential V, near ¢ = ¢, and a special decom-
position of the neighborhood of ¢ = ¢,. For an [ > 0 we set

(log|log AN _ log|log A]*”

(1.17) #=eD=""T07] = logal

where we have set a(1) = (log|log A])". If 2 > 0 is small then (1) < 1/2. Set-
ting £, = ((1 + p)/|log A D* we have

fri)at = exp[— [ log 2| + |log A I}

1+pu
_ log(| log 2 |)am}
= exp{ 1+ .
Consequently we have
(1.18) O = 1og AP i |t > ¢,

1/x

Since 1 + " =1+ u/k + 0(*) we have
(1.19) t,—t, = 0(logA| "*(log|log AN,

where R = O(J) means C™' < R/J < C for some constant C > 0 independent of
A Set y,=1/2 and 7; = 7,_,/2 for j=1,2,3, ... inductively. Let N be the
smallest integer such that 7y < 2(¢, — #,). It follows from (1.19) that

(1.20) N = 0(og|log]).
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We take a convention that 7; = yy for j = N + 1. Setting ¢, = f, — 7, we consid-
er the following divisions of intervals [¢, t,] and [¢,, o) : Put I, = [#, £, + 7]
and put I, = [7;, 7,,,] with 7, = t, + 2,_, 7, for j = 1,2,3, .... We have

lt, ] =1L U -+ UL, Ul and [t, ) = U I.

Set j=N+2

(1.21) u;=tir;=llog A"y,

for y=1,..., N and let g; = py for j = N+ 1. If [ is large enough then it fol-
lows from (1.11) and (1.18) that

(1.22) Vit,z) 2777 on {lt| =) x |z | =p).

Let @; denote a rectangle I; X J; in R,Z»,l, where J; = [— g, ;). Let I denote 4
times dilation of I, to the right direction, that is, I, = [7,_,, 7, + 37,] in case of
=1,..., N+ 2. We take a convention that I,-* =1I;if j 2 N+ 3. We denote by
Q,-* a rectangle Ij* X [— 2y, 21;) for j =1,2,3,. ...

Lemma 1.2, If # and || - ||, denote a Hilbert space L* (R and its norm, ve-
spectively, then there exist positive constants ¢, and C such that

LDl + 1@, + Dl + Vit 2 |l dtaa,
i

128) 2 [ Nulpdaz, - € S WA = Hyp)u

° + lulf,)dtdz,

for w€ C'(R, xR, ;#),
where Hy = Hy(x’, D, ; ) = h((x’ — 20/ ) h((AD,, — €)/0).

Proof. Regarding ! as a parameter, we take a canonical transformation @,
keeping x, variable such that

El + f(t, x, Sl)__) &1-

Let U be an elliptic Fourier integral operator in R;',_l realizing the canonical
transformation @, such that (U(D, + 7 — DIIU)I:I w05’y Dy ; A) belongs to
OP(S?'(,) uniformly with respect to A > 0. Note that H406(@,(x, ;A0 =1on
supp H,y;(x’, € ; 2) if | t], | z,| < 6,, where @, denotes the projection of @, into
T*(R;,_l). For the sake of simplicity we denote x, variable by y until the end of
the proof of this lemma. If % = U H,u and if | t], | y| < 6, then
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I (D, + #t, y, x’, D) ull

(1.24) _ _
> ¢ | Dall, — C Q72N Q= Hypully +ully) for ue#.

Furthermore, if | £|, | y| < 8, then there exists a C;, > 0 such that

Crillulle <lalfy +1Q — Hyully + 2l ully

(1.25)
< C "u”;f for u € #'.

We use the following elementary inequality given in [2; p. 148] (see also [10; Lem-
ma 1.1]): If I is an interval in R, then

) (diam D)~ T 1
j;lD,vI dt > co——[T[——j;llv(t) — o) ['dtat’ for veE C'(R),

where | I| = diam I denotes the length of I. The absolute value |+ | can be re-
placed by the norm | « ||, Substitute v(f) = v(¢, y) € Cl(R, X R,; #') and inte-
grate with respect to y on [— 27;, 27,]. Since the volume | Qj* | of Q,-* is equal to
81 L11J,1=8]@Q,l we have

-2

2 > 7 _ ’ 2 ! s’
Lo didy > comﬁfxo* lu(t, v) —u(t', y) I, dtdydt'dy’.

t]

[ 1Dut,
Qj

Similarly, we have
')’_2
2s ~ 2, > j NS || ~(4gr T2 2’ ‘dy’ .
S 1Dt 9 Bedtay = ey [ @*Na, 9 = att, o) Bodayaray

Obviously we have

_/;* Vilt, o) [l ut, 9)

2 — 1 ’ 7 7 " |12 7 7
2 dtdy = m—j_[-/;;*xo;“ Vi, o) | uct, y) I, dtdydt dy’.

Note that the right hand sides of those formula are positive. If Q;) = Q,-* NnAtl = t)
X {|z,] = p} it follows from (1.21) and (1.22) that

fQ!* | D

> Co]%j[j(;,xo}’ lutt, ) —ult, v I

+2C, lalt, 9 —alt, y) I, + 2C ult', y) I, ) dtdyat dy’

e + £ Dyl + Vi, o) | u [y dtdy

2
77

-2
‘r. 2 2
> ¢ 4 — [u it
= CO-I—Q_j[j;!xQ? {" u(t, y) “ /2 " u(t ] y) “y,f’ + Cl ” u(t ’ y)
—2C, |at, y) I + 2C2 | ult, y) I} dtdydt dy’,



160 YOSHINORI MORIMOTO

where C, is the constant in (1.25). Since | Q;) [ /] le > 1, we have by (1.25)

J Pl + 1Dl + Vitt, ) L Bty

2 co1;” [ Nt 9 Batdy — €17 ([ 10~ B, ) B + 2N uct, 0 [ )dedy.

From this and (1.24) we obtain the desired estimate (1.23). The proof of Lemma
1.2 is completed.

Let # and || - ||, denote a Hilbert space LZ(R;l) and its norm, respectively. By
the similar way as in the proof of Lemma 1.2, it follows from (1.22) that

2 -2 2
-/1:* | Dl + (Vou, ) pdt = c,7; _/;ll u |at

(1.26) .
for u€ C (R,;#) withsuppu N {{z,| <p) = 0.

By (1.23) and (1.26) we have
f, Dl + 1 (D, + #t, 2, Do)uly + Vi, ) pat

27 2 ¢37 [Nulfpdt = € [ G71Q = Hapulfy + lular
for u€ C'(R,; #).

Let ¢(t) € C” be a function such that 0 < ¢ <1, ¢ =0 for t<
0, p(® =1fort=1and| ¢ @ | < 2. Setting

1. .

NU—1+e—7.0/7)9 it t€L =1,..,N
(1.28) ¢, = 0 if <t

1 if t> 7,

then we have forj=1,..., N

(1.29) ]—%l <p < 7’\7 if tel,
(1.30) lo® | <47 it te T,
(1.31) | So, D) | <4GyND™" if te .

Assume u € C, ([~ §,, 6,1 ; S(R})) and substitute yN¢,(#) u into (1.16). Then
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we have with suitable positive constants C, C;, C, and ¢,
CN(|Pul*+ R)
2 ¢,N{lVo, Dulf + 1 £/, (D, + Pull + (o, Viu, w)}

— CN|D, yo,1ull — C,N|log 1" || Vo, ul’
=0,-0,- Q.

(1.32)

Since I,* =], for j 2 N + 2 it follows from (1.29) that

Ni2 2 28 - 2
=) f, 1Dl + 1Dy + Dully + (Vu, )t
J= j

(1.33) + 3 anun2 + 51D, + Dully + (Vu, )yt

j=N+3

N+1

z 27 fllull dt + T,;Zj: Il dt — CNR,.

Here we have used (1.27) in deriving the last inequality. By means of (1.31) we

obtain
y T‘—Z 2
1.34 2,<C % dt
(134) vsCE [ lul
It follows from (1.29) that
N+l oo w
(1.35) 2, < cllogzl"“‘(zlj[ |lul|;dt+N[ ||u||;€dt).
7= 1 1

There exists an integer jo independent of A such that

(1.36) 2C ( i, N}) [log 2 |”“) < yrtoit >,
In view of (1.36), it follows from (1.32)-(1.35) that
CNUPul + R) = e[ NIVo & D
N+1 o
1.37 -2 2 -2 2
(1.37) + 27" [ulfar+ 73 [ lulal

Jo
—CXlog A |** ° dt.
3 log ] fhuunﬂ,d

Substitute /N¢,(— ) # into (1.16) similarly. If — I; denotes the symmetric inter-
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val of Ij with respect to the origin, then we have
CNOPulf + R) = c,{NI/o, (D D
N+, ) = 5
(1.38) + 20 [ bttt [ Nuldd
j=2 LU= It =¢,

Jo
~Cc2log Al [ Nul.
j=1

Lu(-1y)

J

Substitute (1 — %(l t1))u into (1.9). Then

CUPulf+R) =10 — ¢, th)Dul’

+llog A1 A — @0t ul?
(1.39)
Cc r _
— PEZ o I lldt

LU(=I)

because | log A |m is much bigger than Q'I_Z/N2 and it follows from (1.30) that

2 16 & 2
1D, gDl <5 2 [ lulfeat.

Note that

Jo
211og 21”1 1 = @, tNul = § |log |2/"f )\| u [pdt

(-

(1.40) ,
+ [ Nog [ lu .

In view of (1.40), it follows from (1.38) and (1.39) multiplied by N that

VAPl + R) 2 NIDal + N [ 1og 2 P ulFya
Tin/2)

(1.41)
3 [ Ml [ lular
j=1 ! Lu(=Ip) It =

because (1 — ¢, (1 t)?+ ¢, t]) =1/2. Here [N/2]is the largest integer
smaller than N /2.

Dividing both sides by N we obtain (1.2) in view of (1.20) and (1.19) because
770> Nllog 2" if j 2[N/2] + 1.
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2. Proofs of Theorem 2 and Corollary
Let p, = (0, ), (0, &) € T*(R"™\0 with & = (0, &), |&|=1 and

let P, be the same microlocalized operator of (1.1) with ' and xlb replaced by
g, (D and g, (), respectively. By the almost same way as in the preceding sec-
tion, we shall prove (1.2) with the third term on the left hand side dropped, that
is,

" l log 2 |1/xu "2 + " | log /z I1+1/x—ex (2t| log /2 |1/n)u "2
(2.1) <SCUPulf + 271 = Hyul* + [ u )

for u€ C,([—d,, 6,]; SRY)).
If t,= (A1 — w/|log A D" with g =) in (1.17) and if I is larger than v,
then it follows from (5) and the monotoness of f” that
A <exp(— |t + |log|t| | + |log A])

log|log A| —log(1 —#(;())>V0+1}
K

< exp[— l—i—(ga)—logllogll + (
< (og|AD™®” it |t <t
Instead of (1.7) we have
(2.2) hs (x — 28,08, (x) FOA < C if [t| <ty
If supp # C {| t| < t,} then we have by (2.2)
(2.3) CUPul +R) 2| D, + ig, ®BYul,

where B, = D, hs (AD, — &). By using the Nirenberg-Treves estimate (see [4;
Section 26.8]) we have the following lemma given by Lerner [6] (see also [5; Sec-
tion 2]):

LEMMA 2.1. There exists a 0’ > 0 independent of A > 0 such that for any
u(®) € C,(R,; #) we have

(2.4) 2 f I (D, + ig, () Bu(® || ,dt = sup || u(®) I, if suppuc {¢t| < &)
Since Bl is independent of f the condition (3.1) of [11] is fulfilled trivially.

Hence the proof of this lemma is the same as that of the lemma in [11]. By means
of the Schwartz inequality and the Poincaré one it follows from (2.3) and (2.4) that
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(2.5) CAPulf +R) =|log A" |ul® it suppuc{t|<t).
. , Vv +1 o )
Noting that | g/, (8) | < T [log|t||” | g, () | we have instead of (1.14)

@6)  1Pul =4 ADulF+ g OBul + Vu, w)
- CW | ulP+ R) if suppuc {|t]|>1¢/2},
where (1) = |log 2 |"*(log|log A])” and the formula (1.11) is replaced by
(2.7) V,=Vt, 1) = g, (08, (x) f (DA
Since # is replaced by g, (f) we have in place of (1.16)
1Pulf = ¢, Dulf + g, (&) (D, + #(t, x, D)ulf + (Vu, u))
(2.8) — CCW* lulf + R
if suppu C {5, > |t| >1t/2}.
Choosing a positive 8 satisfying v’ < 8 < 1 we set p(2) = (log|log )’ We

need replace the definition of 7, in Section 1 by 7, = #,/0(). We set 7; for j =

1,2,3,... similarly as in Section 1. Set ¢, = g, (t)7; = | log |~(l°g“°g“)v’/"wﬂ7’j for
7=1,..., N instead of (1.21) and g; = gy for j = N+ 1. If [ is larger than
(v + 1) (v + 1) then we have (1.22) in view of (2.7) because it follows from (5)

and the monotoness of f’ that
FrOAT = 1og A" it |t =t

On account of (1.22), Lemma 1.2 still holds with the factor £ of (1.23) replaced
by g,(D° From (1.26) we have (1.27) with the same modification. Substituting
Wu into (2.8) we have (1.32) with factors £ and |10g/1 |2/" replaced by
g, (0% and C(Q)? respectively. By the same exchange, all formulae (1.33)-(1.37)
still hold. In particular, (1.36) is valid on account of the factor ,0(/1)2 included in
Tj_z since V' < 6. Hence we have in place of (1.38)

CNA P + RY 2 ¢ [N 1o, (7D D
Nl -2 2 -2 2
2.9 SR N T~ Rl R

Jo
-CcX LW’ edt.
2w [ lul

Because of ¢, — 7y < t, we can substitute (1 — ¢,(|#]))% into (2.5). Hence we
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have instead of (1.39)
CAPulf + R) =llog A" (1 — ¢, tD) ulf

C¥ o 2
- znt f Nulat

JU(=1))

(2.10)

because |log A lm is much bigger than 7‘1_2/N2 in spite of the factor .0(/2)2 in-
cluded in 7, > If we choose a positive @ = 1 such that 2 > w > 26 (> 2V) we
have instead of (1.40)

© 2/x B 2y L 2 2 fo 2 2
N®llog A1 1 — @, 1)) u] chu) fz,u<-1,>||“"”dt+f.,.,m) ol at.

In view of this, it follows from (2.9) and (2.10) multiplied by N that

CWN+ N Pulf +R)

7[N/2] N+1
2N [ og A Nulpat + 2 77 [

~TiN/2l j=1 Lu (-1,

(2.11)
2 -2 2
luldt+ 73 [yt
) |t1 =>4

because N /N? is much smaller than 1. Dividing both sides by N we obtain
(2.1).

Let o, = (0, z), (0, £)) € T*(R"™D\0 with &, = (&,, &), &, # 0 and
let P, = D, + ig,() B,(¢, x, D,) also denote the microlocalized operator at 0, in
this paragraph. Since B,(¢, x, §) has a definite sign if 0, is small enough, similar-
ly as in Lemma 2.1 we have for any u() € C;(R, )

(2.12) 2 f I (D, + ig, () B)u@ || ,dt = sup | u(® |, if suppuc {|t] <5}

By means of Schwartz's inequality and Poincaré’s one it follows from (2.12) that
(213)  ClIPulF>1log 2" ulf it suppuc (|| <2]|logal™™.

Note that g, ()B,(t, x, & = A"H, (x, &; ) if |t]| = |log A7, Using the
similar method as in the proof of Lemma 1.2 we have by (2.6) with {(4) and ¢,/2
replaced by | log A ["**(log | log A |)”l and | log A |7t

2C(| Pulf + R) = CU Dul + | g, D Bue|) + R

(2.14) . e
2| Dul’ + 27| ulf if suppu < {|t] > |loga|™ ).

If x, (0 =x@2]|t]|log2 ["**) then | x,l(t)(j) | < Cllog2 P4 and it follows from
(2.14) that

” [Py, x]u "2 = " XU "2
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<272 1P, xJulf + [log 2 "= (| P P + RY?.

Since a similar estimate holds with ¥, replaced by ¥} |log 2|7, in view of u =
2%+ (1 — x,), it follows from (2.14) and (2.13) we have

llog A ** ul? < C(| Pul* + R)

(2.15) o n
for we C, ([— 0, d,]; SR,)).

On account of microlocal estimates (2.1) and (2.15) we have (3) for # € C,
whose support is contained in a sufficiently small neighborhood of (0, x,). From
this estimate we see P* is locally solvable at (0, x,) because for any ¢ > 0 there
exists a d(¢") > 0 such that

2.16) lull < ¢ Qog D, | + AN u| for diam (supp ) < ().

The Poincaré type estimate (2.16) can be easily seen by the similar way as in the
proof of [8; Lemma 3.3].

Consider the microlocalized operator P, at p,= ((f, x,), (0, &)) €
T*(R™M\0 with t,# 0 and & = (0, &), | & | = 1. Then we have instead of
(2.6)

1
(217) | Paulf 2 5 ADulf + | Bl + (Viu, w) — CR,
if suppuc {t—1¢]<4).
Note that
V=A% it |t—4 > 141/2 and |z, | =]loga ™"

IfJ=1—|loga]|™ |log 2|7 ] and J* denotes twice dilation of J then by the
similar way as in the proof of Lemma 1.2 we have uniformly for t € {| ¢t — f0|

<o)

C (f,* | Bl + Vit ) | ullydz,)

2 ¢, |og 2" [lulyy — ¢ [ G711 Q ~ Bl + lul)dz,
for u € CI(RII s H).
Hence we have
2.18)  |log A[**|ul < C(| B + (V,u, w) + R)
< C(Pul’+R) if suppuc{t—1]|<d).
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From this we have
(2.19) | Qog ™ ul? + | Dx( DN/ Dulf < CYUPulf + || ul?

for u € C, with supp # contained in a sufficiently small neighborhood of (1.70,
z,) with fo # 0 since (2.15) holds even if p, = ((fo, x,), (0, éo)) e T*(R"™M\0
with £, # 0 and &, = (&, &) for &, # 0. The local solvability of P* in the re-
gion {t # 0} is a direct consequence of (2.19) and the similar formula as (2.16).

By means of [8; Theorem 1] it follows from (2.19) that P is microhypoelliptic
outside of I'= Char P N {# = 0}. Using [11; Theorem 1] we can easily see the
microhypoellipticity of P at p, because from (2.1) we obtain (1.6) with t replaced
by &, (9. The microhypoellipticity at o, also follows from (2.15). Now the proof of
Theorem 2 is completed.

We shall prove Corollary. Let p, = ((0, zp), (0, &)) € T*(R"™H\ 0 with
& = (0, &), | & | =1 and let P, be the microlocalized operator at p, in the begin-
ning of this section if £ > 0 and P, = D, if t = 0. If u(f) € C,(R,; #), in view of
(2.2) we have for t < ¢,

(2.3 CUlPu® I, + R,(®) 2 || (D, + ig, OHBBYu(@) |,
where R,() = A7 | (1 — Hyps(x, D N u® lly + lu® I, Since (2.4) still
holds with g, () replaced by g,, () H() we have

ts _
(2.20) C,]:,s, U Pu® |, + R, (D)dt = sup | u(®) |, for u € Coll— &, t,]; #).
If §, < ¢’ then by the Schwartz inequality we have

0 i3 t3 _
@21 c(o, [ 1P [t + | 10g 217 fo | Pt [dt + 6, [ 5 R,(0’dr)

a0 2 e [ 2
>5[  uC® e + [ 1og 2| fo o) |, at
if suppu C {— 0, <t=<1t).
Assume # € C, ([— 6,, 6,] ; S(R))) and substitute (1 — ¢,(#)) into (2.21). Then

we have instead of (2.10)

0
Cliog a1 Pulf + R) = 57 [1og a1 [ |l
(2.22) o
+log 21 10— g, @)u et
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Note that (2.9) of course holds with ¢,(|¢[) and I, U (= I) replaced by
@;(D) and I, respectively. From this and (2.22) multiplied by N we obtain

0 0y
CAPulP+R) 257" [ Nulfdt+ [tog 21 [l lydt.

By taking a §; > 0 small enough, we have
(2.23) CUPulF +27°1Q — Hypul’) = 67 ul’.

Assume that # € C, with supp# C {| t| < 8} X {lx — z,| < §/10}. Sub-
stituting &, (AD, — &) h;(x — x,)u into (2.23), we have

07 1y AD, — &)ul’ < C (D, — E)Pul’ + | hyy(AD, — EDulf + Al ul?).
From this we have
(2.24) 5 N gsDul’ < CUAPulf + lul®,

if ¢;(&) is the same symbol as in (1.3). If P, = D, + ig, () H(H) B,(¢, x, D,) also
denote the microlocalized operator at o, = ((0, x,), (0, &)) € T*(R"™\ 0 with
éo = (&, {3{)), &y #* 0, then from estimates corresponding to (2.12) and (2.14) we
obtain

0 35,
@225)  CAPul+R) 207" [ lulfydt+10g 21" [ lluliyar.
-5y 0

From (2.25) we obtain (2.24) with ¢;(&) replaced by a suitable symbol ¢ ,(&) in
S(l)‘0 such that (,55 =1 in a small conic neighborhood of &, By means of the parti-
tion of unity on the unit sphere in R; we have

oy lulf < CcdPulf + o7 1A ).
Since for any & > 0 there exists a 6(¢)) > 0 such that
lA™wll, < ¢ llwll, for w € # with diam (supp w) < 5(¢’)

we have || # ||2 < C| Pu "2 if 0 is sufficiently small. Hence P*is locally solvable at
(0, z,). The local solvability of P* in the region {t # 0} is obvious because by
means of the similar way as in the derivation of (1.14) we have for any 0 > 0 and
some C; > 0

(2.26) C,(| Pull + | ul) = | Dul if suppuc {t| > 0).



LOCAL SOLVABILITY AND HYPOELLIPTICITY 169

The proof of Corollary is completed.

3. Proof of Theorem 3

Let t, = t,(1) be a positive such that @(t,) =log A for a small A > 0, which
is uniquely determined since it follows from (7) that @(#) is monotone for ¢ > 0.
By the first inequality of (8) and Taylor’s expansion we see that if £ > £,

Ql/(tl)

(3.1) () —log A = O'(1) (¢ — 1) + —5 = (t — 1)" (= F,(1).

If @”(¢,) < 0 then the equation
(3.2) F,0 = o) |

has two real roots on account of the second inequality of (8). If {, denotes a smal-
ler root then we have instead of (1.15)

| o) |” =0
(3.3) tz—tlsz—m‘tl—)szcltlllogxl” %,

In fact, the first inequality follows from the fact that
I=X>1-X it X=2|0"(@t)]||0¢) |"AF®))"<1.

The second inequality is a direct consequence of (7). Since f’(#) is increasing in
R, we have from (3.1)

(3.4)  f'DA = explloga|™ if t>t, for ¢, satisfying (3.3).

This is also true in the case where @”(¢,) = 0, if £, is chosen as the root of (3.2)
with F,(#) replaced by @' () (t — t).

Let 0, = ((0, x), (0, &) € T*(R"™H\0 with &= (0, &),]&]=1 and
let P, denote the similar microlocalized operator at p, as (1.1) for the operator P
of the form (6). Since we have

hs (x — z)aglz) fHOA < C if |t <t
by means of Poincaré’s inequality we get (instead of (2.5))
(3.5) ClPulf +R) =1t |ulf if suppuc {t|<t).

In view of (9) we have in place of (2.8) and (1.16)
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36) [Pulf= % (1Dl + @ (D, + Pul’ + (Vu, w) — CCW*|ulf + R)
if suppuC {t|=1t7/2},

where (1) =t (log| @(t,) )* and V, = V,(t, z,) = a(®)g(x,) f' () A~". Choos-
ing # > 0 such that 6, < < 1 we set p(4) by the same way as in Section 2. Let
N be the smallest integer such that 27" < 2|log 2|™p(2). Then we have still
(1.20). We define 7; and #; by the same way as in Section 2 with g, (t,) replaced
by a(t,). By means of (3.4) and (10) we have the similar formula as (1.22), that is,

(3.7) C,V,(t, x) = a(t)g(uyexp| o(t) |
>0 on {tl =) X (x| = pyt.

It follows from (3.3) that ¢, — t, < 2C,7y. By taking I,* equal to 4C, times dila-
tion of I; to the right direction we obtain (2.9) by the same way as in Section 1.
From (3.5) we get (2.10) with | log A |m replaced by tl_z. From those two estimates
we obtain (2.11) with | log A lm replaced by tl_z. In view of (1.20), we have, if A >
0 is sufficiently small,

(3.8) 12D ulP < C.A Pl + 272 — Hypul®
for u€ C,([—4d, 6,];SR)).

If o, = (0, 7, 0, &) € T*R"H\ 0 with & = (&,, &), & # 0 and if P, de-
notes the microlocalized operator of P at p, we obtain

(3.9) CIlPulP =0 | ul’if suppu < {|¢t| <&}

by the similar way as in the derivation of (2.12) and (2.13). From (3.8) and (3.9)
we see that P is locally solvable at (0, x,), similarly as in the proof of Corollary
of Theorem 2. The local solvablity of P* in the region {¢ # 0} is obvious since we
have the similar formula as (2.26).
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