
Y. Morimoto
Nagoya Math. J.
Vol. 139 (1995), 151-171

LOCAL SOLVABILITY AND HYPOELLIPTICITY FOR

PSEUDODIFFERENTIAL OPERATORS OF EGOROV TYPE

WITH INFINITE DEGENERACY

YOSHINORI MORIMOTO*

Dedicated to Professor Yoshio Kato on his 60th birthday

Introduction and results

Let P be a pseudodifferential operator of the form

(1) P = Dt + its(DXi+f(t)xϊ\Dx\) in RtxRn

x,

where s, b > 0 are even integers and fit) €= C is odd function with fit) > 0

it Φ 0). Here \ Dx\ = Σy= 1 DXj. We shall call P an operator of Egorov type be-

cause P with fit) — t , ik odd) is an important model of subelliptic operators

studied by Egorov [1] and Hόrmander [3], [4, Chapter 27]. Roughly speaking, any

subelliptic operator can be reduced to this operator or Mizohata one after several

steps of mίcrolocalization arguments. In this paper we shall study the hypoelliptic-

ity of P and the local solvability of adjoint operator P in the case where

fit) vanishes infinitely at the origin and moreover consider the case where ts and

xι are replaced by functions with zero of infinite order. Our result is not general

theory (see Theorems below), but there seems few literature that treats operators

of Egorov type with infinite degeneracy. In the preceding paper [11], the hypoellip-

ticity of P in case of either 5 = 0 or b = 0 was studied in a little more general

situation. It seems hard to consider the general situation corresponding to the case

of both s, b > 0. Lerner [7] recently has proved that L -a priori estimate can not

hold for some infinitely degenerate version of operator of Egorov type though it

satisfies iΨ) condition given by Nirenberg-Treves [13]. We remark that P satis-

fies iΨ) from the assumptions of s, b and fit). It is known by Moyer [12] (in two
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dimension case) and Hόrmander [4, Theorem 26.4.7] (in general case) that

Nίrenberg-Treves (30 condition is necessary for pseudodifferential operators of

principal type to be locally solvable. On the other hand, Lerner's example says

(W) is not sufficient for L local solvability. We hope the research in the present

paper might contribute to understanding the local solvability for operators of prin-

cipal type. About further historical remarks of operators of principal type and

subelliptic operators we refer to Hόrmander [4, Chapter 26, 27].

Let us state results, precisely.

THEOREM 1. Let P be the above operator of the form (1) with

(2) f(t) = f exp(- I σ\~*)dσ, K > 0.

Then for any ε > 0 and any compact set K CL Rtχ there exists a constant C = CεK

such that

(3) || (log A) 1/xu || + || (log A) 1+1/χ-£χ (ίOog A)1/κ) u || + || Dtu ||

<C(\\Pu\\ + \\u\\) for utΞ C0°°(i0,

where Λ2 = 2 + \ Dx | 2 and χ(t) e C°° satisfies χ(t) = 0 for t < 2 and χ(t) = 1

for t > 3. Therefore, adjoint operator P is locally solvable. Furthermore, if K < s + 1

then P is hypoelliptic.

A simple modification of the proof of Theorem 1 gives a slight generalization

of Theorem 1 as follows:

THEOREM 2. Let gu(t) = \ t | l l o β U i | V for v > 0. Let P be the operator of the form

(1) with f and x\ replaced by gv,(f) (0 < i/ < 1) and gA%ι) (»" > 0), that is,

(4) P = Dt + igu,(t) (DXι + f(t)gv,, ixx) I Dx I) in Rt x Rn

x.

Let f(t) be C — odd function and satisfy for some v0 > 0

( 5 ) I * Γ " r ° e x p ( - I tΓ") ^ f ' ( t ) < I ί | " ! l 0 8 " " " ° e x p ( - | t\~x), κ > 0

in a neighborhood of the origin. Assume that fit) is monotone in each half axis. Then

we have the estimate (3) whth \\ Dtu || in the left hand side replaced by || Dtχ (| Dt \/Λ)u \\,

that is,

(3)' || (log Λ)ι/Ku || + || (Iogyl)1 + 1 / κ- εχ(ί(logyl)1 / κ)^ || + || Dtχ(\ Dt \/Λ)u \\

< C(| |P«| | + ||tt||) for u(Ξ co°°(X).
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Hence adjoint operator P is locally solvable and moreover P is hypoelliptic.

The proof of Theorem 2 admits to treat the operator of principal type whose

imaginary part vanishes on the interval.

COROLLARY. Let P be the same operator as in Theorem 2 with gvXt) replaced by

H(t)gu,(t), where H(t) is Heaviside function. Then P is locally solvable.

By arranging proofs of Theorems 1 and 2 we obtain a further generalization

concerning the local solvability: Let P be a pseudodifferential operator of the form

(6) P = Dt + ia(t) (DXi + fiϋgix,) I Dx |) in Rt x Rn

χi

where /(0) = 0, and ait), git) and f'(f) are even C°°-functions, monotone in

each half axis, and they satisfy α(0) = g(0) = / '(0) = 0 and ait), git), fit) >

0 for t Φ 0. Setting Φ(f) = log fit) we assume that if t > 0 small

(7) CjΦ'it) > I Φit) Γ° for 3 θ0 > 0, 3 d > 0 ,

(8) tfT(ί) > 0, I Φ'(t) | 2 > 2 I Φ"{t) 11 Φ(t) Γ1 for 0 < 3 θ1 < θ0,

and moreover

(Oλ a'(f) ( log) Φ(2/) I)"2

 π . q Λ . .. , q r ^ n
(9) —Tjr < C2 7 for 0 < 3 θ2 < 1 and 3 C2 > 0,

(10) Cza(f)g{ta{t) I Φ(t) Γ 3 ) exp(| Φ(f) Γ1) > Γ21 Φ(t) \2Θ*

for 0 < 3 θ3 < θ0 ~ θ, and 3 C3 > 0.

THEOREM 3. Let P be the above operator of the form (6) satisfying conditions

(7)-(10). Then adjoint operator P is locally solvable.

It should be noted that the condition (7) forces f'(t) vanish infinitely at the

origin. If f(t) is of Theorem 1 and a(t) = gv,(t), g(xj = g^ixj for those of

Theorem 2, then all assumptions (7)-(10) of Theorem 3 are satisfied. Though

assumptions (7)-(10) are rather complicated, they are fulfilled by other many func-

tions with zero of infinite order at the origin, for example,

fit) = exp(-(expUΓκ i)), ait) = exp(- | tΓ2),

gixj = exp(— I xγ |~
κ3) if κx > κ2 > 0 and κ3 > 0,

where we can take θ0 = 1, θγ arbitrarily close to 1, θ2 > fC2/κι and θ3 < θι/κ3.
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1. Proof of Theorem 1

Let pit, x, τ, ξ) denote the symbol of P and let C h a r P = {it, x, r, ξ) e

T iRn ) \ θ \p— 0}. The local solvability of P and the hypoellipticity of P are

obvious in the region U Φ 0}. In fact, the Poisson bracket {Re^>, Imp) does not

vanish on Char P if xx Φ 0 and t Φ 0. When xx = 0, H^\ Rep Φ 0 on Char P

Π {t Φ 0}, where Hq denotes the Hamilton vector field of q. By means of

Egorov-Hόrmander theorem we have subelliptic estimate there. Furthermore, sub-

elliptic estimate holds microlocally at the point ((0, xQ), (r0, ξQl, ξp) e

T*CRW + 1)\O with (r0, ξ01) Φ (0, 0) since H^ePlmp Φ 0 if ξ01 Φ 0 and t = 0.

Consequently, it suffices to prove the theorem microlocally at p0 — ((0, x0), (0,

ξ0)) e Γ * ( β w + 1 ) \ 0 with ξ0 = (0, &), I ft I = 1. In order to get a microlocal ver-

sion of the estimate (3) at p0, we define a microlocalized operator of P at p0 as fol-

lows: Let hix) be a CO°°(/ΪM) function such that 0 < h < 1, Ate) = 1 for U | <

1/5 and Ate) = 0 for \x\ > 7/24. For a δ > 0 we set hδix) = hix/S) and

Hδix, ξ λ) = hδix — xQ)hδiλξ — ξQ), where 0 < λ < 1 is a parameter. For a

sufficiently small δx > 0 and a parameter 0 < Λ ^ 1 we set

Pλ = Dt + ihδiix - xo)tsiDXi + fiΰxl I Dx \)hδιiλDx - ξ0)

D + i t s B i t D )

PROPOSITION 1.1. Let Pλ be the above operator with fit) given in (2). // δx > 0 is

small enough then for any 0 < δ < c^/lOO and any ε > 0 there exists a constant

C = Cεδ such that for any 0 < λ < 1

|| I log λ \uκu I2 + || I log λ ri/κ-sχ (2t I log λ Γ)u f + II Dtu f

(i.2) £ c(|| /»,«IΓ + r 2 II (i - H20δ)u f + ii«if)

for u^C a-δ^δJ MRO).

Admitting this proposition for a while, we shall prove Theorem 1. Let u e

Cζ with supp u c {| 11 <[ δj and substitute hδ(λDx — ξo)hδ(x — xo)u into (1.2).

Since Λ~ is equivalent to | ξ \ on supp h(λξ — ξ0) we have

|| hδ(λDx — £0) (\ogΛ)ι/κhδ(x — xo)u f

+ || hδ{λDx - ξ0){\ogΛΫ+Vχ-εχ{t{\ogΛ)ι/x)hδ(x - xo)u f
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< C(\\ hδ(λDx - ξo)Pu f + II h2δUDx - ξo)u f + λ\\u |Γ).

Integrate λ from 0 to 1 after dividing both sides by λ. Then by means of [9, Prop-

osition 1.7] we have

|| φδ{Dx) (log Λ)wxhδ(x - xo)uf +

(1 •3) || 0,(DJ (log A) 1+1/κ'εχ(tilogΛ)ι/x)hδ(x - xo)u f +

|| φδ{Dx)Ώthδ{x - xo)u |Γ < C(||Pu f + || u | |2),

where φδ(ζ) is a suitable symbol in 5 1 0 such that ψδ = 1 in a small conic neigh-

borhood of ζ0 (see [9; Definition 1.6]). By using the usual partition of unity in the

cotangent space, we obtain the estimate (3) because microlocal subelliptic estimates

hold in the region except for pQ = ((0, x0), (0,0, ξo0) e Γ * ( β w + 1 ) \ θ . The local

solvability of P is a direct consequence of (3). In fact, noting the Poincare ine-

quality

(1.4) || u || < δ || Dtu || if diam (supp u) < <5,

we have || u || < C || Pu || if supp u is sufficiently small. For the proof of hypoellip-

ticity of P in the case of 0 < K < s + 1, it suffices to show the microhypoelliptic-

ity of P at p0, that is,

(1.5) p 0 £ WF (Pu) implies p0 <έ WF (u) for V M e ® /(Λ"+ 1).

Since (1 + 2ε)ιc < s + 1 for sufficiently small ε > 0 it follows from (1.2) that if

(1.6) < C(\\ Pλu ||2 + λ~21| (1 - H20δ)u ||2 + λ \\u

for utΞ C;([-δv δJ

By means of this estimate we can easily see (1.5) if we employ [11, Theorem 1] as

in the proof of [11, Theorem 2]. Indeed, we may assume x0 = 0 by the translation

after the estimate (1.6) was obtained. If we set Γ= Char P Π {t = 0} then the

hypotheses of [11, Theorem 1] are fulfilled for <p(x, ξ) = (1 — hsδ(x)) + (1 —

hbδ(λξ - ξ0)) and a(t, xy ξ) = ts. The detail is left to the reader.

We shall prove Proposition 1.1. It suffices to show (1.2) for a sufficiently

small λ > 0. If tλ = \ log λ \~1/κ then ff(t^)λ~ι = 1. For a fixed x0 there exists a

constant C > 0 such that
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(1.7) hδi(x - xo)tsx? I f(t) U" 1 < C if \t I < tλ

If supp u c {| 11 < tj then we have

C(|| Pλu |Γ + #,) > || (Dt + ί ί ^ J t t ||2,

where Rλ = λ~ \(1 — H20^u\ + || u | | . Here and in what follows we denote

different positive constants independent of λ by the same notation C. Since we

have the maximal hypoelliptic estimate

(1.8) C\\ (Dt + itsDx) u f > || Dtu ||2 + || tsDxu f,

it follows from the Poincare inequality that

(1.9) C(\\ Pλu f + Rλ) > I log λ Γ* || u |f + \\Dtu f if supp u c {| t \ < tx).

Note that

\\Pλuf = \\Dtu\f + \\t%u\?

+ 2Re(sts~1BAu, u) + 2Re{VxHδλ \ Dx \ u, u),

where

(1.11) Vλ = Vλ(t, x,) = tsχjf{t)λ~\

Since λ \ ξ\ > 1/2 on supp Hδχ(x, ξ λ) it follows from the Garding inequality that

(1.12) 2Re(Vλλ\Dx\Hδι(x, Dx;λ)u, u) > (Vλu, u) - CRλ.

If supp u c {| 11 > tλ/2) then we have

(1.13) I {sts~ιBλuy u) I < j || ίsJ5,« |Γ + C I log ^ | 2 / κ || « f.

It follows from (1.10), (1.12) and (1.13) that

II Pλu II2 > \ (II Dtu II2 + II tsBλu II2 + ( V > , « ) ) - C(| log λ |2/κ II»II2 + Rλ)
(1.14) z

if suppw d {| ί| > tx/2).

If I ί| < <?! for δ : small enough then it follows from the implicit function theorem

that there exist real symbols 0 Φ e(t, x, ξ) ^ S 1 0 and r(t, x, ξ') ^ S1>0 in a

small conic neighborhood ΓQ of (xQ, ξ0) such that

ϊ\ξ\ = e(t,x9ξ)(ξ1 + r(t,x,ξ')) in ( U U δ J x Γ o .

Choosing a sufficiently small <50 > 0 again, we have for constants c0 > 0 and
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C > 0 independent of λ

|| Bλu |f > c01| (DXi + f(ί, x, Zλ^))« IΓ ~ Ci?,

for w G Co°°([— (5X, δ j

™(Rn7 )where r = rhδ (x — xo)hδ (λξ' — ξ'o) and h(x') e C™(Rn

χ7 ) is a similar function

|| P,u |Γ > co(|| Dtu |Γ + II ts(DXi + r(t, x, Dx,))uf + {Vλu, u))

as

(1.16) -

if

Here and in what follows we denote different small positive constants independent

of λ by the same notation cQ.

In order to get (1.2) we shall see together (1.9) and (1.16) as gaining the posi-

tivity from the first three terms of the right hand side of (1.16). To this end we

have to consider the behavior of the potential Vλ near t = tx and a special decom-

position of the neighborhood of t = tv For an / > 0 we set

(117) u-u(λ)
(1.17) μ-μW-

where we have set a{λ) = (log | log λ | ) ' . If λ > 0 is small then μ(λ) < 1 /2. Set-

ting t2 = ((1 + μ)/\ log λ \)1/x we have

= eχPl—ΓT7.—J

Consequently we have

(1.18) f(t)λ >\logλ\ if \t\ > t2.

Since (1 + μ) * = 1 + μ//c + O(^ ) we have

(1.19) *2 - Ί = 0(1 logλ I "'-""(log I log^ | ) m ) ,

where i? = 0(/) means C < / ? / / < C for some constant C > 0 independent of

Λ. Set r0 = ίx/2 and ^ = T -i/2 for = 1,2,3, . . . inductively. Let N be the

smallest integer such that γN < 2(t2 — tj. It follows from (1.19) that

(1.20) N= O(log|logΛ|).
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We take a convention that yj = γN for j > N + 1. Setting tQ = tγ — γQ we consid-

er the following divisions of intervals [t0, tx] and [tlt °°) : Put 7X = [t0, t0 + γj

and put IJ+ί = [fj9 γj+ι] with f; = t0 + Σfk=1 Tk for = 1,2,3, We have

[tQ, ί 1 ] = / 1 U U / J V U IN+1 and [tv oo) = U /,.

Set

(i.2i) ^ = *ίr, = I log λ Γ/Xrj

for j = 1,. . ., TV and let μ̂  = μ^ for > Λ̂  + 1. If / is large enough then it fol-

lows from (1.11) and (1.18) that

(1.22) Vλ(t, xλ) >γ~2 on ί\t\ > t2) x {\x1 \ > μ).

Let Qj denote a rectangle 7; X / ; in RtιXl, where / ; = [.— μjt μ^\. Let 7; denote 4

times dilation of 7; , to the right direction, that is, Ij = [fj^if fj + 37 ; ] in case of./

= 1 , . . . , N + 2. We take a convention that I* = Ij if > N + 3. We denote by

Q* a rectangle //* x [- 2μi9 2μJ for; = 1,2,3,....

LEMMA 1.2. If #£' and \\ W^, denote a Hubert space L (JB^ ) and its norm, re-

spectively, then there exist positive constants c0 and C such that

f || Dtu I&, + t2s || (Dx +r)u f#, + Vλ(t, xj || u f^dtdx,
JQ*

 1

( L 2 3 ) > c0γ~2 f || u %rdtdxι - C f U " 2 II (1 - H20δ)u Wlf, + || u \L,)dtdxλ
JQj JQf

for u^ C\Rt x RXi;T),

where Hδ = Hδ{x\ Dx, λ) = h{(x' - x o 0 ^

Proof Regarding ί as a parameter, we take a canonical transformation Φt

keeping xx variable such that

Let U be an elliptic Fourier integral operator in Rx, realizing the canonical

transformation Φt such that (U(DX + r) — Dx U)ίϊ 40δ(x\ Dx, λ) belongs to

Op(S°10) uniformly with respect to λ > 0. Note that Hm(Φt(x, ξ) λ) = 1 on

supp H2Qδ(x', ξ' λ) if I 11, I xι I < δv where Φf denotes the projection of Φt into

Γ (RX7 ). For the sake of simplicity we denote xx variable by y until the end of

the proof of this lemma. If u = U H40δu and if \ 11, | y \ < δx then
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\ \ ( y ( , y , , x))\fχ

> c0 II Dfi fr - C CΓ2 II (1 - Hm)u \fr + || u | |^) for u e X'.

Furthermore, if | /1, \ y\ ^ <?i then there exists a Cx > 0 such that

c; 1 1 |«I&, < || a f*. + II ( l - # 2 0 5 )w IGT + /i IU fe-
< d II u fχ, for M 6= 3Γ.

We use the following elementary inequality given in [2; p. 148] (see also [10; Lem-

ma 1.1]): If / i s an interval in Rt then

f\ Dtυ \2dt > c0

 ( ώ ^ ° . J ) f I v(t) - vϋΠ Utdt' for υ e

where | / | = diam / denotes the length of /. The absolute value | | can be re-

placed by the norm || | | ^ . Substitute υ(t) = v(t, y) G Cι(Rt x Ry 2ί?0 and inte-

grate with respect to y on [— 2γjf 2γ}]. Since the volume | Q; | of Qy is equal to

| | | / y | = 8 | Qjl we have

Γ II Z)f«(ί, y) f^dtdy > c0 Λfj f || u(t9 y) - u(f, y) f^dtdydtrdyf.

Similarly, we have

- 2

Γ ί2s II Dfia, y) t'dtdy > c0 A j f (ΐ)2S II tf(f, y) - ώ(f, »0 %,dtdydtdy'.

Obviously we have

Γ Vλa, y) II «(ί, ») ζrdtdy = i - i j Γ F,(f, »0 II wίί', 2/0 f^dtdydt'dy'.
jQf I Vj I JQfxQf

Note that the right hand sides of those formula are positive. If Q; = Qj Π {| t \ > t2}

x {| xγ I > ^;} it follows from (1.21) and (1.22) that

+ 2Q II βίf, ») - u(tr, yr) 11̂  + 2Cf II «(f, 2/0 f^

* c° Ten ί { H M ( ί - 2/} II 2*- / 2 ~ II u i r > y) f* + c i H

- 2Q || «(f, 2/0 |gp, + 2C\ || w(f, i/O %λdtdydt'dy',



160 YOSHINORI MORIMOTO

where Cx is the constant in (1.25). Since | Q; | / | Q; | > 1, we have by (1.25)

/ II Dtu fx, + t2s || Dfi If*, + Vλ(t, y) || u fr

> c0 r;
2 f || u(t, y) f^dtdy - Cγ'2 ( Γ || (1 - H20δ)u(t, y) fχ, + λ || u(t, y) ξ^dtdy.

JQ. \JQ*

From this and (1.24) we obtain the desired estimate (1.23). The proof of Lemma

1.2 is completed.

Let ίt and || | |^ denote a Hubert space L (R") and its norm, respectively. By

the similar way as in the proof of Lemma 1.2, it follows from (1.22) that

(1.26)
Dtu fM, c0Ϊ;

2 f II u fπ

for u e C\Rt X) with supp u Π {\x, \ < μ) = 0 .

By (1.23) and (1.26) we have

f || Dtu |gp + t2s || (Z) + r(t, x, Dx,))u |gp + (Vλu, u)xdt
Jif

d 2 7 ) > c0 γ~2 [ || u \yt - C jf U'2 II (1 - H2Ju fx + II u fjdt

for u^C\Rt;H).

Let 0(f) e C~ be a function such that 0 < φ < 1, 0 ( 0 = 0 for

0, (pit) = 1 for ί > 1 and I φ'(t) \ < 2. Setting

Φ((t - fi-
(1.28) φλ(t) =

then we have for j = 1 , . . . , N

(1-29) ]-ΞκΓ-

if t e Ij

if t<tQ

if t > f,

= 1, .,

(1.30) I φ\(jt) I < 4(r ; iV) ι Ίί t<Ξ /.,

(1.31) I (<Jφλ(t))' I < 4(γjyfNJ)~ if t & Ij.

Assume u ^ C™([— δlf δj ώ(Rn

χ)) and substitute yjNφλ(f) u into (1.16). Then
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we have with suitable positive constants C, Clf C2 and c0

CN(\\Pλuf + Rλ)

> c0N{\\^Dtuf + | | t s ^ ( D X i + r)uf + (ψλVλu, «)}

- CXN|| LD,, 4ψχ\U f ~ C2NI logλ \2/x |

= Ωι-Ω2- Ω3.

Since /,* = J, for j > N+ 2 it follows from (1.29) that

CΩX > Σ \\Dtu\t + t2s\\ (Dx + r)u\t + (Vλu, u)*dt
j=2 Jlf

(1.33) + Σ f ||Dtu fx + t2s|| (Dx + r)u\t + (Vλu, u)πdt

> Σ n I ll«lfeΛ+ ΪN I \\ufπdt- CNRλ.

Here we have used (1.27) in deriving the last inequality. By means of (1.31) we

obtain

(1.34) fl2<CΣ^ [\\u\Ldt

It follows from (1.29) that

(1.35) Ω3< C\logλ\2/κΓΣj f \\ufχdt + N[ \\ufxdt).
7 = 1 t \ h

There exists an integer j 0 independent of λ such that

(1.36) 2C\JJ- + (min {j, M) \ log λ | 2 / j < γ'2 if > j 0 .

In view of (1.36), it follows from (1.32)-(1.35) that

CN(\\Pxu |f + Rλ) > CO{N\\4ψJΐ)Dtu |f

N+i r r°°a oπ\ i v ^ — 2 / M i|2 j , i —2 1 | | | |2

•37) + Σ 7; \\u\\πdt+γN I llttll̂ fl
;=2 Jij Jt1

C SΓΛ i t -> |2/κ / | | ||2 , .
la log/ί I j \\u\udt.

Substitute y/Nφλ(— t) u into (1.16) similarly. If — / ; denotes the symmetric inter-
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val of I) with respect to the origin, then we have

CJV(I| Pλu |Γ + Rλ) > CO{N\\ 4ψ^Γt\)Dtu f

(1.38) + NΣ γ~2 f || u \fχdt + γ~2 f || u
j=2 JIjU(-Ij) J\t\>t1

C
SΓ* \ % i |2/κ / II π2 i,

Σ I log λ I I || u \\χdt.

Substitute (1 — φx(\ t\))u into (1.9). Then

C(|| Pλu f + Rλ) > || (1 - ψλ{\t\))D,u |Γ

+ | log/lΓ
( L 3 9 ) c -

because | log λ \ * is much bigger than γϊ /N and it follows from (1.30) that

II wt, ΨΛ\t\mu r < ~ ΣT;
2f utdt.

N ;=i Jiji)(-ij)

Note that

2 1 -t i |2/κ || / i /I j . l\\ l|2 v. Λ I Λ -i |2/κ / II ||2 j ,

I logΛ I II (1 - ^ ( U | ) ) w | | > Σ |log>ί I I \\u\\χdt

(1.40)

-i-

In view of (1.40), it follows from (1.38) and (1.39) multiplied by TV that

CN(\\ Pλu f + Rλ) ^N || Dtu |Γ + N £™m | log λ \2/x \\ u \\^dt
(1.41)

+ Σ rj2 ί II u f%dt + r~2 I || u %dt
ί=\ JIiΌ(-Il)

 J]t\>t1

because (1 - φλ(\ t\)Ϋ + φt(\ t\) > 1/2. Here [N/2] is the largest integer

smaller than N/2.

Dividing both sides by N we obtain (1.2) in view of (1.20) and (1.19) because

γ~2 > N\ logλ Γ κ if j >[N/2] + 1.
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2. Proofs of Theorem 2 and Corollary

Let p0 = ((0, x 0), (0, ξ0)) e Γ*(Λ*+ 1)\0 with £0 = (0, fo0, | % | = 1 and

let P^ be the same microlocalized operator of (1.1) with t and xγ replaced by

gvr(f) and gvrf(xx), respectively. By the almost same way as in the preceding sec-

tion, we shall prove (1.2) with the third term on the left hand side dropped, that

is,

|| I log λ Γu ||2 + 11 log λ ri/κ-°χ(2t I log λ \uκ)u II2

(2.1) < C(|| Pλu II2 + λ~2 II ( l - H2Ju II2 + II u II2)

for « e c o " ( [ - δ l f δJ ΛiR")).

If t3 = ((1 - μ)/\ log/i \Ϋ/K with μ = μU) in (1.17) and if / is larger than v0

then it follows from (5) and the monotoness of/' that

e x p ( - I ί Γ + I log \t\ Γ + 1 + I log/! I)

a(X)

< ( l o g U | ) - α U ) / 2 if \t\<t3.

Instead of (1.7) we have

(2.2) hδi(x - x,)gv,(f)gAxι)f(t)λ~l ^C if I ί I < ί3.

If supp u c {| t\ < t3} then we have by (2.2)

(2.3) C(|| Pλu I2 + Rλ) > || (A + igv,(t)Bλ)u ||2,

where 5 ^ = Dxhδι(λDχ— ξ0). By using the Nirenberg-Treves estimate (see [4;

Section 26.8]) we have the following lemma given by Lerner [6] (see also [5; Sec-

tion 2]):

LEMMA 2.1. There exists a δ' > 0 independent of λ > 0 such that for any

u(t) e Cl(Rt\M) we have

(2.4) 2 J || CD, + igv,(t)Bλ)u(t) \\#dt > sup || w(ί) \\# if supp u c {| t \ < δ'}.

Since Bλ is independent of t the condition (3.1) of [11] is fulfilled trivially.

Hence the proof of this lemma is the same as that of the lemma in [11]. By means

of the Schwartz inequality and the Poincare one it follows from (2.3) and (2.4) that
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(2.5) C(\\ Pλu If + Rλ) > I log λ ΓΊI u If if suppwc {|/| < t3}.

Noting that | g'v,(t) \ < —rγ\— | log | t \ f \ gv,{t) | we have instead of (1.14)

(2.6) || Pλu f > \ (|| Dtu f + || g,WBλu |f + (Vλu, u))

- C(ζ(λ)2\\uf + Rλ) if s u p p w c {\t\ > tλ/2\,

where ζ(/0 = | log λ |1 / κ(log | log λ ψ and the formula (1.11) is replaced by

(2.7) vλ = vλ(t, xx) = gAt)gAχχ)f'«)λ~ι.

Since f is replaced by gvr(t) we have in place of (1.16)

|| Pλu IP > cod Dtu IP + || gv,(t) (DXi + f(t, x, Dx,))u IP + (Vλu, u))

(2.8) -C(ζω2\\u\f + Rλ)

if s u p p w c {δ1 > \t\ >tλ/2}.

Choosing a positive θ satisfying 1/ < θ < 1 we set p(λ) = (log | log λ \Ϋ\ We

need replace the definition of γ0 in Section 1 by γ0 = tλ/p(λ). We set jj for =

1,2,3,... similarly as in Section 1. Set μ ; = g^it^jj = | log λ Γ°o g logλ} / κ γj for

j — 1,..., N instead of (1.21) and μj = μN for > N + 1. If / is larger than

(i/ + l)( i/ ' + 1) then we have (1.22) in view of (2.7) because it follows from (5)

and the monotoness of / ' that

(t)λ > I log/i I if \ t\ > t2.

On account of (1.22), Lemma 1.2 still holds with the factor t s of (1.23) replaced

by gj/it) . From (1.26) we have (1.27) with the same modification. Substituting

yJNφλ{t) u into (2.8) we have (1.32) with factors t s and | log λ \ * replaced by

gvr(t) and ζ(/t) , respectively. By the same exchange, all formulae (1.33)-(1.37)

still hold. In particular, (1.36) is valid on account of the factor p(λ) included in

γ~ since 1/ < θ. Hence we have in place of (1.38)

CN(\\ Pλu IP + Rλ) > CO{N I

N+i

(2.9) + Σ r ; J W t T N ]
j=2 JIJU(-IJ) J\t\>t1

-CΣζU)2f Wuf^dt.
j = l JljUi-Ij)

B e c a u s e of tί — γN < t3 w e c a n s u b s t i t u t e ( 1 — φλ{\ t\))u i n t o (2 .5) . H e n c e w e
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have instead of (1.39)

C(|| Pλu f + Rλ)>\ log λ Γ II (1 ~φλ(\t I)) u f
(2.10) n „

because | logyί | * is much bigger than γ1 /N in spite of the factor p{λ) in-

cluded in ft" . If we choose a positive ω > 1 such that 2 > ω > 20 ( > 2i/) we

have instead of (1.40)

Nω\iogλ\2/x\\a-φλ(\t\))uf>Σζω2 f IU&Λ
;=1 Jl Ui-Ij) " J-t0

In view of this, it follows from (2.9) and (2.10) multiplied by Nω that

> Nω ΓN/2] I log λ Γ || u \tdt + NΣ γ~2 f || u f^dt + γ~2 f \\ u\Ldt
J-r[N/2] j=ι Jiiυ(~ij)

 J\t\>t1

because Nω /N is much smaller than 1. Dividing both sides by Nω we obtain

(2.1).

Let ft = ((0, x0), (0, f o)) e Γ * ( β w + 1 ) \ θ with | 0 = (?0 1, | p , ?01 Φ 0 and

let Pλ — Dt + igv,(t)Bλ(t, xy Dx) also denote the microlocalized operator at pλ in

this paragraph. Since Bλ(t, x, ξ) has a definite sign if δλ is small enough, similar-

ly as in Lemma 2.1 we have for any u(t) ^ C0(Rt X)

(2.12) 2 j || (Z)f -f igv,(t)Bλ)u(i) \\#dt > sup || «(ί) | |^ if supp it c {| ί | < 3'}.

By means of Schwartz's inequality and Poincare's one it follows from (2.12) that

(2.13) C\\Pλu\\2>\\ogλ\2+2ε\\u\\2 if supp w e {|f| < 2 | log^l" 1"'}.

N o t e t h a t gv,(t)Bλ(t, x y ξ) > λ~3/4Hδi(xf ξ λ) if \t\ > \ logλ I " 1 " ' . U s i n g t h e

similar method as in the proof of Lemma 1.2 we have by (2.6) with ζ(λ) and ΐί/2

replaced by | log λ | 1 + ε(log | log λ \Y and | log λ \~ι~ε

2C(|| Pxu f + RJ > CCII Dtu ||2 + || gAt)Bλu f) + Rλ)

II2 i f

If xAt) = χ ( 2 I 111 log λ Γ+ε) then | χλ(t)ω \ < C \ log λ Γ + ε ) and it follows from

(2.14) that
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^ Λ3/2C{|| [Pλ, χ'Ju |f + I log λ | 2 + 2 ε ( | | Pλu ||2 + Rλ)}.

Since a similar estimate holds with χλ replaced by χ'λ | log λ | e, in view of u =

χλu + (1 — χλ), it follows from (2.14) and (2.13) we have

I log λ\2+u\\u |f < C(\\ Pλu |Γ + Rλ)
(2.15)

for u^Cϊtt-δ^δJ ΛiR")).

On account of microlocal estimates (2.1) and (2.15) we have (3)' for u ̂  Co

whose support is contained in a sufficiently small neighborhood of (0, x0). From

this estimate we see P is locally solvable at (0, x0) because for any εf > 0 there

exists a δ(ε') > 0 such that

(2.16) || u || < ε' || (log(| A I + Λ))1/κw || for diam (supp u) < δ(εθ.

The Poincare type estimate (2.16) can be easily seen by the similar way as in the

proof of [8; Lemma 3.3].

Consider the microlocalized operator Pλ at p2 — ((ίo> «̂ o)» (0, ξ0)) ^

T*(/e w + 1 )\0 with /Ό ̂  0 and ξ0 = (0, foθ, 1^1 = l Then we have instead of

(2.6)

(2.17) llP^f > \ (||Dtu\f + llftulΓ + (Vλu, u)) - CRλ

if supp u c {| / — f01 < δ j .

Note that

Vi > ^ " 1 / 2 if | f - ί o l > l « o l / 2 and | ̂  | > | logλ I" 1"' .

If / = [— I log λ \~l~\ I logyί I"1"5] and / * denotes twice dilation of / then by the

similar way as in the proof of Lemma 1.2 we have uniformly for t ^ {\ t — t0 \

C (jf̂  || Bλu fr + Vλ(t, xλ) || u frdx

c01logλι2+2ε f i i u t π , - c f a~2ιι(i-H2JUii^ + ι ι « p ^

for u^C\RXχ\T).

Hence we have

(2.18) I log/i | 2 + 2 ε || u |f < C ( | | ^ M |f + (V>, M) + i?,)

< C(|| P,M |f + /?,) if supp u c {| t - t01 < δj.
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From this we have

(2.19) || (logΛΫ+εu ||2 + || Dtχ(\ Dt \ /Λ)u f < C(|| Pu f
for u ^ C~ with supp u contained in a sufficiently small neighborhood of {t0,

x0) with t0 Φ 0 since (2.15) holds even if pγ = ((ί0> xj, (0, | 0 ) ) e Γ * ( / O \ θ

with /0 =£ 0 and | 0 = (ξoί, ξ0) for ξ01 =£ 0. The local solvability of P * in the re-

gion {t Φ 0} is a direct consequence of (2.19) and the similar formula as (2.16).

By means of [8; Theorem 1] it follows from (2.19) that P is microhypoelliptic

outside of Γ = C h a r P Π {t = 0}. Using [11; Theorem 1] we can easily see the

microhypoellipticity of P at p0 because from (2.1) we obtain (1.6) with t replaced

by gU'(f). The microhypoellipticity at p1 also follows from (2.15). Now the proof of

Theorem 2 is completed.

We shall prove Corollary. Let po= ((0, x0), (0, ξ0)) e Γ*CR w + 1 )\0 with

ξ0 = (0, £Q), I ξ'o I = 1 and let Pλ be the microlocalized operator at p0 in the begin-

ning of this section if t > 0 and Pλ = Dt if t > 0. If u(t) e CoίΛ, # ) , in view of

(2.2) we have for t < t3

(2.3/ C(\\Pλu(t) IU + ^ W ) ^ II (A + igAt)H(t)Bλ)u(t) | |*,

where R2(f) = λ || (1 — H2QΛx, Dr; λ))u(t) |L + u(t) L Since (2.4) still

holds with gv,(t) replaced by gv,(t)H(() we have

(2.20) C I (||P^w(ί) IU + Rλ(t))dt > sup || u{t) \\^ for M e C Q ( [ - δ', ί3] 3!f).

If δx < δf then by the Schwartz inequality we have

(2.21) C (δ1 f || Pλu(t) \Ldt + I log λ \~1/x f ' || Pλu(t) \tdt + δ, f * Rλ{t)2dt)

> δϊ I II w(0 ll^dί + I log λ\ J II w(β ll^dί

if supp w c: {— ^! < f < t3}.

Assume u ^ C™([— δlf δj ^5(iί x)) and substitute (1 — φλ(f)) into (2.21). Then

we have instead of (2.10)

CI log λ | 1 / κ ( | | Pλu IΓ + Rλ) > δΓ11 log λ |1/κ J^] II u fxdt
(2.22)

I l2 / κ ίh II
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C » -2

Note that (2.9) of course holds with ^ ( | / | ) a n d 7; U (—/,) replaced by

φλ(t) and /,, respectively. From this and (2.22) multiplied by Nω we obtain

C (|| Pλu |Γ + Rλ) > δ'1 f° || u |gfΛ + I log λ |1/κ Γ'11| u fπdt.

By taking a δx > 0 small enough, we have

(2.23) C (|| Pλu If + r 2 II ( l - # 2 M ) u If) > δΓ1 II u IΓ.

Assume that K e Co°° with supp « c {| ί | < δ j x {|x - χ01 < δ/10}. Sub-

stituting hδ(λDx — ξo)hδ(x — xo)w into (2.23), we have

δ,"11| hδ(λDx - ξo)u |Γ < C( | | hδ(λDx - ξJPu II2 + II h2δ{λDx - ξo)u f + λ\\u f ) .

From this we have

(2.24) δΓ1 II φδ(Dx)u |Γ < C(|| Pu |Γ + || u H2),

if 0δ(ξ) is the same symbol as in (1.3). If Pλ = Dt + igv,(t)H(t)Bλ(t, xy Dx) also

denote the microlocalized operator at px = ((0, x0), (0, | 0 ) ) e Γ ( β w + 1 ) \ 0 with

io ~ (?oi» io)> ?oi ^ 0' t n e n ^ r o m estimates corresponding to (2.12) and (2.14) we

obtain

(2.25) C (I Pλu f + Rx) > δ;1 Γ || u \\2

xdt + I log λ |1+e / S l I u \fχdt.

From (2.25) we obtain (2.24) with φδ(ξ) replaced by a suitable symbol φδ(ξ) in

S1>0 such that φδ = 1 in a small conic neighborhood of f0. By means of the parti-

tion of unity on the unit sphere in R% we have

Since for any ε' > 0 there exists a δ(εθ > 0 such that

|| Λ~ w \\χ < εr || w \M for w ^ $ with diam (supp w) < δ(εθ

we have || u || < C || Pu || if δ is sufficiently small. Hence P is locally solvable at

(0, xQ). The local solvability of P in the region it Φ 0} is obvious because by

means of the similar way as in the derivation of (1.14) we have for any δ > 0 and

some Cδ > 0

(2.26) C,( | |P« | | + IUII) > ||D,w|| if suppwcz {|ί | > δ}.
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The proof of Corollary is completed.

3. Proof of Theorem 3

Let t1 = t^λ) be a positive such that Φ(^) = logλ for a small λ > 0, which

is uniquely determined since it follows from (7) that Φ(t) is monotone for t > 0,

By the first inequality of (8) and Taylor's expansion we see that if t > tx

(3.1) Φ(t) -logλ> Φ'itJit-tJ +^γ^~(t-t1)
2(=Fλ(t)).

If Φ"(t^ < 0 then the equation

(3.2) Fλ(t) = I Φ(ίx) Γ
1

has two real roots on account of the second inequality of (8). If t2 denotes a smal-

ler root then we have instead of (1.15)

(3.3) t2 - tλ < 2 φ){ij < 2CJ, I log λ Γ1"'0.

In fact, the first inequality follows from the fact that

/ Γ ^ T > 1 - X if X = 2 I Φr\t,) 11 Φit,) Γ'ΛΦ'^))2 < 1.

The second inequality is a direct consequence of (7). Since fit) is increasing in

R+ we have from (3.1)

(3.4) fr(t)λ~ι > exp I log λ Γ1 if t > t2 for t2 satisfying (3.3).

This is also true in the case where Φ"(t^) > 0, if t2 is chosen as the root of (3.2)

with Fλ(t) replaced by Φ'itjit - tj.

Let p0 = ((0, xo)y (0, ξ0)) e Γ * ( β w + 1 ) \ θ with ξ0 = (0, ξ$, \ξ'0\ = l and

let Pλ denote the similar microlocalized operator at p0 as (1.1) for the operator P

of the form (6). Since we have

hδi(x - x^a(0g^f{fiλ~ι <C if \t\<tx

by means of Poincare's inequality we get (instead of (2.5))

(3.5) C{\Pλuf + Rλ) > \txU) ΓΊUIΓ if suppwc {|ί| < tj.

In view of (9) we have in place of (2.8) and (1.16)
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(3.6) \\Pλuf^(lDtu\f + \\aWU)Xl + r)uT+(Vλu, «)) - C(ζ(λ)2\\uf + Rλ)

if supple {| t\ > tι/2)9

where ζU) = t?(\og\ Φ(tx) \Ϋ2 and Vλ = 7Λ(/, ^ ) - a{t)g(xx)f'(t)λ~\ Choos-

ing 6 > 0 such that ί2 < S < 1 we set p(/ί) by the same way as in Section 2. Let

N be the smallest integer such that 2" < 2 | log Λ |~ 3p(/ί). Then we have still

(1.20). We define 7) and ̂  by the same way as in Section 2 with gvr(tλ) replaced

by a(tx). By means of (3.4) and (10) we have the similar formula as (1.22), that is,

(3.7) C3Vλ(t, xγ) > ai

>γ~2 on i\t\>t2} x ί k l > ^ } .

It follows from (3.3) that t2 — tx< 2C1γN. By taking /; equal to 4CX times dila-

tion of / ; to the right direction we obtain (2.9) by the same way as in Section 1.

From (3.5) we get (2.10) with | log λ \ * replaced by tϊ . From those two estimates

we obtain (2.11) with | log λ \ * replaced by t[ . In view of (1.20), we have, if λ >

0 is sufficiently small,

(3.8) 11 ς\λ)u if < c.(iι pλu 112 + λ~211 ci - H2JU\\ 2)

for w e Cζ([-δv δ j Λ$ («")).

If px = ((0, x0), (0, | 0 )) e Γ*(β B + 1 )\0 with | 0 = (ξ01, ~ξ0), ξm Φ 0 and if Pλ de-

notes the microlocalized operator of P at pγ we obtain

(3.9) CII Pλu f > δ'~2 II u f if supp u c {| ί | < δ')

by the similar way as in the derivation of (2.12) and (2.13). From (3.8) and (3.9)

we see that P is locally solvable at (0, x0), similarly as in the proof of Corollary

of Theorem 2. The local solvablity of P in the region {t Φ 0} is obvious since we

have the similar formula as (2.26).
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