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SCALAR CURVATURES OF CONFORMAL METRICS ON S*

SHIGEO KAWAI

§0.

In this paper we consider the following problem: Given a smooth function K

on the ^-dimensional unit sphere Sn(n > 3) with its canonical metric g0, is it

possible to find a pointwise conformal metric g = fg0 (/ > 0) which has K as its

scalar curvature? This problem was presented by J. L. Kazdan and F. W. Warner.

The associated problem for Gaussian curvature in dimension 2 had been presented

by L. Nirenberg several years before.

In both cases, the problems can be reduced to solving nonlinear partial dif-

ferential equations: For n = 2,

(1) - Δu + 1 = K exp(2w)

where/ = exp(2w), and for n > 3,

4(w — 1) M+2

(2) —^—Δu + n(n — \)u — Kun~2, u > 0

where / = un~2.

It is known that there exist functions K with no solutions. This is shown by

the obstruction of J. L. Kazdan and F. Warner which we now recall.

PROPOSITION 1 ([3], [13], [14]). If u is a solution of the equation (1) (resp. (2)),

then we have

<VK,VF>dVg =0

,VF>dVeo ={resp.

for all spherical harmonics F of degree 1, where dVgQ denotes the canonical volume form

on o .
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Taking K = cx + C2FO with c^ c2 constants and Fo a spherical harmonic of

degree 1, we conclude there is no solution of the equation (1) and (2). Note that

the spherical harmonics of degree 1 are the restrictions of linear functions on

R to the unit sphere and their critical sets have simple structures. Thus the

nice sufficient conditions may include assumptions on the complexity of the critic-

al set of K. Some existence results are known under symmetry assumptions on the

function K or in low dimensions ([2], [5], [6], [8], [10], [11], [12]). Recently Chang

and Yang [7] presented a result in general dimensions.

The purpose of this paper is to present a consequence of min-max method,

following Chen and Ding [8], applied to the w-dimensional case with n > 3. We

also use the argument of Bahri and Coron [2] on the deformation of functions along

the gradient line of a functional. For simplicity, we consider the following equation

instead of the equation (2):

n(n — 2) n+2
(3) £u:= - Δu + -±-^—-u = Ku^, u>0

and assume that max K = 1, n > 3 throughout the paper.

THEOREM. Assume that a function K on Sn with max K = 1 salisfies the follow-

ing conditions:

(i) There exist nondegenerate local maximum points a and b such that

2

1V~2 <v<K(b) <K(a)(I)
where

v= supheΓπήnxehi[0Λ])K(x),

Γ= ih^ C°([0,l], 5n) I MO) - α, M l ) = b).

(ii) There exists an element h0 in Γ such that

and ΔK(x) > 0 for any x with K(x) = v.

(iii) There is no critical value of K in the interval (v, K(b)).

Then we have a positive solution of the equation (3).

Though the restrictions on K are rather stringent, we can apply the theorem,

for example, to a function K which has a saddle point c with K(c) > yw)
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To prove this theorem, we use the max-min method. Let us define functionals

Fy G a n d / o n W ' iSn) as follows:

FM = /

Gίul = f ufi,

Jίu] = j Ku+"~

Vu\ H j

_2n_
2

where ^ / = (vol S")"1 (JJdV^j and w+(x) - maxίwCr), 0).

Taking families of functions φa>ε and 06>ε which will be specified later, we

consider for some ε > 0, the following max-min problem:

μ{ε) = sup / e I ( ε ) min M e H t 0 ; 1 ] ) /M

where

H = {Me W1Λ(Sn)\F[u] =Ώ,

Uε) = {/ e C°([0,l], K» I 1(0) = ΦM, 1(1) = φj.

Under the assumptions of the theorem, this number μ(ε) turns out to be a cri-

tical value of JlH for sufficiently small s, and we get a desired solution of the equa-

tion (3).

§1.

In this section we make some preparation for the later parts. First we define

several functions. For every point p on 5W, σ(p) denotes the streographic projec-

tion from Sn\ {p} to Rw, and p(p) its inverse. Denoting the canonical metric of Rw

and S by g and gr respectively, we have

Let us define δ(a) : R" -• R" by δ(a) (x) = —. Then

δ(a)*(p(p)*g') = C ^ J ' ^ ' p ^ V .
a + \x\
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and consequently we obtain

UI2)
2 , I .2

a + I x\

( 2 \n

with respect to the spherical volume form dVp(p)*gr — ( ——) dVg on Rw. Let
N l + \ x \ '

n—2 jj.

us define φa = (det δ(ά)) 2n and φ'p>a — σ(— p) φa where — p denotes the anti-

podal point of p. Since

the function φPa satisfies the equation

A(n — 1)

- n _ 2 ^^;,«

on Sn. In fact, every positive solution of this equation coincides with φPa for some

p and α. Denoting the volume of Sn by α>w, we have

X 2w

= Γ (p{-p)*K)u'fidVt,
JΈtn

n-2
\ 2

where un —

Since G[φf

Pa\ = 1 and F [ 0 ; j = ^ — 4 , we define Φp,a = Jn(n-2)

/ 4
and ua = / / __ 2) *C T n e n w e n a v e 0*,α e ^

Vo : = \n(n- 2)) 2 =

(p(-p)*K)u«-2dVg.
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The following property of functions ua will be used: If we fix a ball B(R) of

radius R centered at the origin,

Γ 2w /*• 2n

I K~2dVg = 0{a), I un

a~
21 x \2dVg ~ a,

JB(R)C JB(R)

r j^ (O(a) (n>4)
Un

a~
2\x\3dVg= I _ / l χ v

Next Proposition is a form of maximum principle by Stampacchia [17] (see

also Kazdan and Warner [13]).

n+2

PROPOSITION 2. If a function u^ W ' (Sn) satisfies the equation £u = ful~2

for a function f, then u ^ 0.

Proof Let us denote u_(x) = minίO, u(x)}. Then we have u_ e W1>2(Sn)

and

(ϋ?«)«_ = JffuT2u_ = 0.

Hence we obtain

which implies u_ = 0, i.e., w > 0. ΓH

We need the concept of renormalization or reseating. Consider for a > 0 and

p ^ Sn, Ά diffeomorphism 7 α / ) : S
w —• 5 W defined by γatP = p(— p)°δ(a)°σ(— p).

F o r w e Wh2(Sn), a > 0 and / > ^ S w , we define the rescaled function ύ(a, p) by

« ( α , ί ) = ( t t β r β ^ ) (det r « f ί ) ^ = (u°ra,p)Φp,a'

In this notation, w(α, /)) concentrates at p as α—• 0. The functionals G and F are

invar iant by rescaling, i.e.,

Gίΰ(a, p)] = G[u], F[ΰ(a, /»)] = Flu].

Let us consider an inner product <, >x on W ' (S ) defined by

, »>! - / <Vu, Vv> + nin~2) fuv.
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This is apparently equivalent to the usual inner product in W ' (Sn). The gra-

dient of JlH with respect to < , ) h which we denote by grad/, is given by

Oγj n+2

(grad/)[u] = -4ro i-JMu + Γ\Kun

+-2)}.

PROPOSITION 3. // {ut) is a sequence in H with (grad J) [u{] ~* 0 and

IΛ 2

limJίUj] > ( y ) μ0, then the equation (3) has a positive solution or a subsequence

concentrates at exactly one point in S .

Proof. We follow the proof of Theorem 3.1 in Struwe [18] which proves the

case K = 1. For a function/, let us define a functional Ef on W ' (S ) by

Then (grad/) [wj —• 0 0'-* °°) if and only if || Eκ'[vi\ | | -* 0 ( i - * °°) where ^ =

/[wj"*" W;. By the definition of Eκ, we have

weakly as i—• °°.

We note that the sequence iv) is bounded in W ' (S ) because FtwJ = 1
2

jand lim/twj > (-^j μo Consequently a subsequence converges to υ ^

FF ' (Sw) weakly. Then from the fact stated above, the function v is a weak solu-

tion of the equation £υ — Kvl~2, and we have v > 0 by Proposition 2. This weak

solution # is smooth from Theorem 3 in Trudinger [19]. Using maximum principle

for smooth solution of elliptic equations, we obtain either v = 0 or v > 0 every-

where. In the latter case, we get a desired positive solution of the equation
n+2

ί£v = Kvn~2. Hence we may only consider the case that a subsequence of ί^},

which is still denoted by {#,}, converges to zero weakly.

Next we show || EK

f[vt] ||—• 0 and liminf Eκ[υ^\ < — ί r j implies

that iv) is relatively compact. Though this is true even if the weak limit does not

equal to zero, we treat only the case v{ —• 0 weakly.

Since
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oil) = <vi9EM> = f\Vvi\
2-j'Kvιf

2~ + o(l),

we obtain

/ I Vυ< |2 = nEM + oil) < ( n f a ~ 2 ) ) τ + 0(i),

From the assumption K < 1 and Sobolev inequality, we get

o(l) - f I Vυ{ Γ - / Kvfi + o(l)

I Vvt ΐ ~ Jf\ Vi \*=* -

Thus it follows that || v{ ||1>2 —• 0 as i —* °°.

We can derive, as in the proof of Lemma 3.3 in [18], the following fact: There

exist a sequence ίr,} of points in Sn with x{~^ x0 ^ Sn, a sequence {a) of posi-

tive numbers with a{ —* 0 and a nontrivial solution v0 of the equation
n±2

( 4 ) ^ 0 ( ) 2

such that the sequence {wt) of functions defined by w{ = v{ — vo(aif Xj) satisfies

Eκ[w{] = EM ~ Eκ[v0(aiy xt)] + o(l) = EM "" ^ J Γ ^ ^ J + o(D

and

II£/[»,] Ho.

The argument required to prove this is almost the same as in [18], and we only

point out the differences.

First we use the following identity which can be proved by the method of

Theorem 2 in [4]:

K-(v)l~2 = JfK'{vi - vQ)l~2 +JfKυQ

n

+-2 + oil),

where ivt) is a rescaled sequence of {υt) and v0 is the weak limit of {vt}. The cor-

responding relation for K = 1 is used for example in p.173 (3.3) of [18] (v{ and v0

are written there as vm and υ respectively.). Secondly υ in [18] is a solution of
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the "limiting problem" (3.1) (p.169), while our "limiting problem" for v0 becomes

the equation (4). This is because rescalings are done from the points xit and we

take the subsequence of {xt) so that it converges to a point x0 ^ S*.

We show in the following that wi•,—* 0 in W (S ) which means that the sequ-

ence {#,-} approaches vo(aiy x{). From the equation (4), we get v0 > 0 and K(x0) >

0. Let us set v'o = (—T—__°OΛ ) v0. Then this positive function v'Q satisfies the

equation

Λ(n — I) n+£

~ \-o Δv'o + n(n - l)v'o = n(n - 1 ) ^ " 2 ,

and consequently v'o = φ'tιa for some p and a. Hence we have

(n(n-2)\τ 2-« /n(n-2)\τ

which implies

Suppose that {u^ satisfies the condition

/[«,] > (l -

/ 4 φ
where μ0 = I—7—_ 0) / ' t ^ i e n ^ e i n e Q u a ^ t y

1 / Λ ( Λ — 2 ) \ f
# < n \ 4 /

holds and we get «;,.—^0 in W ' (Sw) because || £ / [ M ; J | |~ > 0. Since the function

(1 + t 2 )"»-2 of f on the interval (0,1] takes the maximum value (TΓ) at ί =

1, the proof is completed. CH

The following is a variant of Mountain Pass Lemma.

PROPOSITION 4. L#£/ be a C -function defined on a closed smooth submanifold X

of a Hilbert space. Assume that for two points p and q in X,

μ = $upceΓmmtG[01]f(c(t)) < min{/(/>), f(q))
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where

Γ= {CSΞ C ° ( [ 0 , l ] , A ) | c ( 0 ) =p,c(D = q ) .

Then for every sequence {cj in Γ with mmt<E[0>1]f(cn(i)) —* μ (n~+ °°), there exist

sequences {cn'} in Γ, which can be taken as close to {cn} as possible, and {tn} in

[0,1] such that

f(cn'(tn)) = πύnt6m]f(cn'(f))

and

|| (grad /) (cn'(tn)) || — 0 (n — oo).

If X itself is a linear space, this proposition is proved in Aubin & Ekeland [1]

and Shuzhong [16]. The key ingredient in both proofs is Ekeland's variational

principle ([9]) which is valid for functions on complete metric spaces. In our case,

we consider the function / defined by I(c) = max ί e [ o l ] /(c(O) on the space Γ, and

apply Ekeland's variational principle to this function /. Since the space Γ is a

complete metric space, we can easily modify the proof to fit in with our case.

§2.

The purpose of this section is to show that if J\H has no critical point, then

there exists some constant c > 0 such that

μov<μ(ε) < (K(b) - c)μ0

for sufficiently small ε. For every u e Wίt2(Sn) with u+ ^ 0, we define P(u) =

(P(u)lf P(w)2, , P(u)n+ι) by the equality

where (xlt x2, ' ' ' , xn+ι) is an orthogonal coordinate system of R . When

I P{u) I Φ 0, we write Q(u) = P(u)/\P(u) | and rf(«) = | Q(u) - P(u) |. If we

are considering a sequence {#,-} of functions which concentrates around at most

one point, then iu) actually concentrates if and only if d(ut) —^0(i~^°°). The

following lemma can be proved by the same way as the proof of Lemma 1.1 in [8].

We present the proof because we need later some of the estimates in it.

LEMMA 1. There exists a constant Co which depends only on the C -norm of K

such that for u G ^ l f 2 ( S w ) with P(u) Φ 0,
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I Jf {K-K(Q(u))}un

+-2 < C0(d(u))ϊfun

+-2.

Proof. Let us define B(r, Q) = {x e Sn | distGr, Q) < r) where dist de-

notes the geodesic distance. Then we have

JSn\B(r,Q)

and

f fl - Σ X,Q] uf*dV < d(u) f uf*dV
JSn\B(r,Q) L i J JSn

r2

l-ΣχiQi>τ
i ^

for every x ^ Sn\B(r, Q). Taking r = (d(u))~*, we get

Γ 2n _i n In

Jsn\B(r,Q) Jsn

Consequently we obtain

I Γ {K-K{Q{u)))uf^dV <\ f ••• +\ f
I ^ 5 n I JB(r,Q) I JSn\B(r,Q)

< (max\VK\)r f uf*dV
Jsn

+ 8(max I K |) W(«))^ Γ wf^dF^

1 Λ 2n

< C0(d(u))* I <" 2 dF'

which is the desired result. •

LEMMA 2. Under the assumption on K in the theorem, we have μ(ε) > μov for

sufficiently small ε.

Proo/. Using the path h0 in the assumption (ii) of the theorem. We set lε(t) —

φh ω>ε for t ^ [0,1] To prove μ(ε) > μov, we have only to show

(5) / K(φho{t)t£)^ > μov

for 0 < t < 1. Let us set iVδ = te e A0([0,l]) | dist(x, A) < δ} where A =

iy ^ ho([O,l]) I /ί(2/) = v}. Then we can choose a small <5 so that ΔKlNδ > 0.
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We first show the inequality (5) for t with ho(t) ^ Sn\Nδ. Take a sufficient-

ly small β > 0 such that

K(ζ) >v + β

for every ζ ^ hQ([0,l]) \Nδ, and let ε be sufficiently small so that

d(ΦζJ < (-fir)

Here note that d(φζε) does not depend on ζ. Then by Lemma 1, we have

/
2n 1 Γ 2n

κ(φho(t)>ε)^ > {κ(ho(ω - co(d(φho(t)>εm Jf (φho(t)>ε)^

> μov.

Next we consider the case ho(t) ^ Nδ. Due to the continuity of/ and the rela-

tive compactness of Nδ, it suffices to show that for each ζ ^ Nδ, there is a num-

ber ε(ζ) such that the inequality (5) holds for ε with ε < ε(ζ).

Since p(— ζ) is a conformal diffeomorphism,

Δ(p(- ζ)*K) =Δ{K°p{- 0) = (dK)(τ(p(- ζ))) +/(i iθ ' ( / o(- ζ))

where / is a positive C°° function on R and τ(p(— ζ)) denotes the tension field

of the map p(— ζ). By straight forward computation, we see τ(p(~ ζ))(O) = 0

which implies

Δ(p(- Q*K)(O) =f(O)(ΔK)(0.

Denoting by B(R) the ball of radius R centered at the origin 0 and consider-

ing Taylor expansion of p(— ζ) K at the origin, we get

(p(- ζ)*K)ui"2dVg + f (p(- Q*K)u«-2dVt
) SB(R)C

+Σ

/
B(R)
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- K(ζ)μoωn + fψ- (ΔK) (ζ) Γ <"2 | x fdVe

+ fB^O(\x\3)ufidVg+O(εn).

2n

In this calculation, we used the property that the functions un

z~
2 are radial and

2n 2n

hence the integrals over B(R) involving XiUl~2 and Xfc u^'2 (i Φ j) must vanish.

Note that

f uf*\x \2dVg ~ε\ f uf*\x\2dVg = O(ε3) or = θ(ε3log β)).

Since K(ζ) > v9f(O)(ΔK)(Q > 0, we obtain a number ε(ζ) such that the ine-

quality (4) holds for every ε with ε < ε(ζ). This completes the proof of the lemma.

PROPOSITION 5. // the function K satisfies the assumption in the theorem, then

either we have a critical point of the functional J, or there exists a positive constant c

such that

μ(ε) < (K(b) - c)μ0

for every sufficiently small ε.

Proof By the definition, the functions φaε and φbε concentrate around the

points a and b respectively for small ε. To investigate the behavior of Φsφa,ε and

Φsφb>ε by the flow {Φs} (s > 0) on Hgenerated by grad/, we use the argument in

[2]. In that paper, the set of functions which concentrate at p points is denoted by

W(p, ε) and the definition of "center" a{ is different from that of Q. However if a

function sufficiently concentrates at exactly one point, we may think that our Q is

nearly equal to ax in [2], and ε~* 0 in our notation corresponds to λι~> °° in [2].

The equations (121) and (122) in [2] imply that if a function sufficiently con-

centrates around a nondegenerate local maximum point, then it more and more

concentrates around this point by the flow {Φs} as 5 - * 0 0 (Incidentally " — " in

the right hand side of the equation (122) should be replaced by " + ".). Though [2]

treats mainly 3-dimensonal case, this property is valid in all dimensions if we

consider functions which concentrate at exactly one point. Thus if ε is sufficiently

small, the functions Φsφatε and Φsφb>ε concetrate more and more around points a

and b respectively, and points Q(Φsφa,ε)> Q(ΦsΦb,ε) a r e w e ^ defined for all s > 0.

By the definition of μ(ε), there exists / e L(ε) such that min/ | / ( [ 0 1 ] ) is close
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to μ(ε). Then we have for every v e /([0,l])>
2

~Vo. (gradT)[Φ»] ->0 (s— + oo).

It follows from Section 1, Proposition 3 that there exists a critical point of the

functional / or a subsequence {Φs (v)} concentrates at one point in 5 . If the first

case does not occur, we have not only d(ΦSk(v)) —>0 but also d(Φs{υ)) —• 0 as

s—• -f oo Consequently Q(Φs(v)) is well defined for every sufficiently large s.

From the compactness of /([0,l]), we get a sufficiently large constant s0 such

that Q(Φs(v)) is well defined for all υ G /([0,l]) and all s > s0. Thus consider-

ing the path made by {Φs(0α,ε)}o<s<2V {Φ2So(K[O,l]))} and {Φs(φb,ε)}0<s<:2s0> we

obtain a path V between φaε and φbtS such that Q(v) is well defined and d{υ) is

sufficiently small for every element v in Γ.

Since {Q(v) \ v ^ Γ([0,l])} is a continuous path between a and ί>, there ex-

ists an element vQ e /'([0,l]) such that K(Q(vQ)) < K(b) by the assumption (i).

Because v0 sufficiently concentrates at Q(f0), we have

J[v0] < (K(b) - c')μ0

for some positive constant c'. Thus the inequality /|/([0,i]) ^ min/ιr([o,i]) a n c l t n e

closeness of min/| / ( [ 0 > 1 ] ) to μ(ε) complete the proof. D

Let us fix a small ε0 so that Proposition 5 and Lemma 2 hold for every ε

< ε0, and let us write μ = μ(ε0) and L — L(ε0) for simplicity.

PROPOSITION 6. There exist positive constants α 0, δ0 with the following property:

// a sequence {vk} in H satisfies

J[vk] >μ-δ0, P(vk) - ζ e S "

as k—* oo, then

K(ζ) >v + a0.

Proof From Lemma 2, we get positive constants a'o and δ0 such that

μ- δo> μo(v + αp.

Then from Lemma 1, the following inequalities hold:

(v + cφμ0 < μ ~ δ, < J[vk] < {K(Q(vk)) +
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Since d(vk) —• 0 and K(Q(vk)) —> K(ζ) as A—> 0, we obtain the desired result. D

§3.

In this section we complete the proof of the theorem. Since we have only to

consider the second case in Proposition 5, let us choose ει so small that μ

< μo(K(b) - ε,) and take the set Ud = {u e H\P(u) Φ 0, K(Q(u)) < K{b) -

εv d(u) < d). From now on, / " (a, b) (resp. / " [a, b]) denotes the subset {u e

H\ a < J[u] < b) (resp. {u e H\ a < J[u] < » ) .

The proof of the following lemma is almost the same as that of Lemma 5.1 in

[8] and we omit it.

LEMMA 3. There exist positive constants δ, d with K(b)μQ — 5 > μ + <5, and a

continuous map SΓ \ H—*H such that

(1) JlSΓu] > J[u] for every u e H,

(2) J C Γ 1 ^ ~ δ, K(b)μ0) Π £/,) c J-\μ + δ, K(b)μ0),

(3) !Γ(u) = u for every u G J~\K(b)μ0 - δ, μ0),

(4) J ( / / \ £/,) c i / \ C/d.

Proof of the theorem. Choose a sequence {/Λ}Λ=i>2f... i
n L s u c n that

™nMe/fc[0)i]/M > μ - <5, minMe/fc[0(1]/[w] ->μ

as A—>oo. By (1) and (3) in Lemma 3, we have ΣΓ(lk) e L and

min<!r(lk(0Λ)J[u\-*μ.

Also we get from (2) and (4) in Lemma 3,

(6) &Qk[0,i])) Π Ud c Z ' 1 ^ + 3, K(b)μ0).

By virtue of Proposition 4, we obtain mk ^ L and #Λ G m f c[0,l] such that

J[υk] = min w e W A t 0 > 1 ] /M, /[i J -> ^, (grad/) [z J -* 0.

Moreover we can take mk as close to ?T(lk) as possible. Hence the relation (6) im-

plies vk G i /\ Ud for sufficiently large A.

Since (grad J) [vk] —• 0, and /[t J—^jM, {^Λ} concentrates at most one point

from Proposition 3 and Lemma 2. Because vk G //"\ [/d, we have only two cases:

(a) A subsequence of ivk} converges in W ' -norm.

(b) P(vk) - ζ e S κ with K(ζ) > K(b) - εv
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In the case (b), J[vk] —• μ0K(ζ) > μo(K(b) — εx) which contradicts the fact

J[vk] —• μ < μo(K(b) — ε^. Thus only the case (a) occurs and we get a critical

function υ in H for functional /. Namely υ weakly satisfies the equation

. , n(n ~ 2) j&z
— Δv H 1 0 = λKv%~2

for some constant /L Hence from Proposition 2, a constant multiple of v gives the

desired solution of the equation (3). Thus the proof of the theorem is completed. EH
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