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Introduction

The beta function B(a, β) is defined by the following integral

B(a9 β) = Γ f-\l - tγ-ιdt,

where arg t = arg( l — t) = 0, 9ϊα, 9Ϊ/3 > 0, and the gamma function Γ(a) by

Γ(a) = Γ ΓY'dt,

where arg t = 0, 9ϊα > 0. By the use of the well known formulae

, Γ(a)Γ(l - a) - ^

we get the following formula:

B(a, β)B(- a,-β) = 2πt(~ + j) ( - ( e χ p ( 2 π i a ) _ 1 ) ( e x p i 2 π i β ) _

If we regard the interval (0,1) of integration as a twisted cycle defined by the

multi-valued function ta(l — tΫ\ the factor

(exp(27πα) -

is nothing but the twisted self-intersection number ([KYI]) of the cycle (0,1). It is

quite natural to think that the factor
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6 8 KOJI CHO AND KEIJI MATSUMOTO

should be the "twisted self-intersection number" of the 1-form

dt_ dt
t 1 - V

so that the above formula should be thought of a twisted version of Riemann's

period relation.

This paper establishes the intersection theory for twisted cocycles and the

twisted Riemann's period relation connecting the intersection theories for twisted

cycles [KYI] and for twisted cocycles.

In the following we explain the results of this paper using as plain language

as possible; the notion and notation used are rigorously fixed in the text. Let

xQ,..., xn be n + 1 distinct points on P , and

n dt I n \
ω=Σ a,j—r> Σ a, = 0, a, <έ N - {0})

;=0 l Xj V=0 '

a connection form. The first twisted cohomology group

Hι{U,L) -H\P\ (Ω'(logD),V)), U := P 1 - D

with respect to the connection V — d + α>Λ is known to be isomorphic to

ΠP1, ΩιbogD))/C'ω, D:=xo+ •- +xn,

where

L : = ker(Γ|^:^-*f lpi( logZ)) 1^

is a local system on U defined by V.

The dual of the cohomology group H (U, L) is given by the cohomology

group with compact support HC(U, Z,v), where I? is the local system defined by

the connection F v = d — ω Λ dual to V. We show that the dual cohomology

group is isomorphic to Γ(P , Ω (logZ)))/C* (— ω). Since there is a natural dual

pairing between the two cohomology groups H (U, L) and HC(U, L ), there

should exist the induced bilinear form on the spaces Γ(P , Ω (logZ)))/C* ω and

Γ(P\ Ω\\ogD))/C'{~ ω). By using elements

Ψ^-Azr-jz^r- ^ Γ(P\ Ωι(logD)), l<j<n-l,

we give bases for the spaces above by
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φ] e Γ(P\ Ω\logD))/C ω, φj e Γ(P\ Ωι(\ogD))/C (- ω ) , l < j < n - l ,

where <p; and φj are the images of φ ; by the natural projections from Γ(P ,

Ω (logZ))). Our first main theorem gives explicitly the bilinear form, which turns

out to be symmetric and will be called the intersection form:

'V+l7

2πi

<<Pn Ψ~k> = 0 if I ; - A: I > 2 .

Our second main theorem states the relation between the three pairings: the

intersection form for twisted cohomologies, that for twisted homologies, and the

pairing of twisted homologies and twisted cohomologies, i.e. integrals. Let

be any bases of twisted cycles (the notation is slightly different from that in

[KYI]) and

ξf e Γ(P\ Ωι(logD))/C ω, j = l , . . . , n - l ,

ηJelϊP1, ΩHlogDV/C i-ω), j= l,...,n~ 1,

be any bases of twisted cocycles; let Ik and Ich be the intersection matrices:

The intersection matrix 7Λ can be explicitly computed [KYI]; take for instance

bases γ* and δj '-= φ~ as follows: let us assume for simplicity that the x/s are all

real and are arranged as x0 < xx < < xn, and u0 a branch of the multi-valued

function u = H(t — x,) i defined on the lower half ί-plane. We define special cy-

cles by

rt = <Pj> ?i+i) ®uo + ^prjSj®u0- Cj+i_1sj+1®u0,

ϊi = (Pjf QJ+ι) ® w^1 - J. 1 S ; ® Wo"1 + ; t ! i 5 ; + 1 ® u~\ Cj = exp 2τrzαy,
cj λ 6 ; + l -1

where Sk is a positively oriented circle with center xk and with starting point pk
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or qk see Figure.

P,

Figure

Then the intersection matrix for these special bases turns out to be

-dX2/dxd2 1/d, 0 —

c2/d2 ~ d23/d2d3 •••

o

o
o

o
o

o

\
0

0

0

0 •••• 0 c*-i/d,,-i - dn_ltn/dn_xdn

where dj = c ; — 1, djΊfc = c ;cΛ — 1. It is easy to see that

ldxd2...n d^d^ dγclzd^n — dxc^.n_xdn

1^3•»» ^ 1 2 ^ 3 - Λ ^12^3^4-•« * * ' ^12^3 n~l^n

Ίd^n dud4...n d123d4...n — d123c4...n_1dn

dγdn dί2dn d123dn — d^_ydn

where cyA... = c; cfc , dyA... = cycA — 1. Let us arrange the integrals (periods)

as follows:

Here the integral I ξ+ (resp. I ry~) of a twisted cocycle f+ (resp. η~) over a

twisted cycle γ+ ^ HX{U9 L v) (resp. δ~ ^ HX(Uy D) is defined as follows: for a
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twisted cocycle ξ+ (resp. η~) take a representing form ξ (resp. η) of Γ(P ,

Ω (logZ))) and for a twisted cycle 7 (resp. δ~) take a representing twisted chain

Σ f & Θ w , (resp. Σj£,- ® w,"1), where £, (resp. gfi is a topological chain and u{

(resp. w ) is a branch of the multi-valued function

u = Π (ί - xp (resp. w"1)

along gf (resp. £$; then

/ V = = Σ futξ9 f 17":= Σ Γ«Λ,

which are independent of the choice of representatives. Our theorem reads

Ih P = Ich, i.e. P Ich p - Ih.

We would like to call these identities twisted Riemann's period relations because

it resembles Riemann's period relation for a basis of holomorphic 1-forms ωly.. .,

ωg and a Z-basis of cycles γv . . ., γ2g on a compact Riemann surface of genus g.

The period matrix P and the intersection matrix Ih of cycles are

H
then Riemann's period relations are given as follows:

J ω,Λωk J ωf

where H is positive definite. We remarked it not only because of the resemblance

but also because we shall in [Choi] establish a theory including both Riemann's

period relations.

The simplest case, i.e. n = 2 is nothing but the formulae for B(a, β)B(— a,

— β) given in the beginning; the next simplest case, i.e. n = 3 yields (§4 Example

1) the famous formula

F(a,β, r;x)F(l-a, l-β,2-γ;x)

-1 — γ, β + 1 — γ, 2 — γ;x)F(γ — a, γ- β, γ\x),
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where

F ( a , β , γ x) '.= Σ {(*r)
nfι)n χn (a)n'.= a ( a + 1) ••• (a + n - 1 ) .

We cordially thank Professors K. Mimachi and M. Yoshida for their constant

encouragement and stimulating discussions.

§1. Preliminaries

In the following, notation is so chosen that generalizations to Riemann sur-

faces of higher genus [Choi] and to varieties of higher dimension [Cho2] would be

smooth. Let x0,..., xn be n + 1 distinct points on P put

D := xQ + ••• + xn, U '•= P1 - D, . ί / c + P 1 .
U ft' " J

Let ω be a logarithmic 1-form on P with poles at D with residue α ; at Xj\ note

that

Σ a, = 0.

; = 0

Consider the connection V with connection form ω :

V = d + ω/\ : Opi-• β p i (log D),

where 0pi is the sheaf of holomorphic functions on P , Ωp\ the sheaf of holomor-

phic 1-forms on P and ΩPi(logD) the sheaf of meromorphic 1-forms with

logarithmic singularities only on D. Let L be a local system on U defined by

L'-= kerίFlj,: Θv-^ Ωι

pι (logD) |^),

where Θυ is the sheaf of holomorphic functions on U.

We are going to present several isomorphisms for two hypercohomologies;

they shall be made explicit in the next section; the definition of hypercohomology

shall be also given in §2.2. If α ; ^ N — {0} then the following quasi-isomorphism

[Dell] holds

Rj*L~ (Ω'QogD),V)
qiS

••= •••O^0pί-*Ω1

pl (log D) -• 0 ,

which leads to
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H\U,D ~Hι(P\ (Ω'dogD),V))

-ΠP\ Ω\\ogD))/C ω,

where the last isomorphism is derived by the (Hodge-to-logarithmic de Rham)

spectral sequence:

E? - H\Pι, Ω"{\ogD)) =*H ί + ί(P\ (Ω (\ogD),V)),

and E? = 0 if tf > 0 .

On the other hand by the Poincarέ-Verdier duality [EV1], (i.e. by performing

RXom( , C P 0 ) we have:

j,Lv - (Ω (logD)(-D),Vw)
qis

: = ••• O - ^ 0 P i ( - D) ̂  Ωpi (\ogD)(- D) ̂  β p i - > 0 ••-,

where V '•= d ~ ω, and ! means the zero-extension; this leads to

HΪ(U, U) ^Ή\P\ (Ω'(\ogD)(-D)fV
v))

- ker(Fv :H\P\ ΘP,{- D)) — Hι{P\ Ωι

pl))

= ker(- ω:Hι(P\ ΘPi(- D))^Hι(P\ Ωι

P0),

where Hc means cohomology with compact support, and the second isomorphism is

derived by the spectral sequence:

Epq = Hq(P\ Ωp(logD)(~ D))=>RP+9(P\ (Ω\logD)(- Z)),FV)),

and E[q = 0 if # = 0. Notice that the duality between (Ω' (log D), V) and

(Ω'(\ogD)(— D), Vv) holds without any condition for α ; [EV2]. Notice also that

the duality above between Γ(P\ Ω\logD)/C ω and ker(- ω: H\P\ ΘPι(- D))

—* H (P , Ωpι)) is induced by the Serre duality. We denote by φ+ (resp. φ~) the im-

age oίφe Γ(P\ Ω^logD)) under the natural projection to Γ(P\ Ω1(\ogD)/C ω

(resp. Γ(P\ Ω\logD)/C'(- ω)).

§2. Intersection theory for twisted cocycles

Consider the following exact sequence of complexes, which will be referred to

as the basic sequence:

^ v ) / ^0^ (Ω-(logD)(-D), Vv)^(Ω (logD), Fv) -»(ΘJ= OCx/-^ e;=0CX/) - 0

that is
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(1)

o — •

0 •

0

1

0(-D)

Ω1

I
0

0

1

- ^ Ω\\ogD) - ^

ϊ
0

0

1

' i
0

where

x res : ( c 0 , . . . , cn) —• (— α ^ o * . . . , —

If α ; ̂  0 then x res is isomorphic, so we have the following isomorphism

c:R (P\ (Ω (logD)(-D)9 VV))^K(P\ (Ω'(logD), Fv)),

in particular,

We shall explicitly give the inverse of the isomorphism c. We first define a homo-

morphism: τ : Γ(Ωι(log Z)))/C ( - ω) -> k e r ( - ω : Hι(ϋ(- D)) -* i / 1 ^ 1 ) ) and

secondly prove that this gives the inverse of the natural isomorphism c.

§2.1. Definition of τ

The corresponding long exact sequences of (1) read

> H°W) > θ^oC^ - ^ HιW(-D))

where δ is the connecting homomorphism. Tracing the above commutative diagram,

we have

<5°(x resΓ^ResiH'iΩ'ilogD^-^H'iΰi- D))

it is immediate that this induces the isomorphism

T : ΠΩι(log D))/C * (~ ω) ^ ker(- ω : H\ΰ(- D)) — i / 1 ^ 1 ) ) .
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§2.2. Naturality of τ

LEMMA, τ = c~ι.

Proof. Let us honestly see the homomorphism c, i.e. following the definition of

hypercohomologies. A fine resolution of the complex (Ω' (log D) (— D), V ) is

given by

VV i

0 > 0(-Z)) > Ω >0

1 i

0 > 800(- D) — 810 > 0

0 • ( ? 0 1 ( - Z)) - ^ 8n • 0

I 1

o o
where 8 Q stands for the sheaf of smooth (p, gO-forms on P and 8 9(— D) the

sheaf of (p, q) -forms g on P such that g/tj is smooth for a local parameter tj

around xy The associated single complex is

0 > Θ(- D) - ^ Ω1 > 0 • 0

1 1 1

0 > 800(-D) - ^ ( f o l ( - ί ) ) Θ(f1 0 - ^ (f11 • 0.

Thus we have

R\P\ (Ω'(log D)(-D), F V )) -
VVΠC(- D))

for η <= Π P 1 , β'dogZ))), we denote by r?v the image of η~ e Γ(β1(logZ>))/C

• ( ~ ω) under r. Since the Dolbeault resolution implies

y , H\P\Ωp,))^^lfdΓ(800(~D)) dΓ(810)

Vv = d — ω annihilates ηv means that there exists μ G Γ(8 ) such that

(d — ω)ηv = dμ,

namely,

Fv(r?v +μ)=0.
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This gives an explicit expression of the isomorphism

(-D), Fv))

k e r { Γ ( g o l ( - Z») Θ Γ(810) -» Γ($n)}

VVΓ(8°°(- D))

Similarly a single fine resolution of (Ω'(logD), V ) :

0 • 0 — Ω\logD) » 0 >0

4 I 4

0 • 800 — 801®S10(\ogD) - ^ Sn(logD) >0

gives

ker{Γ(8m)φΓ(S10(logD))^Γ(8n(logD))}
H ( P , ( Ω ( \ o g D ) , V ) ) -

An explicit expression of the isomorphism

- ω ) ^ H 1 ( P 1

) (Ω'dogD), Γv))

^ ker{Γ(g01) Θ Γ(g10(log Z?)) - * Γ(<g11(log Z?))}

is given by

Summing up, a fine resolution of the basic sequence is given as follows (pay

attention that rows and columns are reversed):

0 0 0

1 I i

0 > 800(-D) — 801(-D)®810 — 8n >0

I < 1 I
oo ^ v oi lo Vw n

restr I (restr, I Res) I

xi (0,xres) xi xi (xres) °prλ

 xi

4 4 4
0 0 0

Now we are going to trace back c. Let us give η £ Γ(Ω (logD)). We change the

represetative r\ to
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so that (restr, Res)// = 0 this can be achieved by taking h e Γ(<§°°) so that

(0, x res) ° restr h = (restr, Res)?7.

Then there is a form ή + μ e Γ(801(— D) 0 $ι°) which maps under c to rf \ it

can be readily checked that rj + μ represents an element of

Uι(P\ (Ω\ϊogD)(-D), Vv)) -
- D))

Recall the connecting homomorphism <5:ΦC x ^~*i f (C(~ D)) used when defin-

ing τ it is exactly the same as tracing part of the above diagram:

o — •

o — •

o —••

0
I
*

§

restr 1

e c X y1
0

— • i

>

0
I

f1(-D)ΦSw

Ί
01®r(logZ))

I
*
1
0

0

1
— < • *

ϊ

— < • *

ϊ
— • *

I
0

> 0

•• 0

• 0

Therefore we proved that in cohomology level

ή = ηv inH'Wi-D));

and so (it will be the key in §3),

(2) c(ηw +μ) = η+ Vvh, μ e Γ(^10), h

§2.3. Intersection form for cocycles

We assume α ; Φ 0. Let us fix an isomorphism

f:H1(Qι)-+C

by

H\ΩX) - HvJΩ1) := ΠS^/dΠS1") 3 ζ •- Γ ζ e C.
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For cocycles ξ and rj represented by ξ, η ^ Γ(Ω (logD)), we now define the

intersection form by the natural bilinear form < * , * ) :

Γ(Ω\logD))/C'ω x ΠΩ\\ogD))/C'{- ω)^ΠΩ\\ogD))/C'ω x H^{Θ{-D))

Serre duality i , f

(t, η') -> (ξ\ VV) ~ VV Λ ξ -> f ηv Λ ξ.

Since ryv e k e r ( - ω : H»ol(0(- D)) -> H^iΩ1)) and ω v - 0, it is well defined,

and is non-degenerate thanks to non-degeneracy of the Serre duality. We compute

the intersection numbers for the following forms:

Let us first explicitly write the image (ύi} G 7/ (^(— Z))) under r of α>ί; in terms
V

of the Cech cohomology I?(!U, Θ{— D)) with respect to the covering °U = {Uj}

CLAIM. Let (ω t ; ) C e c h

 oe ^ e expression of ωυ in the Cech cohomology, then we

have

1 /a{ + 1 /aβ on U{j

1/cti on Uik (k Φ iy j)

0 on Ukl (A, / Φ i , j ) ,

where Uif : = C / ( ί l ί/;.

Here we use the convention sί7 = — sH for {sί; } €= C (Θ(— D)), where s/;

«, O ( - Z))), s,f €= Π ^ , O ( - D)).

Proo/. It is easy to see that

ωu

 R™ (1 e CX(, - l e C ^ O e C X i A ¥= i, j)

x ^ s ( - l / α < e CX ( ) l / α y e C I / f 0 e C I t ) .

The connecting map δ is given by tracing the following commutative diagram from

the right-top to the left-bottom:
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> C ° ( Θ ; = O C , ) > 0o —*

o—*

C\0(-
l

C\0(-

D))

D)) — > c

\0)
1

\0) > C'CΘ^oC,) > 0,

where C denotes a space of cochains. Thus the claim follows. D

THEOREM 1. The intersection numbers for the twisted forms are

(ω+

Pqt ω~> = 2πi ( — (δίP - δiq) - — (δfp - δjq)),

where δίP is the Kronecker delta. As a result, the intersection form is symmetric.

Proof In terms of the Cech cohomology the isomorphism J : H {Ω ) -^ C is

given as follows: for

(Ocech = (ζPq) e Ω\UPq) e H'iX Ωι), ζ e i / ^ C β 1 ) ,

find meromorphic 1-forms 7^ on Up such that

r]q-r)p= ζPq on f/M

({77̂ } is called a Mittag-Leffler distribution for (ζ)Cech)» t n e n

(3) fζ = 2πi Σ

Since

(ωy)cech e ^ ' ( ^ C

and UaΓ\ Ub= U(aΦ b),we have

Notice that

HΌol(Ω ) B ωυ Λ ωPq ++ — ω^'ωPq ^ H (°U, Ω ).

If we define ξ — {ξ/} by

?ι : — ωPq/a{ a meromorphic 1-form on U{

ξj:= — θ)Pq/aj a meromorphic 1-form on Όj

ξk:= 0 on Uk iίkΦ i,j
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it forms a Mittag-Leffler distribution for — (ω^ ) C e c h ωPq. Hence using the formu-

la (3), we get

(ω+

Pq1 α>~> = 2πi Σ
xep1

which completes the proof. D

By using forms

I Xj I Xj+1

we give bases for the spaces Γ(P\ Ωι{\ogD))/C ω and Γ(P\ Ωι(\ogD))/C

' (— ω) by

φ]^Γ(P\ ^(log^VC ω, φj e Γ(P\ Ω\logD))/C-(- ω), l<j<n~l.

COROLLARY. For the bases above, the intersection numbers are given as follows:

=0 if\j-k\>2.

§3. Twisted Riemann's period relations

In this section we assume α ; ̂  Z. Let ξj (resp. η) 1 < j < n — 1 be elements

of Γ(Ω\logD)) such that ξ/ (resp η~) forms a basis of Γ(Ω\log D))/C ω

(resp. Γ(.01(logZ)))/C (— ω)). Recall the de Rham expression:

ric\L ) —
VVΓC(U, t)

the natural inclusion

ker{ Vv : ΓC(U, 81) -»ΓC(U, 82)} ^ ker{Γ(801(- D)) Θ

induces the isomorphism (here the assumption α ; - ^ N — {0} is used)

, w V r v . ^ k e r { F v : ΓC(U, 81) ̂  ΓC(U, 82)}
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ker{Γ(go l(- D))

VvΓ(800(-D))
(logZ)))/C (-

For each τ?; there exist (see §2 (2)) μs e Γ(δ1 0) and A, e Γ(8°°) such that

77/ + μj = ηj + F v/ϊ ;

moreover by the isomorphism above there exist f} ^ Γ($ (— D)) such that

which form a basis of ΓC(U, 8 ). Let

be bases of the twisted cycles. We use the following isomorphism called the Poin-

care duality (without any condition):

θc: # , ( [ / , L v) •=* H\ΓC(U, «'), Γ v ) .

Let us define the intersection matrices and the period matrices as follows:

rt, δ;> - <rΐ, δ^y

rt Jr+

n-λ

where the intersection for twisted cycles are defined by

<r+, <r> := Γ ec(r+)( r+ e H,α v), δ" e H.ω.
Jδ~

Then we have the twisted Riemann's period relation:

THEOREM 2.

p+ v 'p- = /rt, «. 'p- 7-1 p+ = %.

Proof. Let Θ = (0 ί ;) be the matrix expression of #c under the bases above:
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θcφ = Σ θkiηk

c.
k

The intersection numbers for twisted cycles are computed as follows:

f
δ~k a

= Σθajfηa + Vvha + Vvfa = Σθajf η~,
a Jδ~k a Jδ'k

a Jδ'k

that is

ih = 'βp-.

The (/c, j)-components θkj of Θ are computed as follows:

f C = / θcφ Λ?; = / Σ θkiηk

c A ξa

= Σθkif(ηv

k+μk+Vvfk)Λξa
k J

that is

p+ = hβ

Eliminating Θ from the two equalities above, we get the relation.

§4. Examples

EXAMPLE 1. Quadric relations for the Gauss hypergeometric functions.

For

n = 3, xQ = xA = °°, xλ = 0, x2 = 1, x3 = 1/x (0 < x < 1),

aλ = a, a2 = γ - a, a3 = - β, a0 = β - γ,

put

u = taa - tv~aa - xtr\

= ί__dl dt_\ _ dt _ /_d[ dt_\ _ - xdt
Ψι~\t-χι t - xj ~ til - t)' ψ3 ~ \t - x3 t-xj ~ 1- xV

Ti> h e H^U, Lv) and ft", γ3 ^ H^U, L), (see Figure), then we have
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P+ =
J uφx j uφΛ I \ uιφx \ u ι

I uφ3 I uφ3 \ ί u~ιφ3 j u~ι

_(d12/d1d2 0 \ ./l/α + lΛr-α)
\ 0 d30/d3dJ' ck πi\ 0

By the help of the well-known formulae

/ uφ1 = B(a, γ - a)F(a, β, γ\x),

ΓuΨl= - ( - ΐ)r~a'Bχι~rBiβ - 7 + 1 , - 0 + 1)
J\/τ.

the identity

P+tΓltP~ = ί
Γ 1h Γ Ich*

leads quadratic identities for hypergeometric functions in [SY]: the (1,2)-

component yields the formula presented in Introduction

- α , 1 - J 8 , 2 - 7 ; * )

7, i8+ 1 - 7, 2 - 7 ; j ? ) F ( 7 - a , 7 ~ & r ; * ) ,

and the (1, l)-component yields

F(α,i8, γ;x)F(- a, - β, - 7;*) - 1

7 ( 7 +

EXAMPLE 2. Quadric relations for Lauricella's hypergeometric function.

Lauricella's hypergeometric function FD of m-variable is defined by

where

z = (zv...,zm), β= ( 0 l t . . . , 0 J ;

the series admits the integral representation
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FD(a, β , r i z ) =

Put

Γ{a)Γ{γ -a)S! r ' ( 1 " r~"~1(1 ~ z

n = m + 2, x0 = °°, xλ = 0, x2 = 1, xj+2 = 1 /z, (1 < j < m),

«o = α»+3 = βi + + βm ~ T, «i = α, α2 = r ~ a, ai+2 = - βf (1 <;' < m),

u = f{\ - ty-aa - Zlty
Si- a - zjyBm,

rf, HX(U, I?), γ; e H^U, L) (1 <> ^ m), (see Figure).

The (l,l)-component of

1ch

reads

Since the (l,l)-component of /Λ is —

( X ^ ^ " - - ' X w lγ)m+ι)lch ( X M?i» » X

2πir 2πi(τ—oc)
- 1)), and

2πi

a-γ 0 0 — 0

0 βxzx 0 — 0

0 0 β2z2 - 0

\ 0 0 - 0 βmz,

we have the following formula:

FD(a,β, r;z)FDa-a, - β, - γ + 1 z) - 1

= r [ r ^ ^ ) Σ βjZjFnia, β + e,, r + 1 ^)^z,(- α + 1, - j8 + βy, - r + 2 2r),

where

-th

e,= ( . . . , 0 , 1 , 0 , . . . ) .

Remark Once the inversion formula for the beta function is obtained as an

example of the twisted Riemann's period relations, the inversion formula for the

gamma function can be obtained as a special case of beta's as follows:
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Γ(ά)Π- a) = B(a, - a/2)B(- α, a/2)

_ — 2πi exp (πiά) π
a exp(2πia) — 1 a sin πa'

namely Γ(a)Γ(l — a) = τr/sin πa. Since the gamma function can be thought of a

confluent beta function (see the integral representations of these functions in the

beginning of Introduction), this formula suggests a confluent version of our in-

tersection theory.
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